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Efficient Fluid-Structure Interaction Simulation of Viscoplastic and
Fracturing Thin-Shells Subjected to Underwater Shock Loading

Ralf Deiterding, Fehmi Cirak, and Sean P. Mauch

The fluid-structure interaction simulation of shock-loaded thin-walled structures requires numerical methods that
can cope with large deformations as well as local topology changes. We present a robust level-set-based approach
that integrates a Lagrangian thin-shell finite element solver with fracture and fragmentation capabilities into an
Eulerian Cartesian fluid solver with embedded boundary and mesh adaptation capability. As main computational
applications, we consider the plastic deformation and rupture of thin plates subjected to explosion and piston-
induced pressure waves in water.

1 Introduction

The construction of efficient and scalable algorithms for simulating shock-driven fluid-structure interaction (FSI)
problems is an area of active research. The discretizations both in fluid and solid are usually time-explicit and
therefore computationally comparably inexpensive. On the other hand, major geometric complexities, such as
large structural deformations, fracture, and even fragmentation might have to be considered. An approach to this
problem is to employ an immersed or embedded boundary method in the fluid solver (Mittal and Iaccarino, 2005),
in which moving solid structures slide through a fixed (Eulerian) fluid background mesh.

We have developed a generic software framework for shock-driven FSI simulation, namedVirtual Test Facility
(Deiterding et al., 2006b), that imposes embedded moving wall boundary conditions on a Cartesian fluid solver
with a ghost fluid approach, as proposed by Fedkiw (2002) and Arienti et al. (2003). A scalar level set function
storing the distance to the nearest element of the solid’s triangulation is utilized to represent the embedded geom-
etry on the fluid grid and block-based dynamic mesh adaptation is employed to mitigate boundary approximation
inaccuracies. The Virtual Test Facility (VTF) specifically targets coupled problems in the high-speed regime, such
as the transient deformation of metallic structures due to explosive detonations or the fracture and fragmentation
of brittle or ductile materials under shock wave impact, cf. Aivazis et al. (2000) and Mauch et al. (2003). Compu-
tational fluid and solid mechanics solvers are time-accurate and consider all arising supersonic wave phenomena
(e.g., shear and dilatation waves in the viscoplastic solid, shock waves in the compressible fluid) correctly. For
coupling, a temporal splitting technique, in which solvers exchange data only at the interface between disjoint com-
putational domains after consecutive time steps, is adopted. For compressible fluids, stable solutions are obtained
reliably with such aweakly coupledmethod, when the evolving interface geometry and velocities are imposed as
boundary conditions on the fluid solver and the hydrodynamic pressure is used as force boundary condition acting
on the solid exterior, cf. L̈ohner et al. (2003), Cirak and Radovitzky (2005), and Specht (2000).

While the VTF approach has been successfully applied to verification and validation examples driven by shock
and detonation waves in gases, cf. Deiterding et al. (2006a) and Deiterding et al. (2006c), we focus here pri-
marily on thin-walled solid structures subjected to strong pressure waves in water. In Section 2, we sketch the
adaptive Cartesian finite volume fluid solver with level-set-based embedded boundary capability and briefly de-
scribe the employed multiphase Riemann solver. Section 3 outlines the solid mechanics solver that has been
developed to enable FSI simulations of thin-walled (possibly fracturing) shell structures. In Section 4, we outline
the highly efficient auxiliary algorithm based on geometric characteristic reconstruction and scan conversion that
we have developed to transform evolving triangulated surface meshes efficiently into signed or unsigned distance
functions. The fluid-structure coupling algorithm, highlighting its incorporation into the adaptive fluid mesh re-
finement framework is detailed in Section 5. The simple verification test of an elastic beam under shock loading is
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discussed in Section 6.1. Sections 6.2 and 6.3 present FSI simulation results for two setups involving viscoplastic
deformation and fracture of thin circular isotropic metal plates subjected to shock loadings from or comparable
to underwater explosions. Good agreement with experimental results and the level of detail provided make the
computations excellent test cases for explicit FSI software.

2 Eulerian fluid mechanics solver

In this section, we are concerned with the construction of an Eulerian fluid solver suitable for efficient fluid-
structure coupling. Although the presentation is tailored to the two-component solver employed throughout this
paper, the concepts are equally applicable to other conservation laws with or without source terms, cf. Deiterding
et al. (2006c).

2.1 Governing equations

The simulation of trans- or supersonic wave phenomena in fluids requires the consideration of the compressibility
while viscosity can typically be neglected. The basic system of governing equations are the Euler equations:

∂tρ +∇ · (ρu) = 0 , ∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0 , ∂t(ρE) +∇ · ((ρE + p)u) = 0 . (1)

Herein,ρ is the density,u the velocity vector andE the specific total energy. In order to close (1), an equation of
statep = p(ρ, e) is required for modeling the dependency of the hydrostatic pressurep on densityρ and specific
internal energye := E − 1

2uT u. For a single polytropic gas, the equation of state (EOS) reads

p = (γ − 1)ρe (2)

with γ denoting the constant adiabatic exponent. For Eq. (2), the speed of sound in the fluidc is found to be
c = (γ p/ρ)1/2. For very high pressures, as they appear for instance in underwater explosions, a simple extension
of Eq. (2) to thestiffenedgas EOS of the form

p = (γ − 1)ρe− γp∞ (3)

is sufficient to model pressure waves in liquids with speed of soundc = (γ (p + p∞)/ρ)1/2. Equation (3) becomes
the EOS of a multi-component mixture if we assume a model based on the volume fractionsαi, with

∑m
i=1 αi = 1,

that defines the mixture quantities as

ρ =
m∑
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and in which each component satisfies a stiffened gas EOS of the formpi =
(
γi − 1

)
ρiei − γipi

∞. At this point,
several possibilities would exist to derive different sets of governing transport equations for a two-fluid model,
however, we choose to follow the approach of Shyue (1998) that supplements system (1) with the two advection
equations

∂

∂t

(
1

γ − 1

)
+ u · ∇

(
1

γ − 1

)
= 0 ,

∂

∂t

(
γp∞
γ − 1

)
+ u · ∇

(
γp∞
γ − 1

)
= 0 . (4)

Abgrall (1996) proved that a multi-component continuum scheme needs to satisfy Eq. (4.1) in the discrete sense to
prevent unphysical oscillations at material boundaries. Although different scheme alterations are possible to satisfy
this requirement, cf. Abgrall and Karni (2001), the utilization of (4) in the governing equations and therefore direct
discretization together with (1) is the simplest remedy to the problem, cf. Shyue (1998) and Shyue (2006).

2.2 Finite volume scheme

The appropriate discretization technique for hyperbolic problems with discontinuities (shocks, material boundaries,
etc.) is the finite volume approach. For simplicity, we restrict ourselves in the following to the two-dimensional
case and assume an equidistant discretization with mesh widths∆x1, ∆x2 and a constant time step∆t. Since the
equations (4) are not in conservation form, we use the Wave Propagation Method by LeVeque (2002) to discretize
the system (1), (4). An explicit two-dimensional wave propagation scheme has the formal structure

Ql+1
jk = Ql

jk −
∆t

∆x1

(
A−∆j+ 1

2 ,k +A+∆j− 1
2 ,k

)
− ∆t

∆x2

(
B−∆j,k+ 1

2
+ B+∆j,k− 1

2

)
.
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While thefluctuationsA±∆, B±∆ can be supplemented with (limited) second-order and cross-derivative con-
tributions resulting in a truly multi-dimensional high-resolution Godunov-type method (LeVeque, 2002), the key
component is an approximate Riemann solver that provides a linearized decomposition of the Riemann prob-
lem (RP) normal to each cell boundary. In here, we use the HLLC1 approach by Toro et al. (1994) that is tailored
specifically for the Euler equations and approximates the RP (herex1-direction) with three discontinuous jumps by
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Figure 1: Approximation of the RP
by the HLLC scheme.

qHLLC(x1, t) =
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which is also depicted in Fig. 1. For the wave speedssl/r we use the
estimationssl = min{u1,l−cl, u1,r−cr}, sr = max{u1,l+cl, u1,r+cr}
suggested by Davis (1988) ands? is given in the HLLC approach by

s? =
pr − pl + slu1,l(sl − u1,l)− ρru1,r(sr − u1,r)

ρl(sl − u1,l)− ρr(sr − u1,r)
.

Conservation arguments and consideration of the structure of the RP for Euler equations lead to the specification
of the unknown solution values as
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for k = {l, r}, cf. Toro (1999). Knowledge of the intermediate state then allows the direct evaluation of thewaves
asW1 = q?

l
− q

l
, W2 = q?

r − q?
l
, W3 = qr − q?

r and by settingλ1 = sl, λ2 = s?, λ3 = sr the fluctuations in
thex1-direction are defined asA−∆ =

∑
λν<0 λν Wν ,A+∆ =

∑
λν≥0 λν Wν for ν = {1, 2, 3}.

Note that the robustness and positivity preservation of the HLLC approach is essential for obtaining reliable simu-
lation results when multiple fluids with disparate material properties are involved as is the case in the computations
presented in the Sections 6.2 and 6.3.

2.3 Numerical treatment of thin-walled structures

Geometrically complex moving boundaries are incorporated into the finite volume scheme by using some of the
cells as ghost cells for enforcing immersed moving wall boundary conditions, cf. Arienti et al. (2003) and Fedkiw
et al. (1999). The boundary geometry is mapped onto the Cartesian mesh by employing a scalar level set function
φ that stores the distance to the boundary surface and allows the efficient evaluation of the boundary outer normal
in every mesh point asn = −∇φ/|∇φ|. Since, throughout this paper, we employ only thin-shell and beam solid
mechanics solvers that discretize the structure with a topologically possibly open lower dimensional manifold
surface mesh, we useunsigneddistance as level set information and employ those fluid cells as exterior ghost cells
for which the cellmidpointsatisfiesφ < h/2.2 The latter condition is a straightforward, unambiguous solution

p
+

p
-

Figure 2: Ghost cells (shaded gray)
around shell elements (dark seg-
ments) and construction of mirrored
values.

to achieve the mandatory thickening of the surface mesh by the element
thicknessh. The contour lineφ = h/2 effectively represents the embedded
boundary for the fluid solver (depicted as dotted line around shell elements
in Fig. 2). The hydrodynamic load on each thin element is then evaluated as
the difference between the approximated pressure values atφ = h/2 in the
positive and negative direction of each element’s normal, i.e.pF := p+−p−.

For the governing equations (1), the boundary condition at a rigid wall mov-
ing with velocityv is u · n = v · n. Enforcing the latter with ghost cells, in
which the discrete values are located at the cell centers, requires the mirror-
ing of the valuesρ, u, p, 1/(γ − 1), andγp∞/(γ − 1) across the embedded
boundary. The normal velocity in the ghost cells is set to(2v · n − u · n)n,
while the mirrored tangential velocity remains unmodified. Mirrored val-
ues are constructed by calculating spatially interpolated values in the point
x̃ = x + 2φn from neighboring interior cells. We employ a dimension-wise

1HLLC:Harten-Lax-van Leer Riemann solver with restored Contact surface
2For topologically closed boundary surfaces it is also possible to use signed distance instead, cf. (Deiterding, 2006) and (Cirak and

Radovitzky, 2005).
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linear interpolation for this operation, but it has to be emphasized that directly near the boundary the number of
interpolants needs to be decreased to ensure the monotonicity of the numerical solution. This property is essential
in simulating hyperbolic problems with discontinuities. Figure 2 also highlights the necessary reduction of the in-
terpolation stencil for some exemplary cases. The interpolation locations are indicated by the origins of the arrows
normal to the contour line that defines the embedded boundary. After the application of the numerical scheme,
cells that have been used to impose internal boundary conditions are set to the entire state vector of the nearest cell
in the fluid interior. This operation ensures proper values in case such a cell becomes a regular interior cell in the
next step due to boundary movement. The consideration ofv in the ghost cells also guarantees that the embedded
boundary propagates at most one cell in every time step.

Note that the described technique does not require a modification of the numerical stencil itself and is therefore
generically applicable, but causes a slight diffusion of the boundary location throughout the method and results in
an overall non-conservative scheme. The boundary undergoes a staircase approximation that potentially can give
rise to considerable errors in the computed solution. However, by refining the embedded boundary, typically up
to the highest available resolution, with the dynamic mesh adaptation method described in next subsection, we
alleviate these problems effectively. A refinement criterion based onφ ≡ 0 has been implemented for this purpose.

2.4 Structured adaptive mesh refinement

In order to supply a fine local temporal and spatial resolution efficiently, we use the block-structured adaptive mesh
refinement (SAMR) method by Berger and Colella (1988). Characteristic for the SAMR method is that a specific
finite volume method is technically not implemented in a cell-based fashion, but rather in a routine operating on
equidistant subgrids. The subgrids become computationally decoupled during one update cycle through the use
of ghost or halo cells. Starting from the base mesh on level 0, the time step size and all spatial mesh widths on
level l > 0 arerl-times finer than on levell− 1 and a time-explicit finite volume scheme will (in principle) remain
stable on all levels of the recursively nested refinement hierarchy. Ghost cell values at coarse-fine interfaces are
constructed by interpolating coarse level data, which mandates a recursive order of update (cf. Sec. 5.1). SAMR in
the VTF is provided generically by the AMROC (Adaptive Mesh Refinement in Object-oriented C++) framework
(Deiterding, 2002) that can be used on all parallel systems that provide the MPI library.

3 Lagrangian thin-shell solver

The Kirchhoff-Love thin-shell model applied here for three-dimensional thin-shell simulation has been discretized
with smooth subdivision finite elements, as previously described by Cirak and Ortiz (2001) and Cirak et al. (2000).
Notably, the underlying kinematic assumptions allow for finite strains, displacements and rotations. The subdivi-
sion shell elements have also been extended to the range of applications that involve fracture and fragmentation, cf.
Cirak et al. (2005). Thereby, fracture initiation and propagation is considered as a progressive failure phenomenon
in which the separation of the crack flanks is modeled with a cohesive law. In the present implementation, cohe-
sive interface elements are inserted at all inter-element edges and constrain the opening of the crack flanks to the
deformation of the shell mid-surface and its normal.

3.1 Governing equations in weak form

To kinematically describe a possibly fractured thin-shell as sketched in Fig. 3(a), we first consider the shell in its
undeformed configurationV . The position vectorϕ of a material point on the undeformed shellϕ of a material
point on the undeformed shell body is assumed to be

ϕ = x + θ3n (5)

with the uniform thicknessh and−h/2 ≤ θ3 ≤ h/2. The position vector of the shell mid-surface is denoted
by x and its out-of-surface unit normal byn. In other words, the shell mid-surface represents a two-dimensional
manifold inIR3. The deformation mappingϕ maps the shell body into the deformed configurationV

ϕ = x + θ3λn (6)

wherex andn are the deformed mid-surface and its normal. The thickness stretch parameterλ is the ratio of the
deformed shell thicknessh to the reference thicknessh. In the presence of a crack, the deformation is discontinuous
across the crack and has a jump, i.e.

[[ϕ]] = ϕ+ − ϕ− = [[x]] + θ3[[n]] , (7)
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Figure 3: (a) Fractured shell body: opposite crack flanks and corresponding normals. (b) A cohesive edge and its
two adjacent elements.

where the superscripts+ and− refer to the opposing crack flanks. Further, the first term describes the discontinuity
of the deformation of the shell mid-surface, and the second term the discontinuity in the shell out-of-surface normal.
The discontinuities in the deformations can also be interpreted as the opening displacement of the crack. Further,
note that the Kirchhoff-Love constraint is satisfied, i.e.x · n = 0, on both sides of the crack.

A standard semi-inverse approach is followed for obtaining the shell equilibrium equations in weak form. To
this end, the assumed reduced kinematic equations for the shell body (Equations (5) and (7)) are introduced into
the conventional virtual work expression for the three-dimensional body. As previously mentioned, we consider
fracture as a gradual separation phenomenon, resisted by cohesive tractions. Consequently, the internal virtual
work expression contains the virtual work of the cohesive interface (δΠC,int) in addition to the virtual work of the
bulk material (δΠS,int)

δΠS,int + δΠC,int − δΠext = 0 (8)

with the external virtual workδΠext and

δΠS,int =
∫

Ω

∫ h/2

−h/2

P : δF µdθ3dΩ , δΠC,int =
∫

ΓC

∫ h/2

−h/2

T · [[ϕ]] µdθ3dΓC ,

whereP is the first Piola-Kirchhoff stress tensor,T is the related traction vector at the cohesive surface, andF is
the deformation gradient. The virtual work expression for the bulk material is integrated over the undeformed shell
mid-surfaceΩ and for the cohesive interface over the crack pathΓC . The scalar factorµ accounts for the curvature
of the shell in the volume computation, cf. Cirak and Ortiz (2001).

3.2 Subdivision thin-shell elements

Next, we briefly outline the discretization of the governing equation (8) firstly for the non-fractured case. A detailed
presentation of the used subdivision finite element discretization technique can be found in (Cirak et al., 2000) and
(Cirak and Ortiz, 2001). In this approach, the reference (x) and deformed (x) shell surfaces are approximated using
smooth subdivision surfaces belonging to the Sobolev spaceH2 with square-integrable curvatures. The subdivision
interpolation within one element is accomplished with shape functions, which have support on the element as well
as on the one-ring of neighboring elements. The overlapping local subdivision interpolants, each defined over one
patch, together lead to a global interpolant with square-integrable curvatures. Importantly, smoothness is achieved
without introducing nodal rotations as degrees of freedom. The absence of nodal rotations is particularly appealing
in the presence of finite rotations.

In the presence of fracture, the smoothness and/or continuity of the interpolation has to be relaxed and the subdi-
vision interpolant needs to be modified, cf. Cirak et al. (2005). The topological changes necessary to the non-local
subdivision functions and the underlying control mesh in order to describe the dynamic propagation of a single
crack are complicated. Therefore, we chose to pre-fracture the element patches, such that each patch possesses
its own nodes and acts independently for the purpose of interpolation, see Fig. 3(b). Prior to crack nucleation,
the coupling of the elements is enforced by applying stiff elastic cohesive interfaces at all edges. Once fracture
nucleates along an element edge, the element patches on both sides of the cracked edge interact through cohesive
tractions. The cohesive tractions are self-balanced internal forces derived from a cohesive fracture model.
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3.3 Constitutive models for the shell

An irreversible cohesive constitutive model as proposed by Ortiz and Pandolfi (1999) is used for modeling the
cracks. Thereby, the opening displacement[[ϕ]] plays the role of a deformation measure while the tractionT is the
conjugate stress measure. Further, a scalar effective opening displacement is defined by

δ =
√

β2|δt|2 + |δn|2 ,

whereδt andδn are the tangential and normal displacement components of[[ϕ]] with respect to the crack surface.
The parameterβ assigns different weights to the tangential and normal opening displacements. The cohesive
tractionsT are given by

T =
t

δ
(β2δt + δn) .

0

0

σC

t

δC δ

Figure 4: Irreversible linear cohesive law.
Note that the initial stiff elastic response
enforces the displacement continuity prior
to crack initiation atσc. The dashed line
represents the loading-unloading rule.

The scalar effective tractiont is computed from a cohesive law as
shown in Fig. 4. In addition to the parameterβ, the model param-
eters are the maximal tensile stressσc and the critical opening dis-
placementδc. The following relationship between the cohesive law
and the critical fracture energy rateGc exists:

Gc =
∫ ∞

0

t dδ

which can be used for determiningδc. For further details see Ortiz
and Pandolfi (1999).

The inelastic behavior of the bulk material, i.e. the relation between
P andF, is described with a conventionalJ2 viscoplasticity model
with isotropic power-law hardening as described by Cuitino and Ortiz
(1992). The power-law hardening for the flow stressg has the form

g(εp) = σy

(
1 +

εp

εp
0

)1/n

,

whereσy is the initial yield stress,εp andεp
0 are the total and the reference plastic strains, respectively, and1/n is

the hardening exponent. The rate-dependent behavior is described in terms of the effective von Mises stressσeff

with a power viscosity law and constant rate sensitivity

σeff = g(εp)
(

1 +
ε̇p

ε̇p
0

)1/m

,

whereε̇p
0 is the reference plastic strain rate and1/m the strain rate sensitivity exponent.

The thin-shell typical plane stress condition is enforced with a local Newton-Raphson iteration at each quadrature
point, cf. deBorst (1991). Thereby, the thickness stretch parameterλ (Eq. 6) is the unknown variable in the
iteration.

4 Efficient level set evaluation

In Section 2, we have sketched the concept of employing a distance function to represent a complex embedded
boundary on a Cartesian mesh. While distance functions are easily prescribed for single elementary geometric
objects, their evaluation can be cumbersome for complex shapes. In coupled Eulerian-Lagrangian simulations, this
complex shape is defined by the deforming shell surface mesh.

One can efficiently compute the distance on a grid by solving the eikonal equation with the method of charac-
teristics and utilizing polyhedron scan conversion, cf. Mauch (2003). For a given grid point, the relevant closest
point on the triangular mesh lies on one of the primitives (faces, edges and vertices) that comprise the surface. The
characteristics emanating from each of these primitives form polyhedral shapes. Such acharacteristic polyhedron
contains all of the points which are possibly closest to its corresponding face, edge or vertex. The closest points to
a triangle face must lie within a triangular prism defined by the face and its normal; the closest points to an edge
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Figure 5: The characteristic polyhedra for faces and
edges of an icosahedron.

Figure 6: Slicing of a polyhedron to form two-
dimensional polygons (right) and scan conversion of an
exemplary case (left).

lie in a cylindrical wedge defined by the line segment and the normals to the two incident faces (see Fig. 5 for
face (a) and edge (b) polyhedra for a particular example). Analogously, polygonal pyramids emanating from the
vertices are also possible (not shown). We then determine the grid points that lie inside a characteristic polyhedron
with polyhedron scan conversion. The polyhedron is first sliced along each sheet of the grid lattice to produce
polygons, cf. Fig. 6. Simple geometric formulas are finally used to calculate the distance once a polyhedron has
been assigned uniquely to each grid point.

By utilizing the outlined techniques, and evaluating the distance exactly only within a small distance around the
surface, a highly efficient algorithm can be formulated that has linear computational complexity both in the number
of Cartesian mesh points and the surface triangles, cf. Mauch (2003) and Deiterding et al. (2006c).

5 Fluid-structure coupling

The explicit fluid and solid solvers are weakly coupled by successively applying appropriate boundary conditions
in a time-operator splitting technique. In the case of inviscid flows, the compatibility conditions are the continuity
of the velocity component normal to the embedded boundaryun in solid (S) and fluid (F), i.e.uS

n = uF
n , and the

continuity of the normal component of the solid’s Cauchy traction vector,pS = (σn)n with σ = 1/det(F)FP, and
the hydrodynamic pressurepF , i.e pS = pF . We use the following update algorithm to implement these coupling
conditions numerically:

updateφ(t)
v+/−

F := uS(t)
updatefluid( ∆t )
pS := pF (t + ∆t)
updatesolid(∆t )
t := t + ∆t

After evaluating the distance functionφ for the currently available shell surface mesh, the embedded wall bound-
ary velocities for the fluid solver are set to the solid velocities in the nearest shell element midplane. The same
velocity v is enforced in the fluid on upper (+) and lower (−) side of each element. After setting embedded rigid
wall boundary conditions and the fluid update, a new hydrodynamic pressure loadpF := p+ − p− on each shell
element (compare Fig. 2) is derived by evaluatingp± with the linear interpolation / extrapolation operation already
sketched in Section 2.3. With these new boundary conditions, the cycle is completed by advancing the solid by
∆t, which in practice is typically done by taking multiple, smaller time steps in the solid solver to effectively
accommodate the more restrictive stability condition in the solid.

5.1 Application of SAMR in the fluid solver

While the implementation of a loosely coupled FSI method is straightforward with conventional solvers with con-
secutive time update, the utilization of the recursive SAMR method with hierarchical time step refinement in the
fluid is non-apparent. In the VTF, we treat the fluid-solid interface as a discontinuity that is a-priori refined at least
up to a coupling levellc. The resolution at levellc has to be sufficiently fine to ensure an accurate wave transmission
between fluid and structure, but might not be the highest level of refinement. To incorporate the fluid-structure data
exchange into the recursive SAMR algorithm it has to be ensured that the updated mesh positions and nodal veloci-
ties are receivedbeforea regridding of the coupling levellc is initiated and that the hydrodynamic pressure loadings

71



F1

Time

S1 S5S3 S7S2 S6S4 S8

F2

l=0

l=2

l=l =1
c

F5

F3 F6F4 F7

Figure 7: Data exchange between the recursive
fluid solver and the linear thin-shell solver during
one SAMR root level time step.

on the interface are evaluatedafter the highest available re-
finement level has reached the same discrete time as the up-
dated levellc. We visualize the data exchange between solid
and SAMR fluid solver in Fig. 7 for an exemplary SAMR
hierarchy with two additional levels withr1,2 = 2. Figure
7 pictures the recursion in the SAMR method by numbering
the fluid update steps (F) according to the order determined
by the SAMR method. The order of the solid update steps (S)
on the other hand is strictly linear. The red diagonal arrows
correspond to the sending of the interface pressurespF from
fluid to solid at the end of each time step on levellc. The blue
upward arrows visualize the sending of the interface mesh and
its nodal velocitiesuS after each solid update. The modifica-
tion of refinement meshes is indicated in Fig. 7 by the gray
arrows; the initiating base level, that remains fixed throughout
the regridding operation, is indicated by the gray circles.

5.2 Software implementation

The fluid-structure coupling software VTF is a collection of C++ classes for implementing high-speed FSI prob-
lems on distributed memory machines. At present, only the loose coupling of time-explicit solvers is supported.
The design follows a classical framework approach in which the instantiation of the main objects is usually done
in a short generic main program and customization is achieved through subclass derivation.

In our current implementation, computational fluid and solid dynamics solvers are parallelized separately for dis-
tributed memory machines using independent rigorous domain decomposition methods. In order to facilitate an
efficient communication of the distributed fluid-shell boundary information we have implemented a non-blocking
high-level communication library that determines the necessary point-to-point communication patterns by inter-
secting Cartesian bounding boxes enclosing the local domains. Details on this communication library and also a
detailed algorithmic description of the coupled SAMR method can be found in (Deiterding et al., 2006c).

6 Computational results

In the following sub-sections, we consider three different configurations to demonstrate the versatility of our fluid-
structure coupling approach. While Section 6.1 discusses a verification test of linearly elastic motion due to the
impact of a shock wave in air, the computations in Sections 6.2 and 6.3 simulate viscoplastic deformation and
fracture driven by strong pressure waves in water. In both cases the induced solid motion causes tension in the
liquid that results in cavitation when the pressure falls below the water vapor pressure. Since cavitation inception
limits the maximal tension, and thereby the minimal pressure the liquid can support, we employ an additional
pressure cutoff model (see also Xie et al. (2006)) in these computations. It is implemented by applying the non-
conservative energy correction

E :=
pc + γp∞
ρ(γ − 1)

+
1
2

uT u , for p < pc (9)

after every fluid time step and its purpose is to limit all hydrodynamic pressures to the cutoff valuepc.

6.1 Verification

As a first test for the coupled method, we consider the verification configuration of a thin-walled steel panel
impacted by a planar shock wave in air (γA = 1.4, pA

∞ = 0) proposed by Giordano et al. (2005). The panel has
the thicknessh = 1 mm and extends50 mm from a mounting with forward-facing step geometry into which it is

r=1.6458 kg/m
=112.61 m/s, =0

=156.18 kPa

3

u u

p
1 2

r=1.2 kg/m
=0, =0

=100 kPa

3

u u

p
1 2

400 mm

80 mm

265 mm

250 mm

130 mm

65 mm

Figure 8: Geometry of the computational setup for the shock-panel testcase.

firmly clamped. Figure 8 de-
picts the computational domain
and initial conditions. Inflow
boundary conditions are applied
on the left side, rigid wall bound-
ary conditions anywhere else.
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(a) (b)

Figure 9: Snapshots att = 0.43 ms (a) andt = 1.56 ms (b) visualize the evolution of the fluid mesh adaptation
(different levels indicated by gray scales) according to the flow field and the deflection of the thin-shell panel.

.

First, we model the panel as a one-dimensional elastic beam immersed into a two-dimensional fluid domain and
solve the Euler-Bernoulli beam equation

ρsh
∂2w

∂t2
+ EI

∂4w

∂x̄4
= pF (10)

for ρs = 7600 kg/m3, E = 220 GPa, andI = h3/12 to calculate the deflectionw(x̄, t) of the beam middle axis
with updated hydrodynamic loadingpF after every time step of the fluid solver. Equation (10) is approximated
with a straightforward time-implicit finite difference approach and the resulting linear system is solved by QR
decomposition. An equidistant mesh of101 points is used to discretize the beam middle axis. The fluid mesh uses
a base grid of320 × 64 cells and allows up to two additional levels of dynamic isotropic refinement (based onφ
and scaled gradients ofρ andp) with refinement factorsr1,2 = 2. Calculating18, 660 coupled time steps atlc = 2
to te = 5.0 ms required∼ 12.3 h CPU on a3.4 GHz processor.

Second, the panel is modeled as a two-dimensional plate strip of5 mm width (325 triangular elements) and em-
bedded into a three-dimensional fluid base mesh of320 × 64 × 2 cells. The structural motion is computed with
the previously described three-dimensional thin-shell finite element solver. Linear elastic material behavior with
the parameters given above and the Poisson ratioν = 0.3 is assumed. Figure 9 shows the dynamic bending of the
plate strip and the evolving fluid mesh adaptation with two additional levels (depicted by gray scales) as the initial
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Figure 10: Tip motion for both FSI computations
and reference computation with constant loading.

shock is partially reflected (a) and increased vortex shedding
occurs at the panel tip (b). The three-dimensional computation
reachedte = 5.0 ms after18, 000 coupled time steps, where 5
solid solver sub-steps were used, and required∼ 322 h CPU.

A comparison of the predicted panel tip displacement versus
time for both FSI simulations is given in Fig. 10. Slight diver-
gences at later times are expectable considering the apparent
differences in beam and shell theory. However, both FSI con-
figurations show excellent agreement at earlier times and are
in proximity to a-priori predictions based on Eq. (10) alone
(Beam) for the constant instantaneous loadingpF ≡ 100 kPa
that has been found to be a rough approximation for the pres-
sure loading for approximatelyt < 2.5 ms, cf. Giordano et al.
(2005).

6.2 Underwater explosion

As a first test for shock waves in water, we simulate a fluid-structure experiment by Ashani and Ghamsari (2008).
A small charge (mC4 = 20 g andmC4 = 30 g) of the explosive C4 (1.34× TNT) is detonated in a water-filled
basin at the standoff distancesd = 25 cm or d = 30 cm above a circular air-backed aluminum plate (exposed
radius85 mm) of thicknessh = 3mm. We model the basin with a fluid domain of2 m× 1.6 m× 2 m, where the
origin is placed at the domain center. Outflow is assumed at all domain boundaries. In analogy to the experiment,
air-backed conditions are represented by inserting a rigid cylinder of radius150 mm from x2 = −0.8 m to x2 = 0
into the domain. The cylinder is sealed by the test plate of radius150 mm, discretized with 8148 triangles, which
is treated as rigid forr > 85 mm. The material parameters for viscoplastic material behavior of aluminum, that
were used in these simulations, are detailed in Table 1. It is assumed that the aluminum is strain-rate insensitive
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(a)

(b) (c)
Figure 11: (a) Isolines ofp on domains of refinement lev-
els (indicated by color) att = 0.31 ms. (b), (c) The
plane shows a color plot ofp and isolines ofαA, the plate
displays the normal vertex velocity att = 0.14 ms and
0.31 ms.

and strain-softening effects have not been considered. The cylinder is filled with air (γA = 1.4, pA
∞ = 0) at density

ρA = 1.29 kg/m3, the basin with water (γW = 7.415, pW
∞ = 296.2 MPa) at ρW = 1027 kg/m3, which are both

initially at rest and assumed to be at atmospheric pressurep0 = 100 kPA (the static pressure increase due the
water depth can safely be neglected). The modification by Eq. (9) withpc = −1 MPa is employed in the fluid
solver to consider cavitation inception. The shock from the explosion is modeled as a spherical energy deposition
(mC4 · 6.06 MJ/kg) uniformly distributed over a sphere of radius5 mm of air at temperature1500oC located at
(0, d, 0).

The fluid domain is discretized with an SAMR base mesh of50 × 40 × 50 cells. Four additional levels with
refinement factorsr1,2,3 = 2, r4 = 4 are employed. The highest level refinement is static and restricted to the
explosion center. Fluid mesh adaptation on all other levels is dynamic and based onφ and the scaled gradient of
p. However, refinement at levels 2 and 3 is restricted to the immediate vicinity of the structure and the shock as it
impinges onto it. Figure 11(a) depicts a snapshot of the fluid mesh in a plane through the center of the domain for
the casemC4 = 20 g, d = 25 cm. The FSI simulation useslc = 3 with 2 solid solver sub-steps, and 1296 coupled
time steps were computed to reach the final timete = 1ms.

Table 1: Material properties for aluminum.

Mass density ρs = 2719 kg/m3

Young’s modulus E = 69GPa
Poisson’s ratio ν = 0.33
Yield stress σy = 217.6 MPa
Reference plastic strain εp

0 = 0.025
Hardening exponent 1/n = 0.6
Rate sensitivity exponent 1/m = 0
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Figure 12: Left: center displacement versus time.

The impact of the spherical shock onto the plate and its partial reflection are visualized in graphics (b) and (c) of
Fig. 11, respectively. The induced motion of the exposed part of the test specimen is clearly visible. Figure 12
displays the plate center motion versus time for both cases considered. Note that during the first∼ 0.2 ms after
the shock impact the deformation occurs with constant velocity since the water near the plates cavitates and does
not transmit significant forces onto the plate. The maximal computed deflection for the casem = 20 g, d = 25 cm
is 25.88 mm, for the casemC4 = 30 g, d = 30 cm it is 27.31 mm. Those values compare reasonably well to the
experimental measurements of28.83 mm and30.09 mm by Ashani and Ghamsari (2008), where the differences
are primarily due to our rather simplistic modeling of the initial shock wave created by the explosion. Both
computations were run on 12 nodes of a parallel cluster with Intel-3.4 GHz-Xeon dual processors (10 nodes fluid,
2 nodes solid dynamics solver) and required∼ 130 h CPU each (∼ 5.4 h wall time).

6.3 Plate deformation from water hammer

The final configuration considered is an experimental setup developed by Deshpande et al. (2006) that reproduces
loading conditions of large-scale underwater explosions in the laboratory. By firing a steel projectile onto a piston
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Figure 13: Loading conditions forpmax = 34MPa. (a) Comparison of the traveling wave approximation Eq. (12)
(dotted) with computed pressure traces (solid) atx1 = 1.1 m (left) andx1 = 0.2 m (right). (b) Computed piston
acceleration for the entire simulation time.

inserted into the end of a water shock tube, a strong pressure wave is created that propagates through the water
column and impinges onto a circular copper plate sealing the other end. The shock tube has a length of1.3 m
and a radius of32 mm, which is modeled with an additional signed distance level set function. The tube is filled
with water (γW = 7.415, pW

∞ = 296.2 MPa, pc = 0) of densityρw = 1000 kg/m3 at atmospheric pressure
p0 = 101.3 kPa. The copper plate has a thickness of0.25 mm and a radius ofr = 56 mm, but is unconstrained
only for r < 32 mm. Again, the plate is air-backed (ρA = 1.0 kg/m3, γA = 1.4, pA

∞ = 0) at pressurep0. The
center of the plate is initially located at the coordinate origin and the shock tube middle axis is aligned with the
x1-axis.

Verification of loading conditions

The motion of the piston creates a quasi one-dimensional pressure spike with exponential decay rate that propagates
through the water column. We incorporate the piston movement into the computational setup by employing a
second signed distance level set function that corresponds to the piston boundary in contact with the fluid. The
level set is initially positioned atx1 = 1.3 m and assumed to move with constant velocityb0. During a simulation,
we integrate the law of motion for the piston

m̄ḃ = −(p̄− p0) (11)

with the forward Euler method and update level set position and velocityb in direction of the tube middle axis (to
be used as wall normal velocityvn for this level set, cf. Sec. 2.3) in every time step. As the piston is constrained
in all other directions, it suffices to consider the hydrodynamic pressure averaged across the piston boundaryp̄ and
to use the averaged piston mass per unit aream̄. In all subsequent computations the valuem̄ = 74.1 kg/m2 was
used.

By assuming the wave to propagate with the constant speed of sound in watercw = 1482 m/s, a traveling wave
solution of the form

p(x1, t) =

 pmax exp
(
− t− x1/cw

m̄/(ρwcw)

)
, t ≥ x1

cw

0 , otherwise
(12)

can be derived for the pressure evolution at a fixed spatial location that is found to be in reasonable agreement with
experimental measurements close to the piston boundary (Deshpande et al., 2006). The maximum of the traveling
wave is set topmax = ρwcwb0, which permits the computation of the initial piston velocityb0 for given pmax.
Plot (a) of Fig. 13 compares Eq. (12) evaluated at the locationsx1 = 1.1 m andx1 = 0.2 m with pressure traces
derived from a one-dimensional unigrid finite volume simulation with 2700 cells on the domain[0m, 1.35 m] for
pmax = 34 MPa. The agreement at early times is very good, verifying the correctness of our computational setup.
At later times, the simulation necessarily differs from the unaltered (non-dispersive) traveling wave, because our
computational model considers the density rise in the compression wave and the resulting change of the speed of
sound. Plot (b) of Fig. 13 displays the computed piston acceleration, where the time is shifted by−0.82 ms setting
the start of the FSI simulations tot = 0.
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Table 2: Material and cohesive model parameters
for annealed copper.

Mass density ρs = 8920 kg/m3

Young’s modulus E = 130 GPa
Poisson’s ratio ν = 0.31
Yield stress σy = 38.5 MPa
Reference plastic strain εp

0 = 0.0091
Hardening exponent 1/n = 0.627
Reference plastic strain rate ε̇p

0 = 1000
Rate sensitivity exponent 1/m = 1.0
Maximal tensile stress σc = 525MPa,
Critical opening displacement δc ≈ 0.3 mm
Tangential weight parameter β2 = 0.8
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Figure 14: Fluid pressure traces along tube middle axis at
x1 = 0 andx1 = 0.2 m for pmax = 34MPa.

Fluid-structure interaction simulations

While the thin copper plate exhibits just viscoplastic deformation forpmax = 34 MPa, fracture occurs for larger
values ofpmax. All computations were therefore run with activated cohesive interface element capability of the
thin-shell solver. The parameters for theJ2 plasticity and the cohesive interface model used for annealed copper
are given in Table 2. The mesh for the plate considers the mounting holes for purely optical reasons and consists
of 8896 triangles. In order to ensure the correct boundary conditions throughout the whole simulation, the three-
dimensional fluid domain covers with[−0.146 m, 1.35 m] × [−0.04 m, 0.04 m] × [−0.04 m, 0.04 m] the entire
shock tube.

To concentrate the computational resources for the fluid in the region of interest, the computation uses an SAMR
base mesh of374 × 20 × 20 cells and two additional levels with refinement factorsr1,2 = 2. The fluid mesh
is always fully refined along the plate boundary and at the front of the incoming pressure wave. The shock tube
boundary is statically refined at level 2 forx1 < 0.206 m and at level 1 forx1 < 0.43 m. The coupling level
for the fluid-structure data exchange is set tolc = 2. The simulations were run on 12 nodes of a parallel cluster
consisting of Intel-3.4 GHz-Xeon dual processors CPUs, where 6 nodes were employed for the fluid and the solid
solver, respectively. Using 2 solid solver sub-steps the casepmax = 34 MPa took 4120 coupled time steps to reach
te = 1.0 ms, which required∼ 48 h wallclock time (∼ 1150 h CPU).

Results from the non-rupture case are displayed in the Figs. 14 and 15. Figure 14 shows pressure traces along
the tube middle axis at the locationsx1 = 0.2 m andx1 = 0. The impact of the pressure wave onto the plate at
t ≈ 0.03 ms and the water cavitation immediately after can be clearly inferred. An expansion wave due to the
resulting structural motion travels upstream through the water column inducing a small piston acceleration around
t = 0.9 ms, cf. Fig. 13(b).
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Figure 15: (a) Plate center displacement versus time and (b) deflection history of the plate midplane during the
coupled simulation.

Similarly to the previous section, the plate deformation is separated into two phases. As can be seen in Fig. 15(a)
cavitation leads to a constant displacement velocity during the first∼ 0.15 ms. The deflection of the plate is
characterized by the appearance of a stationary plastic hinge at the boundary and a second instationary plastic
hinge traveling towards the plate center, cf Fig. 15(b). Shortly after the fluid expansion wave leaves the plate
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boundary, a hydrodynamic pressure of∼ 4 MPa builds up again directly at the plate until it declines finally
from t ≈ 0.76 ms on, cf. Fig. 14. During this phase, the plate deformation is nonlinear and the plate deflection
is convex. The displacement reaches its maximum att ≈ 0.76 ms and remains almost unaltered until the end
of the simulation atte = 1.0 ms. A visual comparison of the finally deformed solid mesh in the FSI simula-
tion with a photograph of a target plate by Deshpande et al. is given in Fig. 16. The agreement is apparently

Figure 16: Comparison of simulated specimen with
the experiment forpmax = 34MPa.

very good. The obtained maximum deflection of15.6 mm
is also in good agreement with the analytic estimate of
16.1 mm by Qui et al. (2004) (Equation 21a in (Qui et al.,
2004)). Note that Qui et al.’s estimate is for an ideally
plastic material. In contrast, the presented computations
include a strain-hardening effect, which has a reducing ef-
fect on the maximum displacements. Further, Qui et al.
base their analysis on the traveling wave (12) that over-
predicts the pressure maximum exposed to the plate, cf.
Fig. 13(a).

We present two exemplary results for plate rupture. Whenpmax is moderately increased, the plate first bulges
severely but then undergoes localized cracking at the plate center. This failure mode is shown in Fig. 17(a) for
pmax = 64 MPa that displays the situation att = 0.85 ms simulation time when the fracture pattern is clearly
established and the water splashes into the air behind the plate. Note also the similarity in longitudinal cracking
behavior in simulation and experiment. When the loading is increased further, rupture occurs primarily at the
supports. We display only one case for the high loadingpmax = 173 MPa that clearly exhibits tearing at the
support from the initial impulse, cf. Fig. 17(b). Finally, it is worth mentioning that the reliable simulation of
cracking phenomena with two coupled explicit solvers mandatorily requires a careful computational analysis of
the stability condition in each sub-solver after every time step, which in our case also considers the temporal
recursion in the SAMR approach. See Deiterding et al. (2006c) for details.

(a) (b)

Figure 17: Plate fracture forpmax = 64 MPa at t = 0.85 ms (a) andpmax = 173 MPa at t = 0.177 ms (b),
when the fracture patterns are fully established. The color midplane showing the volume fractionαW in the fluid
visualizes the water splash.

7 Conclusions

We have presented all computational components of a level-set-based fluid-structure coupling approach for the
time-accurate simulation of thin flexible shells responding dynamically to strong pressure waves in water. The
approach has been demonstrated to handle arbitrarily evolving thin-shells surrounded by fluid without problems.
Three different fluid-structure interaction configurations of increasing complexity have been given to verify and
validate the approach. The obtained results are found to be in good to excellent agreement with experimental
observations, depending on the level of effort spent to reproduce the hydrodynamic loading conditions and to care-
fully adjust material model parameters that cannot be deduced unambiguously from tabulated data, namely for
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viscoplasticity and fracture. The level of detail given should allow the easy reproducibility of our results thereby
proving good verification tests for explicit FSI software. The integrated implementation of all presented compo-
nents, including further documented explicit FSI testcases, is freely available from http://www.cacr.caltech.edu/asc.
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