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Adaptive Cartesian methods
@000

Block-structured AMR with complex boundaries

Block-structured adaptive mesh refinement (SAMR)

For simplicity d:q(x, y, t) + oxf(a(x, y, t)) + dyg(a(x,y,t)) =0

Refined blocks overlay coarser ones
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Block-structured AMR with complex boundaries

Block-structured adaptive mesh refinement (SAMR)

For simplicity d:q(x, y, t) + oxf(a(x, y, t)) + dyg(a(x,y,t)) =0

Refined blocks overlay coarser ones

Refinement in space and time by factor r
[Berger and Colella, 1988]
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Block-structured adaptive mesh refinement (SAMR)
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Efficient cache-reuse / vectorization
possible

Cluster-algorithm necessary

Papers: [Deiterding, 2011a,
Deiterding et al., 2009b,
Deiterding et al., 2007]
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Block-structured AMR with complex boundaries

Level transfer / setting of ghost cells

Conservative averaging
(restriction):

fy1—1rp1—1

Al +1
ij- 2 Z z QV+K7W+L

f/+1

R. Deiterding, J. M. Garro Fernandez -

Simulating train-tunnel aerodynamics with a parallel adaptive Cartesian method



Adaptive Cartesian methods
[e] le]e]

Block-structured AMR with complex boundaries

Level transfer / setting of ghost cells

Conservative averaging
(restriction):

fy1—1rp1—1

Al +1
ij- 2 Z z QV+K7W+L

f/+1

R. Deiterding, J. M. Garro Fernandez -

Simulating train-tunnel aerodynamics with a parallel adaptive Cartesian method



Adaptive Cartesian methods
[e] le]e]

Block-structured AMR with complex boundaries

Level transfer / setting of ghost cells

Conservative averaging
(restriction):

fy1—1rp1—1

Al +1
ij- 2 Z z QV+K7W+L

f/+1

[ Synchronization

R. Deiterding, J. M. Garro Fernandez -

Simulating train-tunnel aerodynamics with a parallel adaptive Cartesian method



Adaptive Cartesian methods
[e] le]e]

Block-structured AMR with complex boundaries

Level transfer / setting of ghost cells

Conservative averaging
(restriction):

fy1—1rp1—1

Al +1
ij- 2 Z z QV+K,7W+L

(rl+1

[ Synchronization
[ Physical boundary conditions

R. Deiterding, J. M. Garro Fernandez -

Simulating train-tunnel aerodynamics with a parallel adaptive Cartesian method



Adaptive Cartesian methods
[e] le]e]

Block-structured AMR with complex boundaries

Level transfer / setting of ghost cells

Conservative averaging
(restriction):
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Bilinear interpolation
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QL =1-A)1-£) Q1
+ fl(l - f2) Qj,k,1+
(1-A)AEQ) 1.+ Ah Q)

[ Synchronization
[ Physical boundary conditions

[ Interpolation
For boundary conditions: linear time interpolation

QM (t+rAt) = (1— 2 ) Q7N () +-2 QM (t+At) fork=0,... 1
Fi+1 Fi+1

R. Deiterding, J. M. Garro Fernandez — Simulating train-tunnel aerodynamics with a parallel adaptive Cartesian method



Adaptive Cartesian methods
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Block-structured AMR with complex boundaries

Recursive integration order

Space-time interpolation of coarse data to set I,/ >0

Root Level
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Block-structured AMR with complex boundaries

Recursive integration order

Space-time interpolation of coarse data to set I,/ >0
Regridding:

Creation of new grids, copy existing cells on level / > 0
Spatial interpolation to initialize new cells on level / > 0
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— — > Regridding of finer levels.
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Adaptive Cartesian methods
[e]e]e] ]
Block-structured AMR with complex boundaries

Level-set method for boundary embedding

Implicit boundary representation via distance
function ¢, normal n = Vo /|Vy|

Complex boundary moving with local velocity w,
treat interface as moving rigid wall
[Deiterding et al., 2007]

Construction of values in embedded boundary
cells by interpolation / extrapolation
[Deiterding, 2009, Deiterding, 2011a]

Creation of level set from triangulated surface
data with closest-point-transform (CPT)
algorithm [Mauch, 2003, Deiterding et al., 2006]
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Block-structured AMR with complex boundaries

Level-set method for boundary embedding

Interpolate / constant value extrap-
olate values at

X =x+2pn

Velocity in ghost cells (slip):
u=02w-n—u-n)n+ (u-t)t
=2((w—u)-n)n+u

Implicit boundary representation via distance
function ¢, normal n = Vo /|Vy|

Complex boundary moving with local velocity w,
treat interface as moving rigid wall
[Deiterding et al., 2007]

Construction of values in embedded boundary
cells by interpolation / extrapolation
[Deiterding, 2009, Deiterding, 2011a]

Creation of level set from triangulated surface
data with closest-point-transform (CPT)
algorithm [Mauch, 2003, Deiterding et al., 2006]
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Adaptive Cartesian methods
@00
Parallelization approach

Parallelization

Rigorous domain decomposition
Data of all levels resides on same node
Grid hierarchy defines unique " floor-plan”

Workload estimation

Imax /
W) => MG ]
1=0 k=0
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@00
Parallelization approach

Parallelization

Rigorous domain decomposition
Data of all levels resides on same node
Grid hierarchy defines unique " floor-plan”

Workload estimation

Imax /
W) => MG ]
1=0 k=0

Parallel operations

Synchronization of ghost cells
Redistribution of data blocks within
regridding operation

Flux correction of coarse grid cells

Dynamic partitioning with space-filling
curve

[Deiterding, 2005, Deiterding, 2011a]
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Adaptive Cartesian methods
(o] o}
Parallelization approach

AMROC framework and most important patch solvers

Implements described algorithms and facilitates easy exchange of the
block-based numerical scheme

Shock-induced combustion with detailed chemistry:
[Deiterding, 2003, Deiterding and Bader, 2005, Deiterding, 2011b,
Cai et al., 2016, Cai et al., 2018]

Hybrid WENO methods for LES and DNS: [Pantano et al., 2007,
Lombardini and Deiterding, 2010, Ziegler et al., 2011, Cerminara et al., 2018]

Lattice Boltzmann method for LES: [Fragner and Deiterding, 2016,
Feldhusen et al., 2016, Deiterding and Wood, 2016]

FSI deformation from water hammer: [Cirak et al., 2007,
Deiterding et al., 2009a, Perotti et al., 2013, Wan et al., 2017]

Level-set method for Eulerian solid mechanics: [Barton et al., 2013]

Ideal magneto-hydrodynamics: [Gomes et al., 2015, Souza Lopes et al., 2018]
~ 500,000 LOC in C++, C, Fortran-77, Fortran-90

V2.0 plus FSI coupling routines as open source at http://www.vtf.website

Used here V3.0 with significantly enhanced parallelization (V2.1 not released)
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Adaptive Cartesian methods
ooe
Parallelization approach

AMROC strong scalability tests

3D wave propagation method with Roe scheme:
spherical blast wave

Tests run IBM BG/P (mode VN)

Time per higest level step
T T T T - - -

102

—o— SAMR
—— Uniform

sec
T

| | | | | | |
16 32 64 128 256 512 1024

CPUs

64 x 32 x 32 base grid, 2 additional levels with
factors 2, 4; uniform 512 x 256 x 256 = 33.6 - 10°

cells
Level Grids Cells
0 1709 65,536
1 1735 271,048
2 2210 7,190,208
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Adaptive Cartesian methods
ooe
Parallelization approach

AMROC strong scalability tests

3D SRT-lattice Boltzmann scheme: flow over
rough surface of 19 X 13 X 2 spheres

Tests run Cray XC30m (Archer)

3D wave propagation method with Roe scheme:
spherical blast wave

Tests run IBM BG/P (mode VN)
Time per higest level step

Time per higest level step
—

T T T T T T T T T T

2 [T ! I 1 [ SAMR
07 —o— SAMR || ol b —— |
[ Unife | 0% F —#— Uniform [
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L 1 "

9 g 100 E|
8 F E|
10! | E [ ]
: ] 0t e £
[ 1 L I L

Il Il Il Il Il Il Il >

1 1 1 1 1 1 1
B D O oo (@ A0 AV W&
& F S S
16 32 64 128 256 512 1024 v TN A S NS

CPUs

64 x 32 x 32 base grid, 2 additional levels with
factors 2, 4; uniform 512 x 256 x 256 = 33.6 - 10°

CPUs

360 x 240 x 108 base grid, 2 additional levels with
factors 2, 4; uniform 1440 x 1920 x 432 = 1.19-10°

cells _ cells
Lea’e' f;'ggs 6(5:‘35”356 Tevel | Grids Cells
1 | 1735 | 211048 0 788 | 9,331,200
VoA | 08 1 | 21367 | 24,844,504
190, 2 1728 | 10,838,016
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Train-tunnel aerodynamics
[ Jelele]e}

Validation

Laboratory tunnel simulator [Zonglin et al., 2002]

2000 mm

Freestream region

Tunnel

100 mm

00 m
Train

[ 1

1 20 mm
] 8000 mm
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Train-tunnel aerodynamics
[ Jelele]e}

Validation

Laboratory tunnel simulator [Zonglin et al., 2002]

2000 mm

Freestream region
Tunnel

%00 mgﬁ
Train
20 mm

|
] 8000 mm |

100 mm

Model solves the inviscid Euler equations
Otp+V - (pu)=0
Ot(pu) +V - (pu@u) +Vp =10
Ot(pE) + V - ((pE + p)u) = 0

with p = (y — 1)(pE — 3pu"u)
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Train-tunnel aerodynamics
[ Jelele]e}

Validation

Laboratory tunnel simulator [Zonglin et al., 2002]

2000 mm ‘

Freestream region
ﬁoo m ]ﬁ Tunnel

Train
20 mm

|
] 8000 mm |

100 mm

Model solves the inviscid Euler equations
Otp+V - (pu)=0
Ot(pu) +V - (pu@u) +Vp =10
Ot(pE) + V - ((pE + p)u) = 0

with p = (y — 1)(pE — 3pu"u)
Two-dimensional axi-symmetric computation
po = 100kPa, pp = 1.225kg/m?, v = 1.4
Roe shock-capturing scheme blended with HLL
2nd order accuracy achieved with MUSCL-Hancock method
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Train-tunnel aerodynamics
[e] lele]e}
Validation

Basic phenomena — vy = 100 m/s
800 x 25 mesh with Cartesian cut-out (200, 5) to (800, 25)

2 level of additional refinement by factor 2

o t=0sec
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Train-tunnel aerodynamics
[e] lele]e}

Validation

Basic phenomena — vy = 100 m/s
800 x 25 mesh with Cartesian cut-out (200, 5) to (800, 25)

2 level of additional refinement by factor 2

o =0 sec

p/p0

s s s s s s s s s

0 0005 001 0015 002 0025 003 0035 004 0045 005
Time [sec]

Pressure record at location (1020 mm, 20 mm) inside tunnel
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Train-tunnel aerodynamics
[e]e] le]e}

Validation

Comparison with experiment — |

I ]- -l_ '_ ‘ Numerical result for Zonglin et al experiment at 75 mfs. e —
21 o ==
E . " WTF_
r—— T
|
A | |
0.9 — i I

0 10 20 30 40 50
t/ms
Pressure record at (1020 mm, 20 mm) for vo = 75m/s. Experiment (left) and
AMROC (right)
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Train-tunnel aerodynamics
[e]ele] o}

Validation

Comparison with experiment — |

Numerical result for Zonglin et al experiment at 100 /s

11

[

‘
- .

p/po

09 L
0 W W N 40 0

t/ms

Pressure record at (40 mm, 20 mm) for model velocity vo = 100 m/s. Experiment
(left) and AMROC (right)
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Train-tunnel aerodynamics
[e]e]ele] }

Validation

Variation of velocity and nose half angle

Pressure sensor at (420 mm, 20 mm)

1.25 ; . :
60m/s —
80m/s
1.2 100m/s
120m/s
140m/s
1.15 160m/s — 1
180m/s
§ 11 ‘ 200m/s

0.005 0.01 0.015 0.02 0.025
Time (sec)

Pressure sensor at (1020 mm, 20 mm)
1.1

20deg —
L 40deg —
1.08 60deg
1.06 80deg —
1.04
<102
&
1
0.98
0.96

0.014 0.016 0.018 0.02 0.022 0.024
Time (sec)

Dependence on V¢ is the dynamic pressure influence (left)

For constant blockage ratio and body velocity, using more pointed noses
alleviates the maximal pressure level (right, nose half angle varied)

For vp =~ 140m/s a shock wave (tunnel boom) can be observed. Sharper noses

also delay this phenomenon.
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Train-tunnel aerodynamics
@000

NGT2 prototype setup

Next Generation Train 2 (NGT2) geometry by the German Aerospace Centre
(DLR) [Fragner and Deiterding, 2016, Fragner and Deiterding, 2017]

Mirrored train head of length ~ 60 m, no wheels or tracks, train models 0.17 m
above ground above the ground level.

Train velocities 100m/s and —100 m/s, middle axis 6 m apart, initial distance
between centers 200 m

Base mesh of 360 x 40 x 30 for domain of 360m x 40m x 30 m

Two/three additional levels, refined by r; » 3 = 2. Refinement based on pressure
gradient and level set and regenerated at every coarse time step. Parallel
redistribution at every level-0 time step.

On 96 cores Intel Xeon E5-2670 2.6 GHz a final te = 3 sec was reached after
12,385sec / 43,395 sec wall time, i.e., 330h and 1157 h CPU
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Passing trains in open space

Passing in open space — AMR and dynamic distribution

Domains of three-level refinement

Distribution to 96 processors

Enlargement of domain center shown
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Train-tunnel aerodynamics
[e]o] e

Passing trains in open space

Pressure isosurfaces
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Train-tunnel aerodynamics
[e]o] e

Passing trains in open space

Pressure isosurfaces

Y, A

Pressure (Pa)
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Train-tunnel aerodynamics
ooce
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R. Deiterding, J. M. Garro Fernandez — Simulating train-tunnel aerodynamics with a parallel adaptive Cartesian method



Conclusions
o

Summary and outlook

Conclusions

A Cartesian embedded boundary method for compressible flows with
block-based adaptive mesh refinement is a highly efficient and
scalable prediction tool for pressure and shock waves created in front
of high-speed trains. This gives predictions of maximal loading.

For predicting the flow around entire trains, the boundary layer
growing over the train body needs to be considered.

R. Deiterding, J. M. Garro Fernandez — Simulating train-tunnel aerodynamics with a parallel adaptive Cartesian method



Conclusions
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Summary and outlook

Conclusions

A Cartesian embedded boundary method for compressible flows with
block-based adaptive mesh refinement is a highly efficient and
scalable prediction tool for pressure and shock waves created in front
of high-speed trains. This gives predictions of maximal loading.

For predicting the flow around entire trains, the boundary layer
growing over the train body needs to be considered.

AMROC solvers for the compressible Navier-Stokes equations and
even LES are already available, however, for this particular
application a turbulent wall function on the embedded boundary first
needs to implemented. Such a wall function is currently
work-in-progress for the LBM-LES solver.
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Supplementary

Conservative flux correction

Example: Cell j, k
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Supplementary

Conservative flux correction

Example: Cell j, k

fp—1rp—1

At 1

I / / I I+1

ij(t—l—At/) :ij(t)— Axt FH%?k— 724.1 FV+%_’W+L(t+5At/+1)
’ k=0 =0

At I I
B AX2_/ (Gj’kJr% N Gj*kf%)

Correction pass:
SFITL = —F

1
J—35.k =35k
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Supplementary

Conservative flux correction

Example: Cell j, k

At 1 +1—1rp—1
! — 0 _ / _ I+1
Qju(t + Aty) = Qj(t) A Fli e Foily o (t RDBL)
’ k=0 =0
At I I
Ny G
Correction pass:
+1 . gl y
5F1—f kT _ij%,k
W — q
re—1
I+1 . 1 /+1
OFy = 0F Z Fitly o (E+ rAt)
+1 2o - -
v|v+l
T T
=1
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Supplementary

Conservative flux correction

Example: Cell j, k

fp—1rp—1

At 1
I _ Al _ / I L I+1
Qju(t + Aty) = Qj(t) A Fli DS Foily o (t RDBL)
At I I
N AX2_/ (Gj’kJr% n Gj*kf%)
Correction pass:
H1 . gl J
5Fj_%7k = ij%’k Y :
1 rp—1
41 epltl I+1
OFy = 0RO R L (4 eAta)
I+1  ,—o 1T
« At v|v+l
/ — 0 1 1+1
Qjx(t + Aty) := Qu(t + Aty) + Aty 5':,-7%* | |
J=1
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Supplementary

Clustering by signatures

X X X X X X|6

X X X X X X|[|6

X X X 3

X X X 3
X X 2
X X 2
X X 2
0

X X 2
2

T 6 6 2 3 2 2 2 2 2

T Flagged cells per row/column

A Second derivative of T, A =T,11 — 2T, +T,1
Technique from image detection: [Bell et al., 1994], see also
[Berger and Rigoutsos, 1991], [Berger, 1986]
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Clustering by signatures

X X X X X X|[|6

X X X X X X|[|6

X X X 3

X X X 3
X X 2
X X 2
X X 2
0

X X 2
2

T 6 6 2 3 2 2 2 2 2

T Flagged cells per row/column

A Second derivative of T, A =T,11 — 2T, +T,1
Technique from image detection: [Bell et al., 1994], see also
[Berger and Rigoutsos, 1991], [Berger, 1986]
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Clustering by signatures

X X X X X X|[|6 X X X X X X|6
X X X X X X|[|6 X X X X X x|6 -3
X X X 3 X X X 3 3
X X X 3 X X X 3 -1
X X 2 X X 2 1
X X 2 X X 20
X X 2 X X 2
0
X X 2 /
2 %
™Y 6 6 23 2 2 2 2 2 T 4 4 2 3 2 2 2 22
A -23-21000
T Flagged cells per row/column

A Second derivative of T, A =T, 41 —27T, +T,_1
Technique from image detection: [Bell et al., 1994], see also
[Berger and Rigoutsos, 1991], [Berger, 1986]
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Clustering by signatures

X X X X X X|[|6 X X X X X X|6
X X X X X X|[|6 X X X X X x|6 -3
X X X 3 X X X 3 3
X X X 3 X X X 3 -1
X X 2 X X 2 1
X X 2 X X 20
X X 2 X X 2
0
X X 2 /
2 %
™Y 6 6 23 2 2 2 2 2 T 4 4 2 3 2 2 2 22
A -23-21000
T Flagged cells per row/column

A Second derivative of T, A =T, 41 —27T, +T,_1
Technique from image detection: [Bell et al., 1994], see also
[Berger and Rigoutsos, 1991], [Berger, 1986]
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W%
X X X 3
X X X 3 -1
X X 2
X X 2
X X 2
//
2
T 4 4 2 11
A 21
Recursive generation of é/,m
0inT

Largest difference in A
Stop if ratio between flagged and unflagged cell > 70
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W%
X X X 3
x xfx 3 -1
X X 2
X X 2
X X 2
//
2
T 4 4 2 11
A 21
Recursive generation of é/,m
0inT

Largest difference in A
Stop if ratio between flagged and unflagged cell > 70
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W% 0
X X X 3 X X X 3
X Xfx 3 -1 % X 1
X X 2 1
X X 2 %
X X 2 /%
% >
% %
T 4 4 2 11 T 2 11
A 21 A 1
Recursive generation of G,m
0inT

Largest difference in A
Stop if ratio between flagged and unflagged cell > 70
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%% 4%
X X i o 2 -1 %i - i’
X X 2 1 //
> N
7 7
T 4 4 2 11 T 2 11
A 21 A 1
Recursive generation of é/,m
0inT

Largest difference in A
Stop if ratio between flagged and unflagged cell > 70
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Supplementary

Closest point transform algorithm

The signed distance ¢ to a surface T satisfies the eikonal equation [Sethian, 1999]
V| =1 with |, =0
Solution smooth but non-diferentiable across characteristics.
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Supplementary

Closest point transform algorithm

The signed distance ¢ to a surface T satisfies the eikonal equation [Sethian, 1999]
V| =1 with |, =0

Solution smooth but non-diferentiable across characteristics.

Distance computation trivial for non-overlapping elementary shapes but difficult to do

efficiently for triangulated surface meshes:

Geometric solution approach with plosest-point-transform algorithm
[Mauch, 2003]
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Closest point transform algorithm

The signed distance ¢ to a surface T satisfies the eikonal equation [Sethian, 1999]
V| =1 with |, =0

Solution smooth but non-diferentiable across characteristics.

Distance computation trivial for non-overlapping elementary shapes but difficult to do

efficiently for triangulated surface meshes:

Geometric solution approach with plosest-point-transform algorithm
[Mauch, 2003]

A

Surface mesh 7 Distance ¢ Normal to closest point

Hi 100 150 200
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Supple

The characteristic / scan conversion algorithm

Characteristic polyhedra for faces, edges, and vertices

Build the characteristic
polyhedrons for the surface mesh
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Supple

The characteristic / scan conversion algorithm

BUlld the Characteristic Characteristic polyhedra for faces, edges, and vertices
polyhedrons for the surface mesh
For each face/edge/vertex

Scan convert the polyhedron.

Slicing and scan conversion of apolygon
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Supple

The characteristic / scan conversion algorithm

Characteristic polyhedra for faces, edges, and vertices

Build the characteristic
polyhedrons for the surface mesh

For each face/edge/vertex

Scan convert the polyhedron.
Compute distance to that
primitive for the scan
converted points

Slicing and scan conversion of apolygon
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The characteristic / scan conversion algorithm

Characteristic polyhedra for faces, edges, and vertices

Build the characteristic
polyhedrons for the surface mesh

For each face/edge/vertex A
Scan convert the polyhedron. \'zﬂ"@"’l}’

| N0

Compute distance to that @ BNV

primitive for the scan
converted points
Computational complexity.
O(m) to build the b-rep and ©
the polyhedra.
O(n) to scan convert the
polyhedra and compute the
distance, etc.

Slicing and scan conversion of apolygon
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Supplementary

The characteristic / scan conversion algorithm

Characteristic polyhedra for faces, edges, and vertices

Build the characteristic
polyhedrons for the surface mesh

For each face/edge/vertex

Scan convert the polyhedron.
Compute distance to that
primitive for the scan
converted points

Computational complexity.

O(m) to build the b-rep and
the polyhedra.

O(n) to scan convert the
polyhedra and compute the
distance, etc.

Slicing and scan conversion of apolygon

Problem reduction by evaluation
only within specified max. distance

[Mauch, 2003], see also
[Deiterding et al., 2006]
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