
Blockstructured Hyperbolic AMR with AMROC

Ralf Deiterding
Center for Adanced Computing Research

California Institute of Technology

1200 East California Blvd., Mail-Code 158-79

Pasadena, CA 91125

ralf@cacr.caltech.edu

Blockstructured AMR

AMROC provides a generic interface to the most efficient adaptive

method for hyperbolic equations

∂tq(x, t) +∇ · f(q(x, t)) = s(q(x, t))

on blockstructured grids: The Berger-Collela AMR algorithm.

+ Discretization necessary only for a

single logically rectangular grid

+ Spatial and temporal refinement,

no global time step restriction

+ No neighboring cell information

has to be stored

+ Efficient cache reuse and vector-

ization possible The blockstructured refinement strategy

creates a hierarchy of properly nested

subgrids.+ Simple load balancing

- Extension to non-Cartesian geometries is difficult

- Cluster algorithm necessary for grid generation

- Hanging nodes unavoidable and require special treatment

- Complex implementation
AdvanceLevel(l)

Repeat rl times

Set ghost cells of level l at time t

If (time to regrid?) Then

Regrid(l)

Step ∆tl on all grids at level l

If (level l + 1 exists?) Then

Set level l ghost cells at t + ∆tl
AdvanceLevel(l + 1)

Average level l + 1 grids onto level l

AMR-algorithm and its recursive integra-

tion procedure. Refinement factor on level

l is rl = ∆tl−1/∆tl.

Object-oriented Design

AMROC implements the AMR method in C++ and can be used di-

rectly in C++ or with Fortran functions called from C++ interface-

objects.

Design of the AMROC framework. GF stands for GridFunction.

In AMROC each AMR calculation involves three abstraction levels:

1. Specific application and numerical scheme.

2. AMROC (Adaptive Mesh Refinement in Object-oriented C++).

3. Parallel hierarchical data structures that employ the MPI-library.

• Data follows “floor plan” of a single Grid Hierarchy.

• Data of all levels resides on the same node → Most AMR

operations are strictly local.

• Neighboring grids are synchronized transparently even over

processor borders when boundary conditions are applied.

• Distribution algorithm: Generalization of Hilbert’s space-filling

curve.

Benchmark Run 1: Point-explosion in 3D

Timing results for the Sedov-like point-explosion benchmark (Euler

equations) proposed at the AMR 2003 workshop in Chicago.

AMROC was the only AMR framework participating in the bench-

mark session that was able to solve this problems with an effective

resolution of 10243 on the given benchmark machine.

• 3D-Wave-Prop. Method

• Base grid 323

• Refinement factor 2

• Grid generation efficiency 85%

• Proper nesting enforced

• Buffer of 1 cell

Cut through the symmetric solution for the effective resolution 10243.

l lmax = 3 lmax = 4 lmax = 5 lmax = 6
Grids Cells Grids Cells Grids Cells Grids Cells

1 28 32768 28 32768 33 32768 34 32768
2 8 32768 14 32768 20 32768 20 32768
3 63 115408 49 116920 43 125680 50 125144
4 324 398112 420 555744 193 572768
5 1405 1487312 1498 1795048
6 5266 5871128∑

180944 580568 2234272 8429624

Number of grids and cells.

Task [%] lmax = 3 lmax = 4 lmax = 5 lmax = 6
Integration 73.7 77.2 72.9 37.8
Fixup 2.6 46 3.1 58 2.6 42 2.2 45
Boundary 10.1 79 6.3 78 5.1 56 6.9 78
Recomposition 7.4 8.0 15.1 50.4
Clustering 0.5 0.6 0.7 1.0
Output/Misc 5.7 4.0 3.6 1.7
Time [min] 0.5 5.1 73.0 2100.0

Uniform [min] 5.4 160 ≈5000 ≈180000.
Factor of AMR savings 11 31 69 86

Breakdown of CPU time on 8 nodes SGI Altix 3000 (Linux-based shared memory system).

Color plot of density on refinement grids for the 3D explosion problem on 6 levels.

Benchmark Run 2: Blast Wave in 2D

A Circular Riemann problem for Euler equations expands in an

enclosed box.

• 2D-Wave-Propagation

Method with Roe’s

approximate solver

• Base grid 150× 150

• 2 levels: factor 2, 4

Task [%] P =1 P =2 P =4 P =8 P =16

Update by H(·) 86.6 83.4 76.7 64.1 51.9
Flux correction 1.2 1.6 3.0 7.9 10.7
Boundary setting 3.5 5.7 10.1 15.6 18.3
Recomposition 5.5 6.1 7.4 9.9 14.0
Misc. 4.9 3.2 2.8 2.5 5.1
Time [min] 151.9 79.2 43.4 23.3 13.9
Efficiency [%] 100.0 95.9 87.5 81.5 68.3

Breakdown of CPU time on P nodes Pentium-III-1GHz connected with
Gigabit Ethernet (effective bandwidth ≈ 40MB).

After 38 time steps After 79 time steps

Isolines of density on two refinement levels (indicated by gray scales) and distribution to eight

nodes (indicated by different colors).

Benchmark Rating

Both benchmarks used single-grid functions (finite volume scheme,

interpolation, averaging) in Fortran 77.

+ The sequential computational performance of the AMROC

framework in C++ is near to pure Fortran codes.

+ The performance of the MPI implementation on a shared mem-

ory machine is almost like in sequential.

+ At least a reasonable number of compute nodes of a distributed

memory machine can be used efficiently.

- Benchmark 1 uncovers complexity problems in the regridding

operation for a large numbers of refinement grids.

Future Implementation Plans

• Generic module to support the application of the Ghost Fluid

Method at internal boundaries and optimal coupling to AMR (in

collaboration with Patrick Hung).

• Python interface layer between AMROC level and application-

specific objects (in collaboration with Julian Cummings).

+ Seamingless integration into the Virtual Test Facility.

+ Specification of an AMR calculation with a single Python

script that selects the integrator at runtime and specifies initial

and boundary conditions.

• Regridding algorithm that scales well in parallel and performs

better for a huge number of subgrids.

• Hierarchical data structures:

– Incorporation of additional parallelized partioning algorithms

(in collaboration with Manish Parashar).

– Extension of GridFunctions to node- and edge-based storage

to allow for staggered discretizations.

– Usage of Blitz++ library for algebraic operations on subgrid

arrays (in collaboration with Julian Cummings).

– Code upgrade to the C++ standard (in collaboration with

Julian Cummings).

Future Research Plans

• Adaptive multigrid method to support time-implicit discretiza-

tions (most parts of the framework can be reused, e.g. the

stencil correction at coarse-fine interfaces).

• Comparison of different techniques for AMR to handle non-

Cartesian boundaries (body-fitted grids, construction of cutted

cells on the fly, etc.) with the Ghost Fluid Method.


