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Abstract. Detonation simulation is one of the computationally
most challenging hyperbolic problems of practical interest. The
source terms from detailed non-equilibrium chemistry are usually
stiff and introduce non-neglectable scales typically not present in
purely hydrodynamic calculations. This paper outlines all com-
ponents of an efficient solution strategy. Emphasis is put on the
description of the employed shock-capturing scheme and the nec-
essary extensions of the underlying approximative Riemann solver
for thermally perfect multi-component Euler equations. Computa-
tional results confirm effectiveness and relevancy of the approach.

1. Introduction

Detonations are shock-induced combustion waves that internally consist of a dis-
continuous hydrodynamic shock followed by a smooth region of decaying combus-
tion. In a self-sustaining detonation, shock and reaction zone propagate essentially
with Chapman-Jouguet (CJ) velocity, the speed of propagation for perfect ener-
getic equilibrium. The balance between shock and reaction is fragile and smallest
disturbances are sufficient to trigger symmetry breaking. Non-neglectable highly
instationary triple point situations arise that need to be considered in technical
applications and safety analysis. Their accurate numerical representation requires
computational meshes with extraordinarily high local resolution, but in particular
a robust and reliable high-resolution upwind scheme for the practically relevant
thermally perfect multi-component Euler equations coupled to an implicit ordi-
nary differential equations solver to incorporate the reaction terms. After a rough
mathematical outline of the governing equations, we will focus especially on the
algorithmic description of an approximative Riemann solver of Roe-type as basis of
our high-resolution finite volume (FV) upwind scheme [6]. In particular, we discuss
essential modifications to ensure the positivity of all quantities and to prevent un-
physical instabilities along the detonation front [5, 10, 14]. Finally, highly resolved
direct simulations of hydrogen-oxygen CJ detonations are presented showing ex-
tinction and reignition of combustion, and the propagation of triple points in good
structural agreement with experimental results.
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2. Governing Equations

The governing equations for detonation propagation in premixed gases are the Euler
equations for multiple thermally perfect species with reactive source terms [17]. In
d-dimensional Cartesian coordinates these equations can be written as

(1)
∂

∂t
q(x, t) +

d∑
n=1

∂

∂xn
fn(q(x, t)) = s(q(x, t)) , x = (x1, ..., xd)T ∈ Rd , t ∈ R+

0

with q = q(x, t) ∈ S ⊂ RM denoting the vector of conserved quantities, fn(q) ∈
C1(S, RM ), n = 1, ..., d the flux functions, and s(q) ∈ C1(S, RM ) the reaction term.
For K species the vector of conserved quantities has M = K+d+1 components. We
choose the form q(x, t) = (ρ1, ..., ρK , ρu1, ..., ρud, ρE)T with ρi denoting the partial
densities and ρ =

∑K
i=1 ρi the total density. The ratios Yi = ρi/ρ are called mass

fractions. We denote the nth component of the velocity vector u = (u1, . . . , ud)T

by un and E is the total energy per unit mass. The flux functions read

fn(q) = (ρ1un, ..., ρKun, ρu1un + δ1np, ..., ρudun + δdnp, un(ρE + p))T , n = 1, ..., d.

Herein, p is the hydrostatic pressure and δjn the Kronecker-Symbol. It is typ-
ically assumed that all species are ideal gases in thermal equilibrium and the
same temperature T can be used to evaluate the partial pressure of all species
as pi = RTρi/Wi with R denoting the universal constant and Wi the molecu-
lar weight, respectively. Each species is assumed to be thermally perfect and has
a temperature-dependent specific heat cpi(T ). The enthalpies per unit mass are
written as hi(T ) = h0

i +
∫ T

T 0 cpi(σ)dσ with h0
i called heat of formation at reference

temperature T 0.1 Inserting h =
∑K

i=1 Yi hi(T ) and Dalton’s law for the total pres-
sure, i.e. p =

∑K
i=1 pi, into the thermodynamic relation ρh− ρE + ρu2/2− p = 0

yields

(2) ϕ(q, T ) :=
K∑

i=1

ρi hi(T )− ρE + ρ
u2

2
−RT

K∑
i=1

ρi

Wi
= 0 .

It can be proven rigorously [2], that for each q in the space of admissible states
S a unique temperature T exists that satisfies Eq. (2). Unfortunately, a closed
form of the inverse can only be derived under simplifying assumptions and the
iterative computation of T from Eq. (2) is in general unavoidable, whenever the
pressure p has to be evaluated. But as ϕ(·, T ) can be shown to be a strict monotone
function in T the implementation of a reliable and efficient root finding routine is
straightforward, cf. [2]. The appropriate speed of sound for the described model is
the frozen speed of sound, which is given by c2 =

∑K
i=1 Yi φi−(γ−1)

(
u2 −H

)
with

H = h+u2/2 and φi := (γ−1)
(
u2/2− hi(T )

)
+γRT/Wi, where γ can be calculated

1In order to speed up the evaluation of cpi(T ) and hi(T ), which are typically given by poly-
nomial approximations of fourth order [9], look-up tables are constructed during startup of the

computational code. They store cpi(T ) and hi(T ) for all integers in the valid temperature range

and intermediate values are interpolated.
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from the mixture quantities cp =
∑K

i=1 Yi cpi(T ) and W = (
∑K

i=1 Yi/Wi)−1 by
γ = cp(cp −R/W )−1.

The Euler equations for thermally perfect gas-mixtures inherit most mathemat-
ical properties of the standard Euler equations for a single polytropic gas with
equation of state p = (γ − 1)

(
ρE − ρu2/2

)
. The proof of hyperbolicity is straight-

forward [2], and for instance in two space dimensions the matrix of right eigenvec-
tors R1(q) = (r1 | . . . |rK+d+1) that diagonalizes A1(q) with R−1

1 (q)A1(q)R1(q) =
Λ1(q) for all q ∈ S with Λ1(q) = diag(u1 − c, u1, . . . , u1, u1 + c) takes the form

(3) R1(q) =



Y1 1 0 . . . 0 0 Y1

0 :... :
. . . 0

...
...

YK 0 . . . 0 1 0 YK

u1 − c u1 . . . u1 0 u1 + c
u2 u2 . . . u2 1 u2

H − u1c u2 − φ1

γ − 1
. . . u2 − φK

γ − 1
u2 H + u1c


.

For s ≡ 0 the solution structure of a quasi-one-dimensional Riemann Problem can
be shown to be in principle identical to the standard case of a single polytropic
gas. The first and last characteristic field with the eigenvalues un − c and un + c

are genuinely nonlinear, provided that the condition γ(γ+1)
(1−γ)T 6= ∂γ

∂T is satisfied for
all q ∈ S [2]. All other characteristic fields are associated to the eigenvalue un and
are linearly degenerate.

Realistic combustion is modeled with a source term of the form s(q) = (W1 ω̇1, ...,
WK ω̇K , 0, ..., 0, 0)T , where the chemical production rate for each species is derived
from a reaction mechanism of J chemical reactions as

(4) ω̇i =
J∑

j=1

(νr
ji − νf

ji)
[
kf

j

K∏
l=1

(
ρl

Wl

) νf
jl

− kr
j

K∏
l=1

(
ρl

Wl

) νr
jl

]
, i = 1, ...,K .

In the latter, ν
f/r
ji denote the forward and backward stoichiometric coefficients of

the ith species in the jth reaction. The rate expressions are evaluated by the
Arrhenius law k

f/r
j (T ) = A

f/r
j T β

f/r
j exp(−E

f/r
j /RT ), cf. [17].2

3. Numerical Methods

Detailed chemical reaction mechanisms suitable for ignition and extinction phe-
nomena typically involve temporal scales significantly smaller than those present
in the resulting hydrodynamic transport. In order to derive an efficient numerical
method for (1) we therefore employ a time-operator splitting approach and decou-
ple convection and chemical reaction numerically [12]. The homogeneous partial

2We enhance the evaluation of (4) in our computational code by employing highly efficient

mechanism-specific routines that are produced by a straightforward automatic source code gener-
ator on top of the Chemkin-II library [9] in advance, see [2] for details.
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differential equation

(5)
∂q
∂t

+
d∑

n=1

∂

∂xn
fn(q) = 0

and the usually stiff system of ordinary differential equations

(6) S(∆t) : ∂tρi = Wiω̇i (ρ1, . . . , ρK , T ) , i = 1, . . . ,K

are integrated successively with the data from the preceding step as initial condition.
We use a robust implementation of a semi-implicit Rosenbrock-Wanner method of
fourth order with automatic temporal stepsize adjustment [8] to solve (6) with
initial condition ρi(0) = ρY 0

i , i = 1, ...,K in every FV cell. Total density ρ, specific
energy E and velocities un remain unchanged, which corresponds to a reaction in an
adiabatic constant volume environment. In order to construct a robust and reliable
FV scheme for Eq. (5) we apply the idea of operator splitting also to Eq. (5). For
simplicity, we assume an equidistant discretization in two space dimensions with
mesh widths ∆x1, ∆x2 and a constant time step ∆t:

X (∆t)
1 : Q̃κ+ 1

2
jk = Qκ

jk−
∆t

∆x1

[
F1(Qκ

j−ν+1,k, ...,Qκ
j+ν,k)−F1(Qκ

j−ν,k, ...,Qκ
j+ν−1,k)

]
,

X (∆t)
2 : Q̃κ+1

jk = Q̃κ+ 1
2

jk − ∆t

∆x2

[
F2(Q̃κ+ 1

2
j,k−ν+1, ..., Q̃

κ+ 1
2

j,k+ν)−F2(Q̃κ+ 1
2

j,k−ν , ..., Q̃κ+ 1
2

j,k+ν−1)
]

The entire splitting method reads Qκ+1 = S(∆t)X (∆t)
2 X (∆t)

1 (Qκ). The latter
scheme is formally only first-order accurate, but it usually gives very satisfactory
results, if high-resolution shock-capturing schemes are employed for the operators
X (∆t)

n . For the upwind method of Algorithm 1, the described splitting is stable un-
der the condition max

j,k

(
Sj+ 1

2 ,k
∆t

∆x1
, Sj,k+ 1

2

∆t
∆x2

)
≤ 1 with Sj+ 1

2 ,k, Sj,k+ 1
2

denoting

the maximal signal speeds in both space directions according to step (S12).

3.1. Upwind Scheme

The application of dimensional splitting for the discretization of Eq. (5) has in
particular the advantage that only a single quasi-one-dimensional operator X (∆t)

n

needs to be considered to construct a robust and reliable method. It has to be
underlined that essential properties, like the ensured positivity of all quantities will
typically not be preserved throughout fully multi-dimensional approaches, cf. [2].

We build our high-resolution upwind scheme around a first-order Godunov-type
method that solves the Riemann Problem (RP) between two neighboring cell val-
ues Q

l
and Qr approximately, which we formulate exemplary for the x1-direction.

The method is based on an extension of Roe’s linearized Riemann solver for Eu-
ler equations for a single polytropic gas for multiple thermally perfect species by
Grossman and Cinella [6] that corresponds to the steps (S1) to (S7) in Algorithm
1. The structure of the Roe-averaged right eigenvectors r̂

m
is given in Eq. (3).

In (S8), (S9) the two intermediate states of the linearized RP are evaluated and
the intrinsic problem of negative total densities and internal energies near vacuum
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(S1) Calculate ρ̂ =
√

ρlρr and v̂ =
√

ρlvl+
√

ρrvr√
ρl+

√
ρr

for un, Yi,H, hi, T .

(S2) Compute γ̂ = ĉp(ĉp −R/Ŵ )−1 with Ŵ = (
∑K

i=1 Ŷi/Wi)−1 and

ĉpi =
1

Tr − T
l

∫ Tr

T
l

cpi(σ) dσ.

(S3) Calculate φ̂i = (γ̂ − 1)
(
û2/2− ĥi

)
+ γ̂R T̂ /Wi.

(S4) Calculate ĉ =
(∑K

i=1 Ŷi φ̂i − (γ̂ − 1)(û2 − Ĥ)
)1/2

.

(S5) Use ∆Q = Qr −Q
l

and ∆p to compute the wave strengths

a1,K+d+1 =
∆p∓ ρ̂ĉ∆u1

2ĉ2
, a1+i

= ∆ρi − Ŷi
∆p

ĉ2
, a

K+n
= ρ̂∆un.

(S6) Calculate W
1

= a1 r̂1 , W
2

=
K+d∑
m=2

a
m
r̂

m
, W

3
= a

K+d+1 r̂K+d+1 .

(S7) Evaluate s1 = û1 − ĉ, s2 = û1, s3 = û1 + ĉ.
(S8) Evaluate ρ?

l/r, u?
1,l/r, e?

l/r, c?
1,l/r from Q?

l
= Q

l
+ W

1
and Q?

r =
Qr −W

3
.

(S9) If ρ?
l/r ≤ 0 or e?

l/r ≤ 0 set s1 = min(u1,l − cl, u1,r − cr),
s3 = max(u1,l + cl, u1,r + cr), use HLL flux

F(Q
l
,Qr ) =


f(Q

l
), 0 < s1 ,

s3f(Ql
)−s1f(QR

)+s1s3(Qr−Q
l
)

s3−s1
, s1 ≤ 0 ≤ s3 ,

f(Qr ), 0 > s3 ,

and go to (S12).

(S10) Evaluate Roe flux F(Q
l
,Qr ) = 1

2

(
f(Q

l
) + f(Qr )−

∑3
ι=1 |s̄ι|Wι

)
with entropy enforcement formula

(7) |s̄ι| =
{
|sι| , |sι| ≥ 2η ,

|s2
ι |/(4η) + η , |sι| < 2η .

(S11) With Fρ :=
∑K

i=1 Fi replace Fi by F̄i = Fρ ·
{

Y l
i , Fρ ≥ 0 ,

Y r
i , Fρ < 0 .

(S12) Evaluate maximal signal speed by S = max(|s1|, |s3|).

Algorithm 1. Hybrid Roe-HLL scheme for detonation simulation.

due to the Roe linearization, cf. [5], is circumvented by switching in case of an
unphysical approximation in the intermediate states to the simple, but extremely
robust Harten-Lax-Van Leer (HLL) Riemann solver. If Roe’s flux approximation is
applied in step (S10), violations of the entropy condition are generally avoided by
adding an appropriate amount of numerical viscosity [7]. A natural choice for the
parameter η for Euler equations is η = 1

2 (|u1,r − u1,l|+ |cr − cl|), cf. [14].
In one space-dimension, Eq. (7) only needs to be applied to ι = 1, 3 and s̄2 =

s2 can be used, but two- and three-dimensional detonation simulations usually
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Figure 1. H-cor-
rection between
(j, k) and (j, k+1).

require the extension of Eq. (7) to ι = 2. The shock of
typical detonation waves is extraordinarily strong and its ap-
proximation is often corrupted by the carbuncle phenomenon,
a multi-dimensional numerical crossflow instability that oc-
curs at strong grid-aligned shocks or detonation waves [13].
The carbuncle phenomenon can be avoided completely by ap-
plying Eq. (7) to all characteristic fields and evaluating η in
a multi-dimensional way. We have successfully utilized the
“H-correction” of Sanders et al. [14] for this purpose. For
instance in the x2-direction in two space dimensions it reads

η̄j,k+ 1
2

= max
{

ηj+ 1
2 ,k, ηj− 1

2 , k, ηj, k+ 1
2
, ηj− 1

2 , k+1, ηj+ 1
2 , k+1

}
,

compare Fig. 1. Step (S11) ensures the positivity of the mass fractions Yi, if the
Roe approximation is applied [10]. The HLL scheme can be proven to be positivity
preserving in Yi and does not require this step, cf. [2]. A detailed derivation of the
entire Roe-HLL scheme and thorough numerical comparisons with various standard
methods can also be found in [2].

The hybrid Riemann solver is extended to a high-resolution method with the
MUSCL-Hancock variable extrapolation technique by Van Leer [16]. The tech-
nique uses a five-point stencil with ν = 2. In contrast to the Euler equations for a
single polytropic gas, the extrapolation for the Euler equations of Sec. 2 can not
be formulated completely in conservative variables, because the solvability of the
nonlinear equation (2) can not be guaranteed for an extrapolated vector of state.
The same argument is true for characteristic reconstruction techniques. We rec-
ommend to apply the MUSCL extrapolation to ρ, p, Yi and ρun and to derive a
thermodynamically consistent extrapolated vector of state from those. Addition-
ally, we restrict the limiter values for Yi such that the property

∑K
i=1 Yi = 1 remains

preserved for the MUSCL extrapolated values. See [2] for details.

3.2. Adaptive Mesh Refinement

Although the described shock-capturing scheme has excellent high-resolution capa-
bilities, in particular for quasi-stationary detonations under Galilean transformation
[2], it necessarily has to be used on computational meshes that are able to represent
the strong local flow changes due to the reaction correctly. In order to supply the
required temporal and spatial resolution efficiently, we employ the blockstructured
dynamic adaptive mesh refinement (AMR) method after Berger and Colella [1].
We have implemented the AMR method in an extensively validated equation- and
dimension-independent object-oriented framework. It is called AMROC (Adaptive
Mesh Refinement in Object-oriented C++) and is free of charge for scientific use [4].
An efficient locality-preserving rigorous domain decomposition strategy has been
realized and allows computations on large distributed memory computer systems,
see [3] for details.
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Figure 2. Left side: Schlieren plots of ρ. Detonation failure for
tube width 8λ (left), reignition for w = 10λ (right). Right side:
Isolines of ρ on four refinement levels (shaded gray) for w = 10λ.

4. Structure of Diffracting Detonations

Experiments have shown that the behavior of planar CJ detonations propagating
out of tubes into unconfinement is determined mainly by the tube width w. Some
configurations exhibit triple point trajectories that form regular detonation cells of
characteristic length and width λ. It has been found experimentally that the critical
tube width for rectangular tubes is around 10λ [11], which means that for widths
significantly below 10λ the process of shock wave diffraction causes a pressure de-
crease below the limit of detonability across the entire tube width. Hydrodynamic
shock and reaction front decouple and the detonation decays to a shock-induced
flame. While the successful transmission of the detonation is hardly disturbed for
tubes widths � 10λ, a backward-facing combustion wave reignites the detonation
in the partially decoupled region for widths of ≈ 10λ and creates considerable
vortices.

Adaptive simulations for stoichiometric H2 : O2 : Ar detonations on a base grid
of 508×288 cells and with four additional levels with refinement factor of 2, 2, 2, and
4 in space and time perfectly reproduce experimental structure observations [15].
Initial conditions and the employed reaction mechanism of 34 elementary reactions
for the 9 species H, O, OH, H2, O2, H2O, HO2, H2O2, and Ar are discussed in
detail in [2]. The schlieren graphics of Fig. 2 clearly show the extinction of the
detonation for the width w = 8λ and the reignition wave for w = 10λ. The original
confined but now diverging triple points are clearly visible for w = 10λ. These
computations correspond to a uniform grid with ≈ 150 M cells. At the final time
tend = 240 µs the larger run for w = 10λ uses only ≈ 3.0 M cells on all levels, which
is visualized in the right side of Fig. 2. It is interesting to note that the switching
to HLL according to (S9) in Algorithm 1 is only necessary in the single cell directly
below the tube outlet, but occurs almost throughout the entire computation.
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5. Conclusions

We have outlined a dynamically adaptive shock-capturing method applicable to
realistic and practically relevant detonation structure simulation. The construction
of the underlying high-resolution upwind scheme for thermally perfect gas-mixtures
considers all physically necessary correction steps. The method is equally suited
for detailed non-equilibrium combustion and for simplified reaction models, and is
therefore useful to eliminate previously existing numerical uncertainties in compu-
tational combustion research.
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