Verification and Validation of the AMROC Fluid Solver Framework Coupling
with DYNA3D within the Virtual Test Facility Fluid Structure Interaction Suite
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*AMROC employs a time-explicit finite volume scheme to compute inviscid compressible

flows with strong shocks.
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Fluid-structure coupling

material behavior for kinematic hardening (B = 0.0)
and for isotropic hardening (B = 1.0) .

e Compatibility conditions between inviscid fluid and solid at a slip

interface
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Continuity of normal velocity: us, = uF

— Continuity of normal stresses: ¢S = -pF
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e Time-splitting approach for coupling
— Fluid:

e Treats evolving solid surface with moving

wall boundary conditions in fluid

e Uses solid surface mesh to calculate
fluid level set

e Uses nearest velocity values u® on
surface facets to impose u™,, in fluid

— Solid:
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e Use interpolated hydro-pressure p© to prescribe 6>, on boundary facets
e Ad-hoc separation in dedicated fluid and solid processors

Grid hierarchy
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Algorithmic approach for coupling
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Routines to facilitate AMROC-DYNA

e Geometry Pre-processor routine

— Reads output from Cubit 11.0 Mesh Generator and dynamically creates a DYNA3D
input file
— Supports hexagonal, tetrahedral, thick shell, and thin shell elements

— Translates node selection sets to apply boundary conditions, pressure loads on
included faces, and generates cohesive elements for fracture simulation

Node selection sets

*1 —-9999 : identify volumes where cohesive
elements are to be generated to simulate possible
fracture(s)

*10000 — 19999 : identify nodes to which
translation and rotation nodal constraints will be
applied

*20001 — 29999 : identify nodes on surfaces
where pressure loads will be applied

Cohesive elements

eused to simulate cohesion or inter-laminar forces
between “parallel” hex elements

*employ traction-displacement relationships to
generate nodal forces based upon the projected
displacements of the hex element corners in
opening (mode |) and in plane shear (mode I1)

. . Node selection sets: 1 = Cohesive element generation (all),
directions 10700 = Nodal constraint: translation fixed in x,y,z (blue),
20001 = Pressure loaded faces (yellow)
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e Explicit finite volume scheme Timo > — Extracts data from DYNA3D data structures
e M. Berger and P. Colella, J. Comput. Phys.

82, 1988.
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— -3 Regridding of finer levels.

Base level (@) stays fixed.

— Supports hexagonal and thin shell elements
— Outputs displacements, velocities, and stresses in VTK format
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Verification Test Case:
Shock-induced panel motion

e Elastic motion of a thin steel plate (thickness h=1mm, length 50mm)
e Steel plate modeled with finite difference solver using the beam equation

(92’{0 84w
__I 400 mm |
p=1.6458 kg/m’ p=1.2 kg/m’
w,=112.61 m's, u,=0 =0, u~0 e
Wmm p=156.18 kPa =100 kPa
— 250 mm
150 mm 265

e DYNA3D implementation verification: constant ~ *, [
impulsive loading of Ap=100kPa E e
=T
— Euler-Bernoulli Beam Equation s 67
— DYNA : Shell: DYNA3D explicit finite F .l
element solver employing thin-shell 3 ; i
elements A |
— DYNA : Hex: DYNA3D exp/icit finite S ,g | Euler Bernoilli
. | DYNA : Shell _—
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Panel motion — FSI verification

e Forward facing step geometry, reflective boundaries everywhere except inflow at left
side, panel 1.5cm behind start of step

e SAMR base mesh 320x64(x2), 2 additional level with factors 2, 2
e Intel 3.4GHz Xeon dual processors connected with Gigabit Ethernet
— Beam-FSI: 12.25h CPU on 3 fluid CPU + 1 solid CPU
— FEM-FSI: 322h CPU on 14 fluid CPU + 2 solid CPU
— AMROC-DYNA: 15 fluid CPU + 1 solid CPU; Hex 600h CPU; Shell 450h CPU

e FS] verification:

— SFC-FSI: large displacement thin-shell finite element solver by F.Cirak coupled to FV
code

— AMROC-DYNA : Shell: DYNA3D explicit finite element solver employing thin-shell
elements coupled to AMROC

— AMROC-DYNA : Hex: DYNA3D explicit finite element solver employing hexagonal
elements coupled to AMROC
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Validation Test Case:
Plate deformation from water hammer

e 3d simulation of plastic deformation of thin
copper plate attached to the end of a pipe
due to water hammer

e Strong over-pressure wave in water is
induced by rapid piston motion at end of
tube

e Experiments from ‘An underwater shock
simulator’, V.S. Deshpande et al., Proc. Royal
Soc. A 462, 2006.

e Two-component model based on “stiffened”
gas equation of state

e Computation uses *"=1.4, p,4"=0,
JVater=7 415, p, Watr=96 bar

e Cavitation modeling with pressure cut-off at
p=0 MPa, no surface tension

e Realistic pressure loading in simulations
created by solving equation of motion for
piston

e Intel 3.4GHz Xeon dual processors connected
with Gigabit Ethernet

— SFC-FSI: 130h CPU on 8 nodes

— AMROC-DYNA: 15 fluid CPU + 1 solid
CPU; Hex 206h CPU; Shell 97h CPU

Plastic deformation — FSI validation
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Comparison of the traveling wave approximation (dotted)
with computed pressure traces (solid) at x; = 1.1 m (left)
and x; =0.2 m (right).
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Fluid pressure distribution revealing cavitation and stressXX
distribution within the copper plate at t = 0.15 ms
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Comparison of plate at end of simulation and experiment show good
agreement of shape and maximum deflection.

Fracture demonstration

e 3d simulation of plastic deformation of
thin copper plate attached to the end of a
pipe due to water hammer

e Modeled cohesive elements and sliding
contact between solid elements

e Preliminary results show agreement with
experimental results

Time = 0.03 ms

Time = 0.04 ms

Time = 0.16 ms
Left: fluid density and plate von Mises stress
Above: fluid pressure and plate von Mises stress from
behind the plate in left column and from in front of the

-

Time= 1.0 ms plate in the right column.
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