|Blockstructured AMR]

The AMR algorithm of Berger and Oliger is the most efficient adap-
tive method for hyperbolic conservation laws on blockstructured grids.
Instead of refining single cells a multi-level hierarchy of recursively
embedded subgrids is constructed. The underlying regular data struc-
tures allow much higher resolved computations than usual cell-based
approaches.

+ Discretization necessary
only for a single logically
rectangular grid

+ Spatial and temporal re-
finement, no global time
step restriction

+ No neighboring cell in-
formation has to be
stored

+ Efficient cache reuse

and vectorization possi-
ble The blockstructured refinement strategy cre-
ates a hierarchy of properly nested subgrids.

Grid hierarchy
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+ Simple load balancing

Appropriate only for simple geometries

Cluster algorithm necessary for grid generation

- Hanging nodes unavoidable and require special treatment
Complex implementation

Integrate(l) — Integrate all grids on level [

Root
Level @ 1 . ]
=1 | 1 Repeat 7; times

i i
Level 1 “ ) ) ) ¥ If (time to regtid?) Then
=4 1 2 5 3 3 11 '1 Regrid level I and finer levels

i i i

i i i

i i i Step At; on all grids at level [
level2 ¥, , , ¥ ., . | ¥
2= 3467910121 If (level I+ 1 exists?) Then

- Integrate(l + 1)
Time Update all level [ grids from level I + 1
—————— > Regridding of finer levels. grids
Base level (@ ) stays fixed.

r; = At;_1/At; (Refinement factor of level {)

The AMR-algorithm uses a recursive integration procedure that allows the construc-
tion of boundary conditions for refined subgrids by time-space interpolation.

\A generic framework for AMR\

Three abstraction levels can be identified:
1. Specific application. The demo application is an extended version
of Clawpack. Features:

e Single grid Fortran-functions implement the discretization, ini-
tial conditions, boundary conditions, etc. (Usual Clawpack-
interfaces, no knowledge of AMR required)

Standard discretizations for Euler equations on cartesian grids
already implemented, e.g. Van Leer-FVS, Steger-Warming-
FVS, Roe's approximative Riemann-solver, exact Riemann-
solver

Multidimensional wave propagation method with 2nd order cor-
rection and wave limiting

Dimensional-splitting with MUSCL-extrapolation and slope lim-

iting
2. AMROC (Adaptive Mesh
Refinement in  Object-oriented Processor 1  Processor 2
CH+):

o AMR-solver and its specific
components formulated nearly
like in the serial case and inde-
pendent of the spatial dimen-
sion

Parallel flux correction algo-
rithm

Various exchangeable adaption
criteria, e.g. error estima-
tion by Richardson extrapola-
tion, scaled gradients

3. Hierarchical data structures:

e Distributed
GridFunctions<Dim,DataType> ‘ ‘ ‘
automatically follow the “floor
plan” of a single Grid Hierarchy

e Data of all levels resides on the ciation
same node — Most AMR oper- “™"
ations are strictly local

e Neighboring grids are synchro-

nized transparently even over
processor borders when bound-

ary conditions are applied
Distribution algorithm:
eralization of Hilbert's space-
filling curve
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All higher level data follow the dis-
tribution of the base level.

[0 Proc.1 BB High Workload
[ Proc.2 XN Medium Workload
[ Proc.3 77 Low Workload

Gen- Construction of generalized

Hilbert space-filling curve.

Important features
e Multiblock domains
e Periodic boundary conditions
e Restart facility for arbitrary
number of nodes

e Output in HDF-format

e Supported visualization tools:
Matlab, Visual3, IBM Data
Explorer, Gnuplot

Benchmark: Circular expanding shock-wave in a box

e 2D Euler equations for an ideal gas

e Roe’'s approximative Riemann-solver, wave propagation scheme
with Minmod wave-limiter and transverse wave propagation

e 199 time steps with 3 refinement levels. Finest level corresponds
to 1200x1200 grid.

Task P=1 P=2 P=4
S % S % S %

Integration 9083 80.1 | 4546 | 75.8 | 2246 | 67.2
Flux correction 460 4.1 251 4.2 180 5.4
Boundary setting 399 3.5 345 5.8 315 9.4
Recomposition 982 8.7 641 | 10.7 496 | 14.9
Clustering 221 1.9 114 1.9 37 1.1
Misc. 190 1.8 94 1.7 56 2.0
Total / Parallel Efficiency | 11336 | 100.0 | 5991 | 94.6 | 3329 | 85.1
AMRClaw / Speed Up 9893 1.65 2.97

The benchmark is run on a typical PC-Cluster of Pentium III-PC's connected with
Fast Ethernet.

Necessary domain of
Space-Filling Curve

An AMR-algorithm for distributed memory computers

Ralf Deiterding

'Generalized Euler equations

The computation of inviscid flows with detailed chemical reaction re-
quires the usage of generalized Euler equations. In cartesian coordi-
nates the following equations have to be applied:

K continuity equations for K different gaseous species:

N
i pi+ Y Ou,(pivn) = Wi w;
n=1
N momentum equations:

for i=1,...,K

N

O(pvm) + Z Oz, (pvnvm + On,m p) = 0
n=1
Energy equation:

for m=1,...,N

N
*(PE)+ Y Oz, [vn(pE+p)] =0

n=1

Equation of state|

The species are assumed to be ideal gases in thermal equilibrium. The
ideal gas law and Dalton's law can be applied:
K K g R K
p(p,T) =Y pi=Y piWT = pWT with p= Y p;
i=1 i=1 i i=1
Ideal gases are thermally perfect and the specific heats are functions
of the temperature:

cpi = cpi(T) cvi = ci(T) %i(T) = ci(T) / cui(T)

Caloric equation:

K T
WpT) = Y. Yih(T)  mit hi(T) =hQ+ [ cpu(s)ds

i=1
Evaluation of p(p,T) requires the computation of T = T(U) from the
implicit equation:

K K,
Zpihi(T)*RTZ$*Pe:O
i=1 =1 Wi

Detailed chemistry|

The chemical production rates w;(p1,--.,pK,T) are derived from a re-
action mechanism that consists of M chemical reactions:

K f K
DoviSi= Y S j=1,...,.M
i=1 i=1
The forward reaction rate k]f(T) is calculated with an empirical Arrhe-
nius law:
k{(T) = AT exp(~E;/RT)
Evaluation of the equilibrium constant K]C-(T) allows the calculation of

the corresponding backward reaction rate k3(T) = kjf(T)/K]C.(T).
Mass production rate of specie S;:

M Vi I K Pn ”]f K Pn ”JT'
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Specific Application, e.g. Clawpack

step() l l src() l l init() l l physbd()

Initial-
Condition

InitPatch f

AMR-Solver

Boundary-
Conditions

Integrator

Ca\cu\atePatc:\

SetPatchRegion Interpolation

AMROC

SetBoundaries

Integrate()

Regrid()

GFQuantities

FindBoxes Grid generation

InitializeCoarseFluxes

ConservativeC orrectior]
AddFineFluxes

Redistribute f

Flagging

SetBoundaries

Recompose

Redistribut:\

Flux correction

GridHierarchy Redistribute

Error estimation

Hierarchical data structures

Top: Isolines of density on re-
finement grids of the benchmark.
Bottom: Distribution to 4 com-
puting nodes.

Isolines of density on refinement grids of the
three-dimensional detonation wave.
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[Numerical Method|

The reactive source term is incorporated in Integrator with a fractional-
step method:

Successive solution of the homogeneous transport equations and the
system of ordinary differential equations

Oy pi = Wi wi (p1, - - -

High Resolution method in step():
e Approximative Riemann solver of Roe-typ
e MUSCL extrapolation of primitive variables Y;, vn, p with Van
Albada-limiter
e Dimensional splitting in 2D and 3D

T i=1,..,K

Decoupled source term integration in src():
e Semi-implicit Rosenbrock-Wanner method

The integration of stiff source terms requires automatic stepsize ad-
justment in a single transport step.

\Planar detonation with transverse waves

Experiments have shown that self-sustaining detonation waves are
locally multidimensional and nonsteady. Tripel-points may form,
which enhance the local chemical reaction significantly. Equilibrium-
configurations with regular detonation cells are possible in particular
cases. The accurate numerical simulation of transverse wave phenom-
ena in detonation waves requires extraordinarily high resolution.
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Top: The time history of the released chemical energy shows the detonation cells.
Bottom: Interacting transverse waves behind the detonation front.

Reaction mechanism: 34 elementary reactions for the 9 thermally per-
fect species H, O, OH, Hjy, Oy, HO, HO5, HO5,Ar.

Configuration: Stoichiometric Hy-Ox-system with 70% Ar, at 6.7 kPa
and 298 K.

e 1044 time steps with 3 refinement levels (factors: 2,4,4). Finest
level corresponds to 19840x640 grid (12.7 M cells).

e =~ 32 cells within induction length.

e Adaptive computation uses 150k-200k cells.

e 121h real time on 7 nodes Pentium III-750 MHz.
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Incident
shock.

Schematic diagram of the flow around a
triple-point.
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Detailed study of the flow around
a triple-point. Additional isolines
show the induction length.

Isolines of density on refinement grids
show the dynamic adaption of the deto-
nation wave.

Detonation with two orthogonal transverse waves|

e Detonation front remains quasi-stationary, because unburned gas
flows in with CJ-velocity.

e 264 time steps with 3 refinement levels (factors: 2,2,2). Finest
level corresponds to 224x96x192 grid (4.1 M cells).

e =~ 8 cells within induction length.

e Adaptive computation uses 800k-1.2M cells.

e 66h real time on 15 nodes Pentium III-750 and Pentium III-450
MHz.

Temporal development of the detonation front with two orthogonal triple-point lines
(shifted in respect to detonation velocity for visualization).
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Temporal development of the detonation
front structure (shifted in respect to det-
onation velocity) with triple-point tracks
(from much a coarser grid).




