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Block-structured AMR with complex boundaries

Block-structured adaptive mesh refinement (SAMR)

For simplicity ∂tq(x , y , t) + ∂x f(q(x , y , t)) + ∂yg(q(x , y , t)) = 0

I Refined blocks overlay coarser ones

I Refinement in space and time by factor rl

[Berger and Colella, 1988]

I Block (aka patch) based data structures

+ Numerical scheme

Qn+1
jk = Qn

jk −
∆t

∆x

[
Fj+ 1

2
,k − Fj− 1

2
,k

]
−

∆t

∆y

[
Gj,k+ 1

2
− Gj,k− 1

2

]
only for single patch necessary

+ Efficient cache-reuse / vectorization
possible

- Cluster-algorithm necessary

I Papers: [Deiterding, 2011a,
Deiterding et al., 2009b,
Deiterding et al., 2007]

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1
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Block-structured AMR with complex boundaries

Level transfer / setting of ghost cells

Conservative averaging
(restriction):

Q̂l
jk :=

1

(rl+1)2

rl+1−1∑
κ=0

rl+1−1∑
ι=0

Ql+1
v+κ,w+ι

Bilinear interpolation
(prolongation):

Q̌l+1
vw := (1− f1)(1− f2)Ql

j−1,k−1

+ f1(1− f2)Ql
j,k−1+

(1− f1)f2 Q
l
j−1,k + f1f2 Q

l
jk

For boundary conditions: linear time interpolation

Q̃l+1(t+κ∆tl+1) :=

(
1− κ

rl+1

)
Q̌l+1(t)+

κ

rl+1
Q̌l+1(t+∆tl ) for κ = 0, . . . rl+1
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Block-structured AMR with complex boundaries

Recursive integration order

I Space-time interpolation of coarse data to set I s
l , l > 0

I Regridding:

I Creation of new grids, copy existing cells on level l > 0
I Spatial interpolation to initialize new cells on level l > 0

1

2

3 4

5

6 7

8

9 10

11

12 13

Root Level
r0 = 1

Level 1
r1 = 4

Level 2
r2 = 2

Time

Regridding of finer levels.
Base level ( ) stays fixed.
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Block-structured AMR with complex boundaries

Conservative flux correction

Example: Cell j , k

Q̌l
jk (t + ∆tl ) = Ql

jk (t)− ∆tl

∆x1,l

Fl
j+ 1

2
,k −

1

r 2
l+1

rl+1−1∑
κ=0

rl+1−1∑
ι=0

Fl+1

v+ 1
2
,w+ι

(t + κ∆tl+1)


− ∆tl

∆x2,l

(
Gl

j,k+ 1
2
− Gl

j,k− 1
2

)

Correction pass:

1. δFl+1

j− 1
2
,k

:= −Fl
j− 1

2
,k

2. δFl+1

j− 1
2
,k

:= δFl+1

j− 1
2
,k

+
1

r 2
l+1

rl+1−1∑
ι=0

Fl+1

v+ 1
2
,w+ι

(t + κ∆tl+1)

3. Q̌l
jk (t + ∆tl ) := Ql

jk (t + ∆tl ) +
∆tl

∆x1,l
δFl+1

j− 1
2
,k

j − 1

v v+1

j

w
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Block-structured AMR with complex boundaries

Level-set method for boundary embedding
I Implicit boundary representation via distance

function ϕ, normal n = ∇ϕ/|∇ϕ|
I Complex boundary moving with local velocity w,

treat interface as moving rigid wall
[Deiterding et al., 2007]

I Construction of values in embedded boundary
cells by interpolation / extrapolation
[Deiterding, 2009, Deiterding, 2011a]

I Creation of level set from triangulated surface
data with closest-point-transform (CPT)
algorithm [Mauch, 2003, Deiterding et al., 2006]

Interpolate / constant value extrap-
olate values at

x̃ = x + 2ϕn

Velocity in ghost cells
No-slip: u′ = 2w − u
Slip:

u′ = (2w · n− u · n)n + (u · t)t
= 2 ((w − u) · n) n + u

ρj−1 ρj ρj ρj−1

uj−1 uj 2w − uj 2w − uj−1

pj−1 pj pj pj−1

ut

ut

ut

w

uj

2w − uj
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Parallelization approach

Parallelization

Rigorous domain decomposition

I Data of all levels resides on same node

I Grid hierarchy defines unique ”floor-plan”

I Workload estimation

W(Ω) =

lmax∑
l=0

[
Nl (Gl ∩ Ω)

l∏
κ=0

rκ

]

I Parallel operations

I Synchronization of ghost cells
I Redistribution of data blocks within

regridding operation
I Flux correction of coarse grid cells

I Dynamic partitioning with space-filling
curve

[Deiterding, 2005, Deiterding, 2011a]

R. Deiterding – Recent examples of compressible aerodynamics simulation with the AMROC framework 9
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I Workload estimation

W(Ω) =

lmax∑
l=0

[
Nl (Gl ∩ Ω)

l∏
κ=0

rκ

]

I Parallel operations

I Synchronization of ghost cells
I Redistribution of data blocks within

regridding operation
I Flux correction of coarse grid cells

I Dynamic partitioning with space-filling
curve

[Deiterding, 2005, Deiterding, 2011a]
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Adaptive Cartesian methods Train-tunnel aerodynamics Two-temperature solver for high-enthalpy flows DNS with a hybrid method Summary

Parallelization approach

AMROC framework and most important patch solvers

I Implements described algorithms and facilitates easy exchange of the
block-based numerical scheme

I Shock-induced combustion with detailed chemistry:
[Deiterding, 2003, Deiterding and Bader, 2005, Deiterding, 2011b,
Cai et al., 2016, Cai et al., 2018]

I Hybrid WENO methods for LES and DNS: [Pantano et al., 2007,
Lombardini and Deiterding, 2010, Ziegler et al., 2011, Cerminara et al., 2018]

I Lattice Boltzmann method for LES: [Fragner and Deiterding, 2016,
Feldhusen et al., 2016, Deiterding and Wood, 2016]

I FSI deformation from water hammer: [Cirak et al., 2007,
Deiterding et al., 2009a, Perotti et al., 2013, Wan et al., 2017]

I Level-set method for Eulerian solid mechanics: [Barton et al., 2013]

I Ideal magneto-hydrodynamics: [Gomes et al., 2015, Souza Lopes et al., 2018]

I ∼ 500, 000 LOC in C++, C, Fortran-77, Fortran-90

I V2.0 plus FSI coupling routines as open source at http://www.vtf.website

I Used here V3.0 with significantly enhanced parallelization (V2.1 not released)
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http://www.vtf.website


Adaptive Cartesian methods Train-tunnel aerodynamics Two-temperature solver for high-enthalpy flows DNS with a hybrid method Summary

Parallelization approach

AMROC strong scalability tests

3D wave propagation method with Roe scheme:
spherical blast wave

I Tests run IBM BG/P (mode VN)
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Adaptive Cartesian methods Train-tunnel aerodynamics Two-temperature solver for high-enthalpy flows DNS with a hybrid method Summary

Validation

Laboratory tunnel simulator [Zonglin et al., 2002]

Model solves the inviscid Euler equations

∂tρ+∇ · (ρu) = 0
∂t (ρu) +∇ · (ρu⊗ u) +∇p = 0
∂t (ρE) +∇ · ((ρE + p)u) = 0

with p = (γ − 1)(ρE − 1
2
ρuTu)

I Two-dimensional axi-symmetric computation

I p0 = 100 kPa, ρ0 = 1.225 kg/m3, γ = 1.4

I Roe shock-capturing scheme blended with HLL

I 2nd order accuracy achieved with MUSCL-Hancock method
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Validation

Basic phenomena – v0 = 100m/s
I 800× 25 mesh with Cartesian cut-out (200, 5) to (800, 25)

I 2 level of additional refinement by factor 2
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Validation

Comparison with experiment – I

Pressure record at (1020mm, 20mm) for v0 = 75m/s. Experiment (left) and

AMROC (right)
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Validation

Comparison with experiment – I

Pressure record at (40mm, 20mm) for model velocity v0 = 100m/s. Experiment

(left) and AMROC (right)
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Validation

Variation of velocity and nose half angle

Pressure sensor at (420mm, 20mm) Pressure sensor at (1020mm, 20mm)

I Dependence on v2
0 is the dynamic pressure influence (left)

I For constant blockage ratio and body velocity, using more pointed noses
alleviates the maximal pressure level (right, nose half angle varied)

I For v0 ≈ 140m/s a shock wave (tunnel boom) can be observed. Sharper noses
also delay this phenomenon.

R. Deiterding – Recent examples of compressible aerodynamics simulation with the AMROC framework 16
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Passing trains in open space and in double-track tunnel

NGT2 prototype setup
I Next Generation Train 2 (NGT2) geometry by the German Aerospace Centre

(DLR) [Fragner and Deiterding, 2016, Fragner and Deiterding, 2017]

I Mirrored train head of length ∼ 60m, no wheels or tracks, train models 0.17m
above ground above the ground level.

I Train velocities 100m/s and −100m/s, middle axis 6m apart, initial distance
between centers 200m

I Base mesh of 360× 40× 30 for domain of 360m× 40m× 30m

I Two/three additional levels, refined by r1,2,3 = 2. Refinement based on pressure
gradient and level set and regenerated at every coarse time step. Parallel
redistribution at every level-0 time step.

I On 96 cores Intel Xeon E5-2670 2.6GHz a final te = 3 sec was reached after
12, 385 sec / 43, 395 sec wall time, i.e., 330 h and 1157 h CPU

R. Deiterding – Recent examples of compressible aerodynamics simulation with the AMROC framework 17
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Passing trains in open space and in double-track tunnel

Passing in open space – AMR and dynamic distribution

Domains of three-level refinement

Distribution to 96 processors

Enlargement of domain center shown
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Passing trains in open space and in double-track tunnel

Pressure isosurfaces
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Passing trains in open space and in double-track tunnel

Pressure transects
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Passing trains in open space and in double-track tunnel

Setup with realistic tunnel shape

I Two NGT2 trains again at velocities 100m/s and
−100m/s

I Prototype straight double track tunnel of 640m length,
initial distance between centers of trains 820m

I Base mesh of 1060× 36× 24 for domain of
1060m× 36m× 24m, three levels refined by r1,2,3 = 2

I On 96 cores Intel Xeon E5-2670 2.6GHz a final te = 5 sec
was reached after 84, 651 sec wall time, i.e., 2257h CPU

Tunnel shape
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Passing trains in open space and in double-track tunnel

Pressure transects
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Adaptive Cartesian methods Train-tunnel aerodynamics Two-temperature solver for high-enthalpy flows DNS with a hybrid method Summary

Thermodynamic model

Thermodynamic Model

The two temperature thermodynamic model is used to model the
thermodynamic nonequilibrium,

es(Ttr ,Tve) = et
s (Ttr ) + er

s (Ttr ) + ev
s (Tve) + eel

s (Tve) + e0
s

I Computationally efficient,

I Widely used,

I Integrated into the open source library Mutation++
[Scoggins and Magin, 2014].

The internal energies are calculated within the Mutation++ library using
the Rigid-Rotator Harmonic-Oscillator (RRHO) model.

R. Deiterding – Recent examples of compressible aerodynamics simulation with the AMROC framework 23
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Thermodynamic model

Governing Equations

The two temperature thermodynamic model has been implemented using
the equations,

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
= W

where,

Q =



ρ1

...
ρNs

ρu
ρv
ρeve

ρE


, F =



ρ1u
...

ρNs u
ρu2 + p
ρvu
ρeve u

(ρE + p)u


, G =



ρ1v
...

ρNs v
ρuv

ρv2 + p
ρeve v

(ρE + p)v


, W =



ẇ1

...
ẇNs

0
0

Qve

0


.
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Thermodynamic model

Source Terms

The net species production rates,

ẇs = Ms

Nr∑
r=1

(βsr − αsr )

kf ,r

Ns∏
i=1

(
ρi

Mi

)αir

− kb,r

Ns∏
i=1

(
ρi

Mi

)βir

 , with

kf ,r (Tc ) = Af ,r T
ηf ,r
c exp [−θr/Tc ] , TC =

√
Ttr Tve

and the energy transfer rate (neutral mixture),

Qve =
∑

s

QT−V
s + QC−V

s + QC−el
s ,

QT−V
s = ρs

ev
s (Ttr )− ev

s

τT−V
v,s

,

QC−V
s = c1ẇs ev

s , QC−el
s = c1ẇs eel

s ,

are both calculated using the Mutation++ library.
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Thermodynamic model

Numerical Integration

Finite volume method with two flux schemes implemented,

I Van Leer’s flux vector splitting method [van Leer, 1982],

I The AUSM scheme [Liou and Steffen Jr, 1993].

Second order in space and time,

I The MUSCL-Hancock scheme is used for the fluxes.

I Strang splitting is used to integrate the source term.
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Cartesian results

Double Wedge

Simulation of a double wedge in a high enthalpy flow of air
[Pezzella et al., 2015].

T∞ p∞ U∞ M∞ L1 θ1 L2 θ2

710K 0.78 kPa 3812m/s 7.14 50.8mm 30◦ 25.4mm 55◦

Table: Double wedge geometry and experimental conditions.

I Five species mixture of air.

I Initial 200× 200 cell mesh, with 3 levels of refinement.

I Embedded boundary used to define geometry.

I Van Leer flux scheme.

I Physical time of 242µs.
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Cartesian results

Double Wedge

The temperature and mass fraction of atomic oxygen.

t = 242µsecs.
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Cartesian results

Double Wedge

The mesh was refined using pressure and density gradients.

t = 242µsecs.
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Cartesian results

Double Wedge

Dynamic load balancing distributes the cells across the processors.

t = 242µsecs.
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Cartesian results

Double Wedge

The AMR enables the flow features to be captured in detail.

The schlieren image is taken from [Pezzella et al., 2015].
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Cartesian results

Hypersonic Sphere

Simulations of a half inch sphere
travelling at hypersonic speeds in air
[Lobb, 1964].

Mach number range between 8.4
and 16.1, with p∞ = 1333Pa and
T∞ = 293K.

The shock standoff distance was
measured at each condition.

The shock standoff distance is used
to validate the non-equilibrium
model.

Validation of the axi-symmetric
source term.

Waxi = − 1

y



ρ1v
...

ρNv
ρuv
ρv2

(ρE + p)v


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Cartesian results

Hypersonic Sphere

Computed shock standoff distances compared with experimental data.
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Cartesian results

Hypersonic Sphere
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Mapped mesh treatment

Mapped Solution Update

Within the AMROC-Clawpack framework, the solution is stored in
physical (x , y) space and the fluxes are mapped from computational
(ξ, η) space.

Using dimensional splitting the solution update is given by:

Q∗i,j = Qn
i,j −

∆t

∆ξ

[(
F̂− F̂v

)
i+1,j
−
(
F̂− F̂v

)
i,j

]
∆η∆ξ

Vi,j
,

Qn+1
i,j = Q∗i,j −

∆t

∆η

[(
Ĝ− Ĝv

)
i,j+1
−
(
Ĝ− Ĝv

)
i,j

]
∆η∆ξ

Vi,j
.

where Vi,j is the volume of cell i , j in physical space. F̂, F̂v , Ĝ, Ĝv are
the physical fluxes per computational unit length.
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Mapped mesh treatment

Mapped Mesh Computation

In the mapped mesh computations, the flux is transformed to align with
the cell face,

F̂ = T−1Fn(T Ql ,T Qr ) ,

where T is the transformation matrix,

T =



1 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 n̂x n̂y 0 0
0 0 0 −n̂y n̂x 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.
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Mapped mesh treatment

Mapped Inviscid Fluxes

The inviscid fluxes per computational unit length are found by:

I Rotating the momentum components to be normal to the face,

I Calculating the flux with the rotated solution vectors,

I Rotating the solution vector back,

I Scaling the flux using the ratio of the computational face to the
mapped face

In the ξ directional sweep, this gives

Fi−1/2,j = T−1
i−1/2,jFn(Ti−1/2,jQi−1,j ,Ti−1/2,jQi,j ) .

where T is the rotation matrix used to rotate the momentum
components, and Fn is the normal flux through the face.
The scaling is given by:

F̂i,j =
|ni−1/2,j |

∆η
Fi−1/2,j ,
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Non-cartesian results and comparison

Mapped Mesh Computation

Experiments of a cylinder in hypersonic flow [Hornung, 1972] were
simulated with the mapping and initial conditions given by,

x = ξ cos(η), y = −ξ sin(η).

Radius YN2
YN T∞ p∞ U∞ M∞

0.0127m 0.927 0.073 1833K 2.91 kPa 5590m/s 6.14

Table: Cylinder geometry and freestream conditions

The implementation was verified by comparing a mapped computation
with a embedded boundary computation.
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Non-cartesian results and comparison

Viscous Computations

Preliminary results have been obtained for computations including the
viscous flux vectors,

∂Q

∂t
+
∂ (F− Fv )

∂x
+
∂ (G− Gv )

∂y
= W

where,

Fv =



−Jx,1

...
−Jx,Ns

τx,x

τy,x

κve
∂Tve
∂x
−

Ns∑
s=1

Jx,s eve

κtr
∂Ttr
∂x

+ κve
∂Tve
∂x

+ uτx,x + vτy,x −
Ns∑

s=1
Jx,s hs


.

and a similar expression is obtained for Gv .
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Non-cartesian results and comparison

Cylinder Heat Flux Computation

The mapped mesh solver has been validated by simulating a cylinder in a
nonequilibrium, high enthalpy flow.

The inflow conditions and results were taken from [Degrez et al., 2009].

T∞ ρ∞ U∞ YN2
YN YO2

YO YNO

694K 3.26 g/m3 4776m/s 0.7356 0.0 0.1340 0.07955 0.0509

Table: Freestream conditions for the HEG cylinder simulation.

A cylinder mesh was generated with hyperbolic tangent stretching away
from the wall using a 1e-6 initial spacing.
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Non-cartesian results and comparison

Cylinder Heat Flux Comparison

The simulated results show good agreement with the experimental
results:
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Figure: A comparison of the experimental and simulated surface pressures in
the HEG cylinder experiment.
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the HEG cylinder experiment.
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Higher-order hybrid methods

Hybrid method

Convective numerical flux is defined as

Fn
inv =

{
Fn

inv−WENO , in C
Fn

inv−CD , in C,

I For LES: 3rd order WENO method, 2nd order TCD [Hill and Pullin, 2004]

I For DNS: Symmetric 6th order WENO, 6th-order CD scheme
J. Ziegler, RD, J. Shepherd, D. Pullin, J. Comput. Phys. 230(20):7598-7630, 2011.

Use WENO scheme to only capture shock waves but resolve interface between species.

Shock detection based on using two criteria together:

1. Lax-Liu entropy condition |uR ± aR | < |u∗ ± a∗| < |uL ± aL| tested with a
threshold to eliminate weak acoustic waves. Used intermediate states at cell
interfaces:

u∗ =

√
ρLuL +

√
ρR uR√

ρL +
√
ρR

, a∗ =

√
(γ∗ − 1)(h∗ −

1

2
u2
∗), . . .

2. Limiter-inspired discontinuity test based on mapped normalized pressure gradient
θj

φ(θj ) =
2θj

(1 + θj )
2

with θj =
|pj+1 − pj |
|pj+1 + pj |

, φ(θj ) > αMap
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Higher-order hybrid methods

Results for shear layer in Mach reflection pattern
WENO/CD - 6 levels WENO/CD - 7 levels WENO/CD - 8 levels

∆xmin = 3.91 · 10−6 m ∆xmin = 1.95 · 10−6 m ∆xmin = 9.77 · 10−7 m

MUSCL - 7 levels MUSCL - 7 levels - Euler
Usage of WENO for
WENO/CD - 8 levels

∆xmin = 1.05 · 10−6 m ∆xmin = 1.05 · 10−6 m

I WENO/CD/RK3 gives results comparable to 4x finer resolved optimal 2nd-order
scheme, but CPU times with SAMR 2-3x larger

I Gain in CPU time from higher-order scheme roughly one order
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Detonation ignition by hot jet in 2d

(a) Detailed structure, (b) WENO usage

(a) Navier-Stokes, (b) Euler
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Conclusions

Conclusions

I A Cartesian embedded boundary method for compressible flows with
block-based adaptive mesh refinement is an efficient and scalable
prediction tool for pressure and shock waves created by moving bodies

I Multi-resolution and fluid-structure coupling problems can be tackled
without expensive mesh regeneration

I Level set approach easily handles large motions, element failure and
removal

I Dynamic adaptation ensures high resolution at embedded boundaries
and essential flow features

I Aerodynamics of bodies with large motion are easily accessible

I Current inviscid approach predicts maximal overpressure in front of
trains reliably

I For predicting the flow around entire trains, the boundary layer
growing over the train body needs to be considered.

I AMROC solvers for the compressible Navier-Stokes equations and
even LES are already available, however, for this particular
application a turbulent wall function on the embedded boundary first
needs to be implemented. Such a wall function is currently
work-in-progress for the LBM-LES solver.
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Conclusions

Conclusions – Hypersonics

I A two-temperature model solver that is suitable for very high
temperatures, i.e., high enthalpy re-entry flows, has been developed.

I The Cartesian version is fully integrated into SAMR
AMROC-Clawpack; structured non-Cartesian version runs also
within AMROC-Clawpack but only on non-adaptive meshes so far

I SAMR framework can remain basically unchanged; however mapping
needs to be considered in prolongation and restriction, flux
correction, visualization (work in progress)

I For moving geometries, the goal is a Chimera-type approach that
constructs non-Cartesian boundary layer meshes near the body and
uses SAMR in the far field

I Incorporation of the methodology into the hybrid WENO/CD scheme
for high enthalpy DNS in 3D is proposed within the next two years
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Closest point transform algorithm

The signed distance ϕ to a surface I satisfies the eikonal equation [Sethian, 1999]

|∇ϕ| = 1 with ϕ
∣∣
I = 0

Solution smooth but non-diferentiable across characteristics.

Distance computation trivial for non-overlapping elementary shapes but difficult to do
efficiently for triangulated surface meshes:

I Geometric solution approach with plosest-point-transform algorithm
[Mauch, 2003]

b-rep

Surface mesh I Distance ϕ Normal to closest point
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The characteristic / scan conversion algorithm

1. Build the characteristic
polyhedrons for the surface mesh

2. For each face/edge/vertex

2.1 Scan convert the polyhedron.
2.2 Compute distance to that

primitive for the scan
converted points

3. Computational complexity.

I O(m) to build the b-rep and
the polyhedra.

I O(n) to scan convert the
polyhedra and compute the
distance, etc.

4. Problem reduction by evaluation
only within specified max. distance

[Mauch, 2003], see also
[Deiterding et al., 2006]

Characteristic polyhedra for faces, edges, and vertices

(a) (b)

(c) (d)

Slicing and scan conversion of apolygon
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