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Block-structured AMR with complex boundaries

Block-structured adaptive mesh refinement (SAMR)

For simplicity ∂tq(x , y , t) + ∂x f(q(x , y , t)) + ∂yg(q(x , y , t)) = 0

I Refined blocks overlay coarser ones

I Refinement in space and time by factor rl

[Berger and Colella, 1988]

I Block (aka patch) based data structures

+ Numerical scheme
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+ Efficient cache-reuse / vectorization
possible

- Cluster-algorithm necessary

I Papers: [Deiterding, 2011a,
Deiterding et al., 2009b,
Deiterding et al., 2007]
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Block-structured AMR with complex boundaries

Level transfer / setting of ghost cells

Conservative averaging
(restriction):

Q̂l
jk :=

1
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Bilinear interpolation
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For boundary conditions: linear time interpolation

Q̃l+1(t+κ∆tl+1) :=

(
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)
Q̌l+1(t)+

κ

rl+1
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R. Deiterding, J. M. Garro Fernandez – Simulating train-tunnel aerodynamics with a parallel adaptive Cartesian method 4



Adaptive Cartesian methods Train-tunnel aerodynamics Conclusions

Block-structured AMR with complex boundaries

Level transfer / setting of ghost cells

Conservative averaging
(restriction):

Q̂l
jk :=

1

(rl+1)2

rl+1−1∑
κ=0

rl+1−1∑
ι=0

Ql+1
v+κ,w+ι

Bilinear interpolation
(prolongation):

Q̌l+1
vw := (1− f1)(1− f2)Ql

j−1,k−1

+ f1(1− f2)Ql
j,k−1+

(1− f1)f2 Q
l
j−1,k + f1f2 Q

l
jk

For boundary conditions: linear time interpolation

Q̃l+1(t+κ∆tl+1) :=

(
1− κ

rl+1

)
Q̌l+1(t)+

κ

rl+1
Q̌l+1(t+∆tl ) for κ = 0, . . . rl+1

R. Deiterding, J. M. Garro Fernandez – Simulating train-tunnel aerodynamics with a parallel adaptive Cartesian method 4



Adaptive Cartesian methods Train-tunnel aerodynamics Conclusions

Block-structured AMR with complex boundaries

Level transfer / setting of ghost cells

Conservative averaging
(restriction):

Q̂l
jk :=

1

(rl+1)2

rl+1−1∑
κ=0

rl+1−1∑
ι=0

Ql+1
v+κ,w+ι

Bilinear interpolation
(prolongation):

Q̌l+1
vw := (1− f1)(1− f2)Ql

j−1,k−1

+ f1(1− f2)Ql
j,k−1+

(1− f1)f2 Q
l
j−1,k + f1f2 Q

l
jk

Synchronization

For boundary conditions: linear time interpolation

Q̃l+1(t+κ∆tl+1) :=

(
1− κ

rl+1

)
Q̌l+1(t)+

κ

rl+1
Q̌l+1(t+∆tl ) for κ = 0, . . . rl+1

R. Deiterding, J. M. Garro Fernandez – Simulating train-tunnel aerodynamics with a parallel adaptive Cartesian method 4



Adaptive Cartesian methods Train-tunnel aerodynamics Conclusions

Block-structured AMR with complex boundaries

Level transfer / setting of ghost cells

Conservative averaging
(restriction):

Q̂l
jk :=

1

(rl+1)2

rl+1−1∑
κ=0

rl+1−1∑
ι=0

Ql+1
v+κ,w+ι

Bilinear interpolation
(prolongation):

Q̌l+1
vw := (1− f1)(1− f2)Ql

j−1,k−1

+ f1(1− f2)Ql
j,k−1+

(1− f1)f2 Q
l
j−1,k + f1f2 Q

l
jk

Synchronization

Physical boundary conditions

For boundary conditions: linear time interpolation

Q̃l+1(t+κ∆tl+1) :=

(
1− κ

rl+1

)
Q̌l+1(t)+

κ

rl+1
Q̌l+1(t+∆tl ) for κ = 0, . . . rl+1

R. Deiterding, J. M. Garro Fernandez – Simulating train-tunnel aerodynamics with a parallel adaptive Cartesian method 4



Adaptive Cartesian methods Train-tunnel aerodynamics Conclusions

Block-structured AMR with complex boundaries

Level transfer / setting of ghost cells

Conservative averaging
(restriction):

Q̂l
jk :=

1

(rl+1)2

rl+1−1∑
κ=0

rl+1−1∑
ι=0

Ql+1
v+κ,w+ι

Bilinear interpolation
(prolongation):

Q̌l+1
vw := (1− f1)(1− f2)Ql

j−1,k−1

+ f1(1− f2)Ql
j,k−1+

(1− f1)f2 Q
l
j−1,k + f1f2 Q

l
jk

Synchronization

Interpolation

Physical boundary conditions

For boundary conditions: linear time interpolation

Q̃l+1(t+κ∆tl+1) :=

(
1− κ

rl+1

)
Q̌l+1(t)+

κ

rl+1
Q̌l+1(t+∆tl ) for κ = 0, . . . rl+1

R. Deiterding, J. M. Garro Fernandez – Simulating train-tunnel aerodynamics with a parallel adaptive Cartesian method 4



Adaptive Cartesian methods Train-tunnel aerodynamics Conclusions

Block-structured AMR with complex boundaries

Recursive integration order

I Space-time interpolation of coarse data to set I s
l , l > 0

I Regridding:

I Creation of new grids, copy existing cells on level l > 0
I Spatial interpolation to initialize new cells on level l > 0
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Regridding of finer levels.
Base level ( ) stays fixed.
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Block-structured AMR with complex boundaries

Level-set method for boundary embedding
I Implicit boundary representation via distance

function ϕ, normal n = ∇ϕ/|∇ϕ|
I Complex boundary moving with local velocity w,

treat interface as moving rigid wall
[Deiterding et al., 2007]

I Construction of values in embedded boundary
cells by interpolation / extrapolation
[Deiterding, 2009, Deiterding, 2011a]

I Creation of level set from triangulated surface
data with closest-point-transform (CPT)
algorithm [Mauch, 2003, Deiterding et al., 2006]

Interpolate / constant value extrap-
olate values at

x̃ = x + 2ϕn

Velocity in ghost cells (slip):

u′ = (2w · n− u · n)n + (u · t)t
= 2 ((w − u) · n) n + u

ρj−1 ρj ρj ρj−1

uj−1 uj 2w − uj 2w − uj−1

pj−1 pj pj pj−1

ut

ut

ut

w

uj

2w − uj
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Parallelization approach

Parallelization

Rigorous domain decomposition

I Data of all levels resides on same node

I Grid hierarchy defines unique ”floor-plan”

I Workload estimation

W(Ω) =

lmax∑
l=0

[
Nl (Gl ∩ Ω)

l∏
κ=0

rκ

]

I Parallel operations

I Synchronization of ghost cells
I Redistribution of data blocks within

regridding operation
I Flux correction of coarse grid cells

I Dynamic partitioning with space-filling
curve

[Deiterding, 2005, Deiterding, 2011a]
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Parallelization approach

AMROC framework and most important patch solvers

I Implements described algorithms and facilitates easy exchange of the
block-based numerical scheme

I Shock-induced combustion with detailed chemistry:
[Deiterding, 2003, Deiterding and Bader, 2005, Deiterding, 2011b,
Cai et al., 2016, Cai et al., 2018]

I Hybrid WENO methods for LES and DNS: [Pantano et al., 2007,
Lombardini and Deiterding, 2010, Ziegler et al., 2011, Cerminara et al., 2018]

I Lattice Boltzmann method for LES: [Fragner and Deiterding, 2016,
Feldhusen et al., 2016, Deiterding and Wood, 2016]

I FSI deformation from water hammer: [Cirak et al., 2007,
Deiterding et al., 2009a, Perotti et al., 2013, Wan et al., 2017]

I Level-set method for Eulerian solid mechanics: [Barton et al., 2013]

I Ideal magneto-hydrodynamics: [Gomes et al., 2015, Souza Lopes et al., 2018]

I ∼ 500, 000 LOC in C++, C, Fortran-77, Fortran-90

I V2.0 plus FSI coupling routines as open source at http://www.vtf.website

I Used here V3.0 with significantly enhanced parallelization (V2.1 not released)

R. Deiterding, J. M. Garro Fernandez – Simulating train-tunnel aerodynamics with a parallel adaptive Cartesian method 8
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Parallelization approach

AMROC strong scalability tests

3D wave propagation method with Roe scheme:
spherical blast wave

I Tests run IBM BG/P (mode VN)
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Uniform

64 × 32 × 32 base grid, 2 additional levels with
factors 2, 4; uniform 512 × 256 × 256 = 33.6 · 106

cells
Level Grids Cells

0 1709 65,536
1 1735 271,048
2 2210 7,190,208

3D SRT-lattice Boltzmann scheme: flow over
rough surface of 19 × 13 × 2 spheres

I Tests run Cray XC30m (Archer)
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factors 2, 4; uniform 1440×1920×432 = 1.19·109

cells
Level Grids Cells

0 788 9,331,200
1 21367 24,844,504
2 1728 10,838,016
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Validation

Laboratory tunnel simulator [Zonglin et al., 2002]

Model solves the inviscid Euler equations

∂tρ+∇ · (ρu) = 0
∂t (ρu) +∇ · (ρu⊗ u) +∇p = 0
∂t (ρE) +∇ · ((ρE + p)u) = 0

with p = (γ − 1)(ρE − 1
2
ρuTu)

I Two-dimensional axi-symmetric computation

I p0 = 100 kPa, ρ0 = 1.225 kg/m3, γ = 1.4

I Roe shock-capturing scheme blended with HLL

I 2nd order accuracy achieved with MUSCL-Hancock method

R. Deiterding, J. M. Garro Fernandez – Simulating train-tunnel aerodynamics with a parallel adaptive Cartesian method 10
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Validation

Basic phenomena – v0 = 100m/s
I 800× 25 mesh with Cartesian cut-out (200, 5) to (800, 25)

I 2 level of additional refinement by factor 2
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Validation

Comparison with experiment – I

Pressure record at (1020mm, 20mm) for v0 = 75m/s. Experiment (left) and

AMROC (right)
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Validation

Comparison with experiment – I

Pressure record at (40mm, 20mm) for model velocity v0 = 100m/s. Experiment

(left) and AMROC (right)
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Validation

Variation of velocity and nose half angle

Pressure sensor at (420mm, 20mm) Pressure sensor at (1020mm, 20mm)

I Dependence on v2
0 is the dynamic pressure influence (left)

I For constant blockage ratio and body velocity, using more pointed noses
alleviates the maximal pressure level (right, nose half angle varied)

I For v0 ≈ 140m/s a shock wave (tunnel boom) can be observed. Sharper noses
also delay this phenomenon.
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Passing trains in open space

NGT2 prototype setup
I Next Generation Train 2 (NGT2) geometry by the German Aerospace Centre

(DLR) [Fragner and Deiterding, 2016, Fragner and Deiterding, 2017]

I Mirrored train head of length ∼ 60m, no wheels or tracks, train models 0.17m
above ground above the ground level.

I Train velocities 100m/s and −100m/s, middle axis 6m apart, initial distance
between centers 200m

I Base mesh of 360× 40× 30 for domain of 360m× 40m× 30m

I Two/three additional levels, refined by r1,2,3 = 2. Refinement based on pressure
gradient and level set and regenerated at every coarse time step. Parallel
redistribution at every level-0 time step.

I On 96 cores Intel Xeon E5-2670 2.6GHz a final te = 3 sec was reached after
12, 385 sec / 43, 395 sec wall time, i.e., 330 h and 1157 h CPU
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Passing trains in open space

Passing in open space – AMR and dynamic distribution

Domains of three-level refinement

Distribution to 96 processors

Enlargement of domain center shown
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Passing trains in open space

Pressure isosurfaces
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Passing trains in open space

Pressure transects
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Passing trains in a double track tunnel

Setup with realistic tunnel shape

I Two NGT2 trains again at velocities 100m/s and
−100m/s

I Prototype straight double track tunnel of 640m length,
initial distance between centers of trains 820m

I Base mesh of 1060× 36× 24 for domain of
1060m× 36m× 24m, three levels refined by r1,2,3 = 2

I On 96 cores Intel Xeon E5-2670 2.6GHz a final te = 5 sec
was reached after 84, 651 sec wall time, i.e., 2257h CPU

Tunnel shape
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Passing trains in a double track tunnel

Pressure transects
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Summary and outlook

Conclusions

I A Cartesian embedded boundary method for compressible flows with
block-based adaptive mesh refinement is a highly efficient and
scalable prediction tool for pressure and shock waves created in front
of high-speed trains. This gives predictions of maximal loading.

I For predicting the flow around entire trains, the boundary layer
growing over the train body needs to be considered.

I AMROC solvers for the compressible Navier-Stokes equations and
even LES are already available, however, for this particular
application a turbulent wall function on the embedded boundary first
needs to implemented. Such a wall function is currently
work-in-progress for the LBM-LES solver.
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Conservative flux correction

Example: Cell j , k
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Clustering by signatures
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Technique from image detection: [Bell et al., 1994], see also

[Berger and Rigoutsos, 1991], [Berger, 1986]
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Closest point transform algorithm

The signed distance ϕ to a surface I satisfies the eikonal equation [Sethian, 1999]

|∇ϕ| = 1 with ϕ
∣∣
I = 0

Solution smooth but non-diferentiable across characteristics.

Distance computation trivial for non-overlapping elementary shapes but difficult to do
efficiently for triangulated surface meshes:

I Geometric solution approach with plosest-point-transform algorithm
[Mauch, 2003]

b-rep

Surface mesh I Distance ϕ Normal to closest point
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The characteristic / scan conversion algorithm

1. Build the characteristic
polyhedrons for the surface mesh

2. For each face/edge/vertex

2.1 Scan convert the polyhedron.
2.2 Compute distance to that

primitive for the scan
converted points

3. Computational complexity.

I O(m) to build the b-rep and
the polyhedra.

I O(n) to scan convert the
polyhedra and compute the
distance, etc.

4. Problem reduction by evaluation
only within specified max. distance

[Mauch, 2003], see also
[Deiterding et al., 2006]

Characteristic polyhedra for faces, edges, and vertices

(a) (b)

(c) (d)

Slicing and scan conversion of apolygon
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