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Structured AMR
e0
Block-structured AMR

Block-structured adaptive mesh refinement (SAMR)

For simplicity d:q(x, y, t) + oxf(a(x, y, t)) + dyg(a(x,y,t)) =0

Refined blocks overlay coarser ones
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Block-structured adaptive mesh refinement (SAMR)

For simplicity d:q(x, y, t) + oxf(a(x, y, t)) + dyg(a(x,y,t)) =0

Refined blocks overlay coarser ones

Refinement in space and time by factor r
[Berger and Colella, 1988]

Block (aka patch) based data structures

Numerical scheme
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Block-structured adaptive mesh refinement (SAMR)

For simplicity d:q(x, y, t) + oxf(a(x, y, t)) + dyg(a(x,y,t)) =0

Refined blocks overlay coarser ones

Refinement in space and time by factor r
[Berger and Colella, 1988]

Block (aka patch) based data structures

Numerical scheme
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only for single patch necessary
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Efficient cache-reuse / vectorization
possible

Cluster-algorithm necessary

Papers:
[Deiterding, 2011, Deiterding et al.,
Deiterding et al., 2007]
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Structured AMR
oe
Block-structured AMR

Conservative flux correction

Example: Cell j, k

At 1 fe1—1lrp—1
I Al / I I+1
Qie(t + Aty) = Qp(t) — Doy | itk T 2 Lot e (8 RALL)
’ I+1 k=0 =0
At
- ( I‘k+l G; kfl)
Axo J k=3

Correction pass:

v(v+l
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Structured AMR
oe

Block-structured AMR

Conservative flux correction

Example: Cell j, k

fp—1rp—1
At 1
Qe+ A1) = Qu(t) = o | Fly o= -
L I+1 k=0 =0

Correction pass:

+1 !
OFT o =—Fi 1,
1 re—1
R =R o DO RS Lt eAn)
20 r,Jrl s 2
Qi (t+At) = ij(t+At,)+ A 6Fj’f{ .

[t + rAt)

v(v+l
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Adaptive LBM
@000

Construction principles

Approximation of Boltzmann equation
Is based on solving the Boltzmann equation with a simplified collision operator
Of +u-Vf=w(f9—f)+F

Kn = Ir/L < 1, where Ir is replaced with Ax
Weak compressibilty and small Mach number assumed

Assume a simplified phase space
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Construction principles

Approximation of Boltzmann equation
Is based on solving the Boltzmann equation with a simplified collision operator
Of +u-Vf=w(f9—f)+F

Kn = Ir/L < 1, where Ir is replaced with Ax
Weak compressibilty and small Mach number assumed
Assume a simplified phase space

Equation is approximated with a splitting approach.

1.) Transport step solves difo + €4 - Vo =0

Operator: T: fo(x + eaAt, t + At) = fu(x, t)

8 8
px, ) = falx, 1), p(x, t)ui(x,t) =Y eaifa(x, t)

a=0

Discrete velocities:

e = (0,0),e1 = (1,0)c,e» = (—1,0)c,e3 = (0,1)c,es = (1,1)c, ...
Ax . c

¢ = ——, Physical speed of sound: ¢ = —
At V3



Adaptive LBM

@000
Construction principles

Approximation of Boltzmann equation

Is based on solving the Boltzmann equation with a simplified collision operator
Of +u-Vf=w(f—f)+F
Kn = Ir/L < 1, where Ir is replaced with Ax

Weak compressibilty and small Mach number assumed
Assume a simplified phase space

Equation is approximated with a splitting approach

1.) Transport step solves d:fy + €4 - Vo =0

10 3 7”
Operator: T' 1~‘( + e At, t + At) = fo(x, t) e /{ ‘
AN ol 18
p(x, t) = Zf(xt xt)u,xt)—Zea,axt) wﬁ;///,, NN
— 0 8 12 \(
Discrete velocities:
0, a=0,
en ={ (£1,0,0)c, (0,%1,0)c, (0,0, +1)c,

,0, a=1,...,6,
(£1,+1,0)c, (£1,0,£1)c, (0, £1, £1)c

, a=7,...,18,
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Adaptive LBM
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Construction principles

Approximation of equilibrium state

2.) Collision step solves 0;fo, = w(f$? — f) + Fa
Operator C:

fu(, t + At) = fo (-, t + At) + wi At (?j"(~, t+ At) — ol t + At)) + AtF,

with F, = 3ptaeqF/c?
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2.) Collision step solves 0;fo, = w(f$? — f) + Fa
Operator C:
fu(, t + At) = fo (-, t + At) + wi At (?j"(~, t+ At) — ol t + At)) + AtF,
with F, = 3pt,eqF/c? and equilibrium function

3equ  9(equ)®  3u?
37 =pta |14+ —— - —
~ (p;u) = pt, [ + c2 + 204 2c2

with £ = § {4,111, 3, 3,11 3)
p=>, £29¢2 = pc?. Dev. stress ¥; = (1 —

) . oieas(F57 — )
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Construction principles

Approximation of equilibrium state

2.) Collision step solves 0;fo, = w(f$? — f) + Fa
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£ea = pto |1 -
o (pyu) = pt. [ + c2 204 2c2

. 1 111111111111 111111
With ta = §{3,5,5,5: 3,3, 204 42 40 4 42 42 4 42 40 40 40 40 )

Sp=3, 92 = pc2. Dev. stress L = (1 - ‘”LQAt) > Caitaj(fa? — fa)
Using the third-order equilibrium function

3equ n 9(equ)? _ Llf eau 9(equ)? _ 37112
c? 2c* 2¢?  3¢? 2c* 2¢?

allows higher flow velocities (up to M ~ 0.3 — 0.4 vs. M =~ 0.15 — 0.2).

fa’(p,u) = pta {1 +
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2.) Collision step solves 0;fo, = w(f$? — f) + Fa
Operator C:
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Using the third-order equilibrium function

3equ N 9(eau)®*  3u’  equ (9(eo¢u)2 3u2>}

<’ (p,u) = pta [1 +

c? 2c4 2¢2 " 3e? 24 22
allows higher flow velocities (up to M ~ 0.3 — 0.4 vs. M =~ 0.15 — 0.2).
A Chapman-Enskog expansion shows

_1 TL 1
Y73 (At 2) cAx
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Adaptive LBM
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Construction principles

Initial and boundary conditions

Initial conditions are constructed as f57(p(t = 0),u(t = 0))
Boundary conditions (applied before streaming step)

No-slip Slip Symmetry

Outlet basically copies all distributions (zero gradient)

Inlet and pressure boundary conditions use f5
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Construction principles

Initial and boundary conditions

Initial conditions are constructed as f57(p(t = 0),u(t = 0))
Boundary conditions (applied before streaming step)

No-slip Slip Symmetry

Outlet basically copies all distributions (zero gradient)
Inlet and pressure boundary conditions use f5
Complex geometry:

Use level set method as before to construct macro-values in embedded boundary
cells by interpolation / extrapolation [Deiterding, 2011].

Distance function ¢, normal n = V¢/|V¢|. Triangulated meshes use CPT
algorithm [Mauch, 2003].

Construct macro-velocity in ghost cells for no-slip BC as ' = 2w —u
Then use £57(p’,u’) or interpolated bounce-back [Bouzidi et al., 2001] to
construct distributions in embedded ghost cells
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Construction principles

Adaptive LBM

Complete update on coarse grid: £.°" .= CT(£5")
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Construction principles

Adaptive LBM

Complete update on coarse grid: £.°" .= CT(£5")

Interpolate £<2" onto £/*7 to fill fine halos. Set physical boundary
conditions.
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Construction principles

Adaptive LBM

Complete update on coarse grid: £.°" .= CT(£5")

Interpolate £<:" onto £7°7 to fill fine halos. Set physical boundary

a,in a,in

conditions.
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Construction principles

Adaptive LBM

Complete update on coarse grid: £.°" .= CT(£5")

Interpolate £<2" onto £/*7 to fill fine halos. Set physical boundary
conditions.

FEm .= T(£1") on whole fine mesh. £1""/? .= ¢(£{'") in interior.

ZIR[ XX
ZIR[X|X

52K | X[ X[X]N
XX XX [X]N

?f,n

a,in
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Construction principles

Adaptive LBM

Complete update on coarse grid: £.°" .= CT(£5")

Interpolate faf}g onto faf_jg to fill fine halos. Set physical boundary
conditions.

FEm .= T(£1") on whole fine mesh. £1""/? .= ¢(£{'") in interior.

FLnt1/2 . — 7 (£5771/2) on whole fine mesh. £/71 .= C(EF"T/2) in

interior.
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Adaptive LBM

Complete update on coarse grid: £.°" .= CT(£5")

Interpolate £S" onto £7°" to fill fine halos. Set physical boundary

«, ln o, ln
conditions.

?Of’” = T(fo’:’”) on whole fine mesh. £’ /2 C(?of") in interior.

FLnt1/2 . — 7 (£5771/2) on whole fine mesh. £/71 .= C(EF"T/2) in

interior.
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Adaptive LBM

Complete update on coarse grid: £.°" .= CT(£5")

Interpolate £<:" onto £7°7 to fill fine halos. Set physical boundary

a,in a,in
conditions.

AEUE T (") on whole fine mesh. flmr/2 . C(?Of") in interior.

FLnt1/2 . — 7 (£5771/2) on whole fine mesh. £/71 .= C(EF"T/2) in

interior.
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Construction principles

Adaptive LBM

Complete update on coarse grid: £.°" .= CT(£5")

Interpolate faf}g onto faf_jg to fill fine halos. Set physical boundary
conditions.

FEm .= T(£1") on whole fine mesh. £1""/? .= ¢(£{'") in interior.

FLnt1/2 . — 7 (£5771/2) on whole fine mesh. £/71 .= C(EF"T/2) in

interior.
Average T‘;:Z;}UZ (inner halo layer), ?(fjgut
E1E] (outer halo layer) to obtain ?&C,;'Lt.
(>
(>
(>
KK KX [N
XK X XN
2f,n41/2 Ffon
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Construction principles

Adaptive LBM

Complete update on coarse grid: £.°" .= CT(£5")

n

., onto faf_jg to fill fine halos. Set physical boundary

Interpolate £C:
conditions.

AEUE T (") on whole fine mesh. flmr/2 . C(?Of") in interior.

FLnt1/2 . — 7 (£5771/2) on whole fine mesh. £/71 .= C(EF"T/2) in

interior.
2F,+1/2 g Hf,
Average f., o /2 (inner halo layer), foout
. zC
(outer halo layer) to obtain £, ..

Yo
ve
XX |\
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Adaptive LBM
[e]o]e] )

Adaptive LBM

Complete update on coarse grid: £.°" .= CT(£5")

Interpolate faf}g onto faf_jg to fill fine halos. Set physical boundary

conditions.
FEm .= T(£1") on whole fine mesh. £1""/? .= ¢(£{'") in interior.

Fhn+t/2. ’T(ﬁf’"ﬂﬂ) on whole fine mesh. f{"*1 .= C(Eﬁ’"“ﬁ) in
interior.

2Fn+1/2 (s 2,
Average f., o /2 (inner halo layer), fou out

(outer halo layer) to obtain £

«,out*

Revert transport into halos:

/ F(!C,;),th = T_l(?a(iﬁn)

$
N (K| 4|
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Adaptive LBM

Complete update on coarse grid: £.°" .= CT(£5")

Interpolate faf}g onto faf_jg to fill fine halos. Set physical boundary

conditions.
FEm .= T(£1") on whole fine mesh. £1""/? .= ¢(£{'") in interior.

Fhn+t/2. ’T(ﬁf’"ﬂﬂ) on whole fine mesh. f{"*1 .= C(Eﬁ’"“ﬁ) in
interior.

2Fn+1/2 (s 2,
Average f., o /2 (inner halo layer), fou out

(outer halo layer) to obtain £

«,out*

Revert transport into halos:

/ F(!C,;),th = T_l(?a(iﬁn)

— ZC
Parallel synchronization of £5", £5:"

«,out

$
N (K| 4|
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Adaptive LBM
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Adaptive LBM

Complete update on coarse grid: £.°" .= CT(£5")

Interpolate fac " onto ff i to fill fine halos. Set physical boundary
conditions.

flm .= T(f’r ") on whole fine mesh. Fhmt/z. C(?of") in interior.

Fhn+t/2. ’T(ﬁf’"ﬂﬂ) on whole fine mesh. f{"*1 .= C(?J’"Hﬁ) in
interior.

2Fn+1/2 (s 2,
Average f., o /2 (inner halo layer), fou out

(outer halo layer) to obtain £,

out-

Revert transport into halos:

f(xco'zn.‘ = T_ (fCoTJt)
7

ZC,n
Parallel synchronization of £5", £5:" ot

Cell-wise update where correction is needed:

faC,IH»l = CT(fC n faColLt)

R. Deiterding et al
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Adaptive LBM
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Adaptive LBM

Complete update on coarse grid: £&"! .= CT(£5")

f-CA,n n

f, - .
Interpolate £, 3, onto f, to fill fine halos. Set physical boundary

conditions.
5= T(£f") on whole fine mesh. flmr/2 C(£5") in interior.

«@
?of’nﬂ/z = T(fé’"H/Z) on whole fine mesh. ﬁ,f’”Jrl = C(?g’"ﬂp) in
interior.

2Fn41/2 2,
Average £, 0. / (inner halo layer), £,

o,out
(outer halo layer) to obtain ﬁfo'Lt

Revert transport into halos:
2Cn . 4—17%C,
forout =T (Forout)

?-C,n

. ) C,n
Parallel synchronization of £,", f,

Cell-wise update where correction is needed:
for ™= CT (" B )

«,out

# ||

# |k

Algorithm equivalent to [Chen et al., 2006].

R. Deiterding et al

[Deiterding and Wood, 2016]
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Adaptive LBM
[ Jelelele}
Verification for oscillating 2d cylinders

Oscillating cylinder — Setup

Motion imposed on cylinder

Case Ae ff="Ff | Vg Uso Re

L f Ta | D/4 | 06 |05 | 0.0606 | 1322
= o0 O 0 b | D/2 | 06 | 10 | 0.0606 | 1322
. 2a | D/4| 30 |05 | 0.3030 | 6310

. 2b | D/2 | 30 | 1.0 | 0.3030 | 6310

y(t) = A¢sin(2rfit),

9(1‘) = Ay sin(27rfgt)

Setup follows [Nazarinia et al., 2012], cf. [Laloglu and Deiterding, 2017].

Here Ag = 1 for all cases.

Natural frequency of cylinder fy ~ 0.6154s
Strouhal number Sty = D/ U = 0.198 for all cases.

Chosen here D = 20 mm

—1

Fluid is water with ¢, = 1482m/s, v = 9.167 - 107" m?/s,

p = 1016 kg/m?

Constant coefficient model deactivated for Case 1, active for Case 2 with

Cm =0.2

R. Deiterding et al. — Adaptive lattice Boltzmann methods in AMROC 9
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Verification for oscillating 2d cylinders

Case 1b, Vg =1, Re = 1322

Mesh refinement

Distribution to 4 processors

Visualization enlargement of cylinder region

Base mesh is discretized with 320 x 160 cells, 3 additional levels with

factor n =2,2,2

80 cells within D on highest level

Speedup S = 2000
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Verification for oscillating 2d cylinders

Case 1b, Vg =1, Re = 1322

Mesh refinement Distribution to 4 processors

1=0.779155

Visualization enlargement of cylinder region

Base mesh is discretized with 320 x 160 cells, 3 additional levels with
factor n =2,2,2

80 cells within D on highest level
Speedup S = 2000
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Verification for oscillating 2d cylinders

Case 1b, Vg =1, Re = 1322

Mesh refinement Distribution to 4 processors

1=1.5583s

Visualization enlargement of cylinder region

Base mesh is discretized with 320 x 160 cells, 3 additional levels with
factor n =2,2,2

80 cells within D on highest level

Speedup S = 2000
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Verification for oscillating 2d cylinders

Case 1b, Vg =1, Re = 1322

Mesh refinement Distribution to 4 processors

1=2.337455

Visualization enlargement of cylinder region

Base mesh is discretized with 320 x 160 cells, 3 additional levels with
factor n =2,2,2

80 cells within D on highest level
Speedup S = 2000
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Verification for oscillating 2d cylinders

Case 1b, Vg =1, Re = 1322

Mesh refinement Distribution to 4 processors

1=3.1166s

Visualization enlargement of cylinder region

Base mesh is discretized with 320 x 160 cells, 3 additional levels with
factor n =2,2,2

80 cells within D on highest level
Speedup S = 2000
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Adaptive LBM
[¢] lele]e}
Verification for oscillating 2d cylinders

Case 1b, Vg =1, Re = 1322

Mesh refinement Distribution to 4 processors

1=3.1166s

Visualization enlargement of cylinder region

Base mesh is discretized with 320 x 160 cells, 3 additional levels with
factor n =2,2,2

80 cells within D on highest level
Speedup S = 2000

Basically identical setup in commercial code XFlow for comparison
R. Deiterding et al. — Adaptive lattice Boltzmann methods in AMROC 10



Adaptive LBM
[e]e] lele}

Verification for oscillating 2d cylinders

Oscillating cylinder, Vg =1, f; = fy = 0.6, Re = 1322

AMROC XFlow

|
o,
§
-0 7§
B
o
2w
X-Axis
6 6
XFlow XFlow
5 AMROC —+—— - AMROC ——
4 4 4 1
3 ]
2 ]
2 ]
$ I
0 ]
o ]
-1 2 ]
2t ]
-3 -4
0 0.5 1 1.5 2 2.5 3 35 0 0.5 1 1.5 2 25 3 3.5
Time [s] Time [s]
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Adaptive LBM
[e]e] lele}

Verification for oscillating 2d cylinders

Oscillating cylinder, Vg =1, f; = fy = 0.6, Re = 1322

AMROC XFlow

6 XFlow
AMROC ——
4 ]
2 ]
0 ]
o ]
-1 2 ]
2t ]
-3 -4
0 0.5 1 15 2 25 3 35 0 0.5 1 1.5 2 2.5 3 35
Time [s] Time [s]

Increase of rotational velocity leads to formation of a vortex pair plus single
vortex. Drag and lift amplitude roughly doubled.

Laminar results in good agreement with experiments of [Nazarinia et al., 2012].
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Adaptive LBM
[e]ele] lo}

Verification for oscillating 2d cylinders

Oscillating cylinder, Vg = 0.5, f; = f; = 3, Re = 6310
AMROC

XFlow

-0.10 0.00 0.10 0.20 0.30 0.40
x-axis
6 6
XFlow XFlow
AMROC —— 5 AMROC ——
4 1 4 1
3 ]
2 ]
o - 2 1
(o] 1 4
0 ]
0 ]
2 ] -1 ]
-2 ]
-4 -3
0O 02 04 06 08 1 12 14 16 18 0 02 04 06 08 1 12 14 16 1.8
Time [s] Time [s]
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Adaptive LBM

[e]ele] lo}
Verification for oscillating 2d cylinders

Oscillating cyImder Ve =05, f, =1f; =3, Re = 6310

XFlow

-0.10 0.00 0.10 0.20 0.30 0.40
x-axis
6 6
XFlow XFlow
AMROC —— 5 AMROC ——
4 1 4 1
3 ]
2 ]
o - 2 1
(o] 1 4
0 ]
0 ]
2 ] -1 ]
-2 ]
-4 -3
0O 02 04 06 08 1 12 14 16 18 0 02 04 06 08 1 12 14 16 1.8
Time [s] Time [s]

Oscillation period: T = 1/f; = 0.33s. 10 regular vortices in 1.67s.

CPU time on 6 cores for AMROC: 635.8's, XFlow ~ 50 % more expensive when
normalized based on number of cells
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Adaptive LBM
[e]e]e]e] ]
Verification for oscillating 2d cylinders

Computational performance

Total cells At [ | Re |y CPU time [s]
AMROC | XFlow AMROC | XFlow
la 0.0015 85982 84778 333 | 1322| O 161.89 176
1b 0.0015 91774 90488 333 | 1322| 0 165.97 183
2a | 0.00031 | 232840 | 216452 | 1.66 |6310|2.4 | 635.8 887
2b | 0.00031 | 255582 | 246366 | 1.66 |6310|2.6| 933.2 1325

Flow type | Case | Aty [s]

Laminar

Turbulent

[Laloglu and Deiterding, 2017]

Intel-Xeon-3.50-GHz desktop workstation with 6 cores, communication through
MPI

Same base mesh and always three additional refinement levels
AMROC: single-relaxation time LBM, block-based mesh adaptation

XFlow: multi-relaxation time LBM, cell-based mesh adaptation
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Adaptive LBM
[e]e]e]e] ]
Verification for oscillating 2d cylinders

Computational performance

Total cells At [ | Re |y CPU time [s]
AMROC | XFlow AMROC | XFlow
la 0.0015 85982 84778 333 | 1322| O 161.89 176
1b 0.0015 91774 90488 333 | 1322| 0 165.97 183
2a | 0.00031 | 232840 | 216452 | 1.66 |6310|2.4 | 635.8 887
2b | 0.00031 | 255582 | 246366 | 1.66 |6310|2.6| 933.2 1325

Flow type | Case | Aty [s]

Laminar

Turbulent

[Laloglu and Deiterding, 2017]

Intel-Xeon-3.50-GHz desktop workstation with 6 cores, communication through
MPI

Same base mesh and always three additional refinement levels
AMROC: single-relaxation time LBM, block-based mesh adaptation
XFlow: multi-relaxation time LBM, cell-based mesh adaptation
AMROC uses ~ 7.5 % more cells on average more cells

Normalized on cell number Case 2a is 50 % more expensive for XFlow than for
AMROC-LBM

Case 2b is 42 % more expensive in CPU time alone
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®0
LES models

Turbulence modeling

Pursue a large-eddy simulation approach with f, and e
1.) fa(x +eaAt, t + At) = Fo(x, t)
_ ~ 1 ~eq ~
2) Falt+ At) = fo(, t + At) + At (fa (- t+ At) — Falt+ At))
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®0
LES models

Turbulence modeling

Pursue a large-eddy simulation approach with f, and e
1.) fa(x +eaAt, t + At) = Fo(x, t)
_ ~ 1 ~eq ~
2) Falt+ At) = fo(, t + At) + At (fa (- t+ At) — Falt+ At))

. . . 1 /7 1 . .
Effective viscosity: v* = v + vy = 3 <A7Lt - E) cAx with 77 =7+

R. Deiterding et al. — Adaptive lattice Boltzmann methods in AMROC




®0
LES models

Turbulence modeling

Pursue a large-eddy simulation approach with f, and e
1.) fa(x +eaAt, t + At) = Fo(x, t)
_ ~ 1 ~eq ~
2) Falt+ At) = fo(, t + At) + At (fa (- t+ At) — Falt+ At))

3\At 2
Use Smagorinsky model to evaluate v4, e.g., vr = (CsmAx)2|§\, where

Sl= 237555,
ij

The filtered strain rate tensor S; = (0;u; + 0;1;)/2 can be computed as a
second moment as

. . . 1 oy 1 . "
Effective viscosity: v* = v + vy = = <i - 7) cAx with 7} =1 + 7

- Y 1 —eq =
Si' = J = € €ayj fa - fa
" 2pciry (1 - ‘szAt) 2pcéri za: i )
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®0
LES models

Turbulence modeling

Pursue a large-eddy simulation approach with f, and e
1.) fa(x +eaAt, t + At) = Fo(x, t)
_ ~ 1 ~eq ~
2) Falt+ At) = fo(, t + At) + At (fa (- t+ At) — Falt+ At))

3\At 2
Use Smagorinsky model to evaluate v4, e.g., vr = (CsmAx)2|§\, where

Sl= 237555,
ij

The filtered strain rate tensor S; = (0;u; + 0;1;)/2 can be computed as a
second moment as

. . . 1 oy 1 . "
Effective viscosity: v* = v + vy = = <i - 7) cAx with 7} =1 + 7

5,
2pcért (1~
T¢ can be obtained as [Yu, 2004, Hou et al., 1996]

= (V72 +16V2(net) 1 CrtixiS| — 7

R. Deiterding et al. — Adaptive lattice Boltzmann methods in AMROC 14
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(o] J
LES models

Further LES models

Dynamic Smagorinsky model (DSMA)

Com(x, t)? = — = 0007

~ = A A == 2=
L,'j = T/j — Tj = uju; — ujuj M,'j = Ax ‘S|SU — Ax \S

No van Driest damping implemented yet!
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(o] J
LES models

Further LES models

Dynamic Smagorinsky model (DSMA)

1 (L;My)
Com(X, t)2 — - A=
2 (M Mj)

Lj=Ty— 7 =w — o, My=Ax [§[5; — A[S[S;

No van Driest damping implemented yet!

Wall-Adapting Local Eddy-viscosity model (WALE)
Uy = (CWAX)2OPWALE, where C, = 0.5
WALE turbulence time-scale

(J373)?

OPwae = —— 5
(5iSi)2 + (T Ty)*

_ 1 — _ _
Ji = SiSuj + Qi — g(sij(SmnSmn — QunQmn)

. (vHv) +F A2
T = 5

Effective relaxation time (see previous slide): 5
Cs
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LES
[ Jolelele}

Verification for homogeneous isotropic turbulence

Forced homogeneous isotropic turbulence

Iso-surface ||ul|/{ums) = 2

Fourier representation
Periodic boundaries, uniform mesh

Use of external forcing term, i.e.,
result independent of initial
conditions

Forcing:

Kxkz
F, = —A( PE )G(Hx,fﬁy,ﬁz)
_ A ExKky
F, = A( e )G(nx,&y,nz)
with phase
G(kx, Ky, Kz) = sin (MTX/{X + 2%}/@ + 2LLZI{Z + ¢) for (0 < ki <2) and ¢

being a random phase value.

16
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[ Jolelele}

Verification for homogeneous isotropic turbulence

Forced homogeneous isotropic turbulence

Iso-surface ||ul|/{ums) = 2

Fourier representation
Periodic boundaries, uniform mesh

Use of external forcing term, i.e.,
result independent of initial
conditions

Forcing:

Kxkz
F, = —A( PE )G(mx,f@y,mz)
_ A ExKky
F, = A( e )G(nx,&y,nz)
with phase
G(kx, Ky, Kz) = sin (MTX/{X + 2%}//@ + 2LLZ/£Z + ¢) for (0 < ki <2) and ¢

being a random phase value.

16
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LES
[ Jolelele}

Verification for homogeneous isotropic turbulence

Forced homogeneous isotropic turbulence

Iso-surface ||ul|/{trms) = 2
Fourier representation

Periodic boundaries, uniform mesh

Use of external forcing term, i.e.,
result independent of initial
conditions

Forcing:

with phase

G(kx, Ky, Kz) = sin (MTX/{X + 2%}//@ + 2LLZ/£Z + ¢) for (0 < ki <2) and ¢

being a random phase value.
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Verification for homogeneous isotropic turbulence

Forced homogeneous isotropic turbulence

Iso-surface ||ul|/{ums) = 2

» Fourier representation
» Periodic boundaries, uniform mesh

» Use of external forcing term, i.e.,
result independent of initial

conditions

Forcing:
A3t
(5 S
oAt

with phase
G(kx, Ky, Kz) = sin (MTXKX + %Tyl"{/y + 27TTZHZ + ¢) for (0 < ki <2) and ¢

being a random phase value.
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LES
[ Jolelele}

Verification for homogeneous isotropic turbulence

Forced homogeneous isotropic turbulence

Iso-surface ||ul|/{ums) = 2

» Fourier representation
» Periodic boundaries, uniform mesh

» Use of external forcing term, i.e.,
result independent of initial

conditions
Forcing:
Kykz
F, = 2A( |2|2 )G(nx,/fy,nz)

Kxhz
F, = —A( PE )G(mx,ny,nz)

KxKy
| [?

F. = —A( )G('%"éy’“z)

with phase
G(kx, Ky, Kz) = sin (MTXKX + %Tyl"{/y + %Tznz + ¢) for (0 < ki <2) and ¢

being a random phase value.
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Verification for homogeneous isotropic turbulence

Forced homogeneous isotropic turbulence

Iso-surface ||ul|/{ums) = 2

» Fourier representation
» Periodic boundaries, uniform mesh

» Use of external forcing term, i.e.,
result independent of initial

conditions

Forcing:
A3t
(5 S
oAt

with phase
G(kx, Ky, Kz) = sin (MTXKX + %Tyl"{/y + 27TTZHZ + ¢) for (0 < ki <2) and ¢

being a random phase value.
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LES
[ Jolelele}

Verification for homogeneous isotropic turbulence

Forced homogeneous isotropic turbulence
Iso-surface ||ul|/{trms) = 2
» Fourier representation
> Periodic boundaries, uniform mesh

> Use of external forcing term, i.e.,
result independent of initial
conditions

Forcing:

F = 2A(%) G(kx, Ky, Kz)

Kxkz
F, = —A( PE )G(mx,f@y,nz)
_ A ExKky
F, = A( e )G(nx,isy,nz)
with phase

G(kx, Ky, Kz) = sin (ZWTX,%X + %Tymy + ZLLZNZ + ¢) for (0 < ki <2) and ¢

being a random phase value.
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Verification for homogeneous isotropic turbulence

Forced homogeneous isotropic turbulence
Iso-surface ||ul|/{trms) = 2
» Fourier representation
> Periodic boundaries, uniform mesh

> Use of external forcing term, i.e.,
result independent of initial
conditions

Forcing:

F = 2A(%) G(kx, Ky, Kz)

Kxkz
F, = —A( PE )G(mx,my,nz)
_ A ExKky
F, = A( e )G(nx,isy,nz)
with phase

G(kx, Ky, Kz) = sin (MTXAX + %Tymy + ZLLZHZ + ¢) for (0 < ki <2) and ¢

being a random phase value.
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Verification for homogeneous isotropic turbulence

Forced homogeneous isotropic turbulence
Iso-surface ||ul|/{trms) = 2
» Fourier representation
> Periodic boundaries, uniform mesh

> Use of external forcing term, i.e.,
result independent of initial
conditions

Forcing:

F = 2A(%) G(kx, Ky, Kz)

Kxkz
F, = —A( PE )G(mx,f@y,nz)
_ A ExKky
F, = A( e )G(nx,isy,nz)
with phase

G(kx, Ky, Kz) = sin (ZWTXAX + %Tymy + ZLLZHZ + ¢) for (0 < ki <2) and ¢

being a random phase value.
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Verification for homogeneous isotropic turbulence

Forced homogeneous isotropic turbulence
Iso-surface ||ul|/{trms) = 2
» Fourier representation
> Periodic boundaries, uniform mesh

> Use of external forcing term, i.e.,
result independent of initial
conditions

Forcing:

F = 2A(%) G(kx, Ky, Kz)

Kxkz
F, = —A( PE )G(mx,f@y,nz)
_ A ExKky
F, = A( e )G(nx,isy,nz)
with phase

G(kx, Ky, Kz) = sin (ZWTXAX + %Tymy + ZLLZHZ + ¢) for (0 < ki <2) and ¢

being a random phase value.
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Verification for homogeneous isotropic turbulence

Comparison with model spectrum

1073 ¢ ! ! . .

10

10

T

106

E(k)
/

107

108

H“
/
1

10°°

E(K) '

I model E(k) - - - -

10—10 L
100 10t

K

Time-averaged energy spectrum (solid line) [N = 128% cells, v = 3e™> m?/s]
against a modelled one (dashed line and the -5/3 power law (dot-dashed line).
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Verification for homogeneous isotropic turbulence

LES model spectra

100

102

10-4 L

10-6 L

108 L

E(K)KLyy

10%° - DNS 32 Re)47 ——

WALE 32 Rey 52 —»—

1012 - DSMA32Re\55 —
DNS 128 Re), 59

| WALE 128 Re), 60
DSMA 128 Re), 61

DNS 512 Re), 69 —o—

lo-lﬁ L L L

10° 10t 10?
L1y

10—14

Time-averaged energy spectra normalised by the turbulent kinetic energy k and
the integral length scale Li; of LBM DNS and LES for two resolutions and
DNS of the highest resolution for the viscosity value v =5-107°
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Verification for homogeneous isotropic turbulence

Decaying homogeneous isotropic turbulence

Restart DNS of 512° resolution without forcing. Volume-averaging to
128 cells gives DSMA and WALE initial conditions

100 T T T T 1
"

ﬁ% ]
< ¥ ]
210t | E

k() DNS 512 —+— % DNS 512 —+—
k() WALE 128 —&— 1078 FWALE 128 ——
k(t) DSMA 128 DSMA 128 —%—
102 a L L . 10°18 I |
102 101 100 10t 102 103 10° 10t 102
t K

Evolution of the turbulent kinetic energy k (left) and energy spectra at
t = 68.72 (right) for DNS of 512% against DSMA and WALE of 128> cells
resolution.
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Verification for homogeneous isotropic turbulence

Flow field comparison

S ‘ 2 )
Q\}%D% % “mo%éé} .
T oY N

Contours of vorticity magnitude (Jw| = 0.18) at t = 4.91 (left) and t = 68.72
(right) for DNS (thin blue lines) of 512% against DSMA (dotted black lines)
and WALE (thick red lines) of 128° cells resolution

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC 20



Aerodynamics
000

Vehicle geometries

Wind tunnel simulation of a prototype car

Fluid velocity and pressure on vehicle

T Pseudocolor
p— Var: PRESSURE
— 10000+06 10040105 1080105 10110405 10180405

Pseudocolor
Var: IVelocity|
0000 1280 250 37.50 5000

Time=0s
Inflow 40 m/s. CSMA LES model active. Characteristic boundary conditions.

To t = 0.5 (~ 4 characteristic lengths) with 31,416 time steps on finest level in ~ 37h on
200 cores (7389 h CPU). Channel: 15m X 5m X 3.3m
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Aerodynamics
000

Vehicle geometries

Wind tunnel simulation of a prototype car

Fluid velocity and pressure on vehicle

Pseudocolor
Var: PRESSURE
10008405 10040405 10080105 10110405 10150405

Pseudocolor
Var: IVelocity|
0000 1280 2500 37.50 5000

Time=0.0509427s

Inflow 40 m/s. CSMA LES model active. Characteristic boundary conditions.
To t = 0.5 (~ 4 characteristic lengths) with 31,416 time steps on finest level in ~ 37h on
200 cores (7389 h CPU). Channel: 15m X 5m X 3.3m
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Aerodynamics
000
Vehicle geometries

Wind tunnel simulation of a prototype car

Fluid velocity and pressure on vehicle

Pseudocolor
Var: PRESSURE
10008405 10040405 10080105 10110405 10150405

Pseudocolor
Var: IVelocity|
0000 1280 2500 37.50 5000

Time=0.101885s

Inflow 40 m/s. CSMA LES model active. Characteristic boundary conditions.
To t = 0.5 (~ 4 characteristic lengths) with 31,416 time steps on finest level in ~ 37h on
200 cores (7389 h CPU). Channel: 15m X 5m X 3.3m
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Aerodynamics
000

Vehicle geometries

Wind tunnel simulation of a prototype car

Fluid velocity and pressure on vehicle

— Pseudocolor
s Var: PRESSURE
~— 10008405 10040405 10080105 10110405 10150405

Pseudocolor
Var: IVelocity|
0000 1280 2500 37.50 5000

Time=0.152828s

Inflow 40 m/s. CSMA LES model active. Characteristic boundary conditions.
To t = 0.5 (~ 4 characteristic lengths) with 31,416 time steps on finest level in ~ 37h on
200 cores (7389 h CPU). Channel: 15m X 5m X 3.3m
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Aerodynamics
000

Vehicle geometries

Wind tunnel simulation of a prototype car

Fluid velocity and pressure on vehicle

T Pseudocolor
R Var: PRESSURE

— 10000105 10040405 10080405 10110405 10150405

Pseudocolor
Var: IVelocity|
000 1280 2500 37.50 5000

Time=0.203771s

Inflow 40 m/s. CSMA LES model active. Characteristic boundary conditions.
To t = 0.5 (~ 4 characteristic lengths) with 31,416 time steps on finest level in ~ 37h on
200 cores (7389 h CPU). Channel: 15m X 5m X 3.3m
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Aerodynamics
000

Vehicle geometries

Wind tunnel simulation of a prototype car

Fluid velocity and pressure on vehicle

T Pseudocolor
R — Var: PRESSURE

~— 10000105 10040405 10080405 10110405 10150405

Pseudocolor
Var: IVelocity|
000 1280 2500 37.50 5000

Time=0.254713s

Inflow 40 m/s. CSMA LES model active. Characteristic boundary conditions.
To t = 0.5 (~ 4 characteristic lengths) with 31,416 time steps on finest level in ~ 37h on
200 cores (7389 h CPU). Channel: 15m X 5m X 3.3m
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Aerodynamics
000

Vehicle geometries

Wind tunnel simulation of a prototype car

Fluid velocity and pressure on vehicle

Pseudocolor
Var: PRESSURE

~— 10000105 10040405 10080405 10110405 10150405

Pseudocolor
Var: IVelocity|
0000 1280 2500 37.50 5000

Time=0.305656s

Inflow 40 m/s. CSMA LES model active. Characteristic boundary conditions.
To t = 0.5 (~ 4 characteristic lengths) with 31,416 time steps on finest level in ~ 37h on
200 cores (7389 h CPU). Channel: 15m X 5m X 3.3m
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Aerodynamics
000

Vehicle geometries

Wind tunnel simulation of a prototype car

Fluid velocity and pressure on vehicle

Pseudocolor
Var: PRESSURE

~— 10000105 10040405 10080405 10110405 10150405

Pseudocolor
Var: IVelocity|
0000 1280 2500 37.50 5000

Time=0.331127s

Inflow 40 m/s. CSMA LES model active. Characteristic boundary conditions.
To t = 0.5 (~ 4 characteristic lengths) with 31,416 time steps on finest level in ~ 37h on
200 cores (7389 h CPU). Channel: 15m X 5m X 3.3m
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Aerodynamics

Vehicle geometries

Mesh adaptation

R. Deiterding et al Adaptive lattice Boltzmann methods in AMROC



rodynamics
L Je]

Vehicle geometries

Mesh adaptation

Used refinement blocks and levels (indicated by color)

> SAMR base grid 600 x 200 x 132 cells, r, 2.3 = 2 yielding Refinement at ¢ = 0.4075s

finest resolution of Ax = 3.125 mm Level Grids Cells

0 11,605 15,840,000
1 11,513 23,646,984
2 31,382 144,447,872
3 21,221 52,388,336

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC 22

P Adaptation based on level set and scaled gradient of
magnitude of vorticity vector

> 236M cells vs. 8.1 billion (uniform) at t = 0.4075s
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finest resolution of Ax = 3.125 mm Level Grids Cells

0 11,605 15,840,000
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Vehicle geometries

Mesh adaptation

Used refinement blocks and levels (indicated by color)

> SAMR base grid 600 x 200 x 132 cells, r, 2.3 = 2 yielding Refinement at ¢ = 0.4075s

finest resolution of Ax = 3.125 mm Level Grids Cells

0 11,605 15,840,000
1 11,513 23,646,984
2 31,382 144,447,872
3 21,221 52,388,336

P Adaptation based on level set and scaled gradient of
magnitude of vorticity vector

> 236M cells vs. 8.1 billion (uniform) at t = 0.4075s
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L Je]

eometries

Mesh adaptation

Used refinement blocks and levels (indicated by color)

> SAMR base grid 600 x 200 x 132 cells, r, 2.3 = 2 yielding Refinement at ¢ = 0.4075s

finest resolution of Ax = 3.125 mm Level Grids Cells

0 11,605 15,840,000
1 11,513 23,646,984
2 31,382 144,447,872
3 21,221 52,388,336

P Adaptation based on level set and scaled gradient of
magnitude of vorticity vector

> 236M cells vs. 8.1 billion (uniform) at t = 0.4075s
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finest resolution of Ax = 3.125 mm Level Grids Cells

0 11,605 15,840,000
1 11,513 23,646,984
2 31,382 144,447,872
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P Adaptation based on level set and scaled gradient of
magnitude of vorticity vector

> 236M cells vs. 8.1 billion (uniform) at t = 0.4075s
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Vehicle geometries

Aerodynamics
[ele] J

Flow over a motorcycle

Inflow 40m/s. Bouzidi pressure boundary conditions at outflows. CSMA LES
model active.

SAMR base grid 200 x 80 x 80 cells, r; 2 3 = 2 yielding finest resolution of
Ax = 6.25mm. 23560 time steps on finest level

Forces in AMROC-LBM are time-averaged over interval [0.5s, 1s]

Unstructured STAR-CCM+ mesh has significantly finer as well as coarser cells

AMROC-LBM LES at t =15

STAR-CCM+ steady RANS

(D- W 4 ,3,’:;\ ‘ i o
Velocity in flow direction
Forces (N) Cores | Wall Time | CPU Time
Variables Drag  Sideforce Lift Total h h
STAR-CCM+ | 297 5 9 297 10 4.9 78
AMROC 297 10 23 298 64 10 635

R. Deiterding et al

— Adaptive lattice Boltzmann methods in AMROC



Vehicle geometries

Aerodynamics
[ele] J

Flow over a motorcycle

Inflow 40 m/s. Bouzidi pressure boundary conditions at outflows. CSMA LES

model active.

SAMR base grid 200 x 80 x 80 cells, r; 2 3 = 2 yielding finest resolution of
Ax = 6.25mm. 23560 time steps on finest level

Forces in AMROC-LBM are time-averaged over interval [0.5s, 1s]

Unstructured STAR-CCM+ mesh has significantly finer as well as coarser cells

AMROC-LBM LES at t =15

STAR-CCM+ steady RANS

S

-0\ s
oh dom
Velocity in flow direction
Forces (N) Cores | Wall Time | CPU Time
Variables Drag  Sideforce  Lift Total h h
STAR-CCM+ 297 5 9 297 10 4.9 78
AMROC 297 10 23 298 64 10 635

R. Deiterding et al

— Adaptive lattice Boltzmann methods in AMROC



Aerodynamics

@00

Wind turbines

Single Vestas V27

Inflow velocity us = 8 m/s. Prescribed motion of rotor with nypm = 33,
r =14.5m: tip speed 46.7m/s, Re, ~ 919,700, TSR=5.84

Simulation with three additional levels with refinement factors 2,2, 4.
Refinement based on vorticity and level set. CSMA LES model.
~ 24 time steps for 1° rotation

Validation results: [Deiterding and Wood, 2016]

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC



Aerodynamics

@00

Wind turbines

Single Vestas V27

Inflow velocity us = 8 m/s. Prescribed motion of rotor with nypm = 33,
r =14.5m: tip speed 46.7m/s, Re, ~ 919,700, TSR=5.84

Simulation with three additional levels with refinement factors 2,2, 4.
Refinement based on vorticity and level set. CSMA LES model.
~ 24 time steps for 1° rotation

Validation results: [Deiterding and Wood, 2016]

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC



Aerodynamics

@00

Wind turbines

Single Vestas V27

Inflow velocity us = 8 m/s. Prescribed motion of rotor with nypm = 33,
r =14.5m: tip speed 46.7m/s, Re, ~ 919,700, TSR=5.84

Simulation with three additional levels with refinement factors 2,2, 4.
Refinement based on vorticity and level set. CSMA LES model.
~ 24 time steps for 1° rotation

Validation results: [Deiterding and Wood, 2016]

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC



Aerodynamics

@00

Wind turbines

Single Vestas V27

Inflow velocity us = 8 m/s. Prescribed motion of rotor with nypm = 33,
r =14.5m: tip speed 46.7m/s, Re, ~ 919,700, TSR=5.84

Simulation with three additional levels with refinement factors 2,2, 4.
Refinement based on vorticity and level set. CSMA LES model.
~ 24 time steps for 1° rotation

Validation results: [Deiterding and Wood, 2016]

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC



Aerodynamics

@00

Wind turbines

Single Vestas V27

Inflow velocity us = 8 m/s. Prescribed motion of rotor with nypm = 33,
r =14.5m: tip speed 46.7m/s, Re, ~ 919,700, TSR=5.84

Simulation with three additional levels with refinement factors 2,2, 4.
Refinement based on vorticity and level set. CSMA LES model.
~ 24 time steps for 1° rotation

Validation results: [Deiterding and Wood, 2016]

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC



Aerodynamics

@00

Wind turbines

Single Vestas V27

Inflow velocity us = 8 m/s. Prescribed motion of rotor with nypm = 33,
r =14.5m: tip speed 46.7m/s, Re, ~ 919,700, TSR=5.84

Simulation with three additional levels with refinement factors 2,2, 4.
Refinement based on vorticity and level set. CSMA LES model.
~ 24 time steps for 1° rotation

Validation results: [Deiterding and Wood, 2016]

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC



Aerodynamics

@00

Wind turbines

Single Vestas V27

Inflow velocity us = 8 m/s. Prescribed motion of rotor with nypm = 33,
r =14.5m: tip speed 46.7m/s, Re, ~ 919,700, TSR=5.84

Simulation with three additional levels with refinement factors 2,2, 4.
Refinement based on vorticity and level set. CSMA LES model.
~ 24 time steps for 1° rotation

Validation results: [Deiterding and Wood, 2016]

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC



Aerodynamics

@00

Wind turbines

Single Vestas V27

Inflow velocity us = 8 m/s. Prescribed motion of rotor with nypm = 33,
r =14.5m: tip speed 46.7m/s, Re, ~ 919,700, TSR=5.84

Simulation with three additional levels with refinement factors 2,2, 4.
Refinement based on vorticity and level set. CSMA LES model.
~ 24 time steps for 1° rotation

Validation results: [Deiterding and Wood, 2016]

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC



Aerodynamics
(o] o}
Wind turbines

Simulation of the SWIFT array

» Three Vestas V27 turbines (geometric details prototypical). 225 kW power
generation at wind speeds 14 to 25m/s (then cut-off)

> Prescribed motion of rotor with 33rpm. Inflow velocity 8 m/s

» Simulation domain 448 m x 240 m x 100 m

Base mesh 448 x 240 x 100 cells with
refinement factors 2, 2,4. Resolution of
rotor and tower Ax = 6.25cm

> 94,224 highest level iterations to te = 40s
computed, then statistics are gathered for
10s [Deiterding and Wood, 2016]

NoRTH

wesT
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Aerodynamics
ooe
Wind turbines

Levels — inflow at 30°, v = 8m/s, 33rpm

=
Time=12.9085 sec

At 63.8 s approximately 167M cells used vs. 44 billion (factor 264)
~ 6.01 h per revolution (961h CPU) —» ~ 5.74h CPU/1IM
cells/revolution
160 cores Intel-Xeon E5 2.6 GHz, 33.03 h wall time for 10s
interval
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Aerodynamics
ooe
Wind turbines

Levels — inflow at 30°, v = 8m/s, 33rpm

!
Time=19.6978 sec

At 63.8 s approximately 167M cells used vs. 44 billion (factor 264)
~ 6.01 h per revolution (961h CPU) —» ~ 5.74h CPU/1IM
cells/revolution
160 cores Intel-Xeon E5 2.6 GHz, 33.03 h wall time for 10s
interval
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Aerodynamics
ooe
Wind turbines

Levels — inflow at 30°, v = 8m/s, 33rpm

oS

I
100 200 300

Tlme 26,4902 sec

> At 63.8s approximately 167M cells used vs. 44 billion (factor 264) Level Grids Cells

P> ~ 6.01h per revolution (961h CPU) — ~ 5.74h CPU/1M 2,463 10,752,000
cells/revolution 6,464 20,674,760

> ili(i;(:;es Intel-Xeon E5 2.6 GHz, 33.03 h wall time for 10s 827 12,1583?6232
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Aerodynamics
ooe
Wind turbines

Levels — inflow at 30°, v = 8m/s, 33rpm

Time=33.2825 sec

P At 63.8s approximately 167M cells used vs. 44 billion (factor 264)

P>~ 6.01h per revolution (961 h CPU) — ~ 5.74h CPU/1M
cells/revolution

» 160 cores Intel-Xeon E5 2.6 GHz, 33.03 h wall time for 10s
interval
R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC
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Aerodynamics
ooe
Wind turbines

Levels — inflow at 30°, v = 8m/s, 33rpm

Time=40.0749 sec

P At 63.8s approximately 167M cells used vs. 44 billion (factor 264)

P>~ 6.01h per revolution (961 h CPU) — ~ 5.74h CPU/1M
cells/revolution

» 160 cores Intel-Xeon E5 2.6 GHz, 33.03 h wall time for 10s
interval

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC

Level Grids Cells
0 2,463 10,752,000
1 6,464 20,674,760
2 39,473 | 131,018,832
3 827 4,909,632
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Aerodynamics
ooe
Wind turbines

Levels — inflow at 30°, v = 8m/s, 33rpm

Time=46.8673 sec

P At 63.8s approximately 167M cells used vs. 44 billion (factor 264)

P>~ 6.01h per revolution (961 h CPU) — ~ 5.74h CPU/1M
cells/revolution

» 160 cores Intel-Xeon E5 2.6 GHz, 33.03 h wall time for 10s
interval

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC
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0 2,463 10,752,000
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Aerodynamics
o
Parallel performance

AMROC strong scalability tests

3D wave propagation method with Roe scheme:
spherical blast wave

Tests run IBM BG/P (mode VN)

Time per higest level step
T T T T - - -

102

—o— SAMR
—— Uniform

sec
T

| | | | | | |
16 32 64 128 256 512 1024

CPUs

64 x 32 x 32 base grid, 2 additional levels with
factors 2, 4; uniform 512 x 256 X 256 = 33.6 - 10°

cells
Level Grids Cells
0 1709 65,536
1 1735 271,048
2 2210 7,190,208
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Aerodynamics
o
Parallel performance

AMROC strong scalability tests

3D SRT-lattice Boltzmann scheme: flow over
rough surface of 19 X 13 X 2 spheres

Tests run Cray XC30m (Archer)

3D wave propagation method with Roe scheme:
spherical blast wave

Tests run IBM BG/P (mode VN)
Time per higest level step

Time per higest level step
—

T T T T T T T T T T

2 [T ! I 1 [ SAMR
07 —o— SAMR || ol b —— |
[ Unife | 0% F —#— Uniform [
r —@— Uniform || F H

L 1 "

9 g 100 E|
8 F E|
10! | E [ ]
: ] 0t e £
[ 1 L I L

Il Il Il Il Il Il Il >

1 1 1 1 1 1 1
B D O oo (@ A0 AV W&
& F S S
16 32 64 128 256 512 1024 v TN A S NS

CPUs

64 x 32 x 32 base grid, 2 additional levels with
factors 2, 4; uniform 512 x 256 X 256 = 33.6 - 10°

CPUs

360 x 240 x 108 base grid, 2 additional levels with
factors 2, 4; uniform 1440 x 1920 x 432 = 1.19-10°

cells _ cells
Lea’e' f;'ggs 6(5:‘35”356 Tevel | Grids Cells
1 | 1735 | 211048 0 788 | 9,331,200
VoA | 08 1 | 21367 | 24,844,504
190, 2 1728 | 10,838,016
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Non-Cartesian LBM
[ Je]
Construction principles

Lattice Boltzmann equation in mapped coordinates

Consider mapping from Cartesian to non-Cartesian coordinates

£=¢&(xy), n=mn(xy)
with
0 _00¢ 90n 9 00 90
Ox O dx 877 Ox dy 090y Ondy’
Under this transformation the convection term reads
Of; Ofa
€eqn - Vfa = eaxaij + eayai(
Ofy O Ofy O Ofy O Ofy O
=e ( % + = 77) + e ( % + l)
0¢ Ox on Ox o€ Oy on Oy

( ag+ ag) +( an e an) Of,,
= | €ax €q €a -
Ox Yoy ) ot *ox Yoy ) on

. Ofa _ Ofy
:ea§87§+ean87n’

and hence the lattice Boltzmann equation becomes

of Ofy of.
8 +ea§ oE ‘|‘eouldI :_;(fa_f(fq)-
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Non-Cartesian LBM
oe
Construction principles

Scheme construction

Currently using the explicit 4th-order Runge-Kutta scheme

fo=far fo = fat 7 Ra,
A e A 1)
3 2
fi8 = ) + AtR,
with
foos s — For for ooy — fo 1
_ ~ (i+1,)) (i—=1,j) ~ (i,j+1) (i,j=1) eq
Raiy =~ (eaéu.j) 2AE T Cangi 207 )_; (fO‘UJ) - fa(m)

for the solution, 2nd-order central differences to approximate derivatives.
A 4th-order dissipation term

't 't
D= —c((a0' G + @Gl )

is added for stabilization [Hejranfar and Hajihassanpour, 2017].
Prototype implementation is presently on finite difference meshes!

R. Deiterding et al. — Adaptive lattice Boltzmann methods in AMROC 29



Non-Cartesian LBM
[ 1]

Verification and validation for 2d cylinder

2d cylinder study

= Present Re40
0 = w— = AMROC Re40
5 = 10 ® @ Ref
2 05
2
]
%
S oo
- 2
5
a
4
& 051
—10}
_15 . . . . .
0 20 40 60 80 100 120 140 160 180
o
Re Author(s) Cy Cp(0) Cp(180) 2L/D
20 Tritton, 1959] 220 - - -
Henderson, 1995] 2.06 - -0.60 -
Dennis and Chang, 1970] 2.05 1.27 -0.58 1.88
Hejranfar and Ezzatneshan, 2014] 2.02 1.25 -0.59 1.84
AMROC-LBM 1.98 1.26 -0.59 1.85
Present 2.02 131 -0.55 1.85
40 Tritton, 1959] 1.65 - - -
Henderson, 1995] 1.55 - -0.53 -
Dennis and Chang, 1970] 1.52 114 -0.50 4.69
Hejranfar and Ezzatneshan, 2014] 1.51 1.15 -0.48 4.51
AMROC-LBM 1.45 1.19 -0.49 4.66
Present 151 119 -0.46 4.60

2L/ D is normalized length of wake behind cylinder
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Verification and validation for 2d cylinder

2d cylinder study — unsteady flow case

10
N SN N \
N P A jjos
/ \ / \
\ h \ / \ /
\ ' \ ! R / 00
150}, \ ! \ / \ /
\ \ ! \ .
= \ / / \
g Y \ \ . H
2 \ ) I N -05 8§
= v v L, N =
g 145 N - =
9 8
2 108
& 3
140
15
135
20
130 25
5 10 15 20

Nondimensional Time

I

|
ZVotcty 05 44 03 02 01 0 01 02 03 04 05

Non-Cartesian LBM
(o] J

Re Author(s) St [ c/
100  [Chiuetal, 2010]  0.167  1.35  0.30
AMROC-LBM 0.166 1.28 0.32

Present 0.165 1.36 0.35

200 [Chiu et al., 2010] 0.198 137 0.71
AMROC-LBM 0.196 1.26 0.70

Present 0.196 1.37 0.73

BNt
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Verification

and validation for 2d cylinder

Non-Cartesian LBM
(o] J

2d cylinder study — unsteady flow case

Drag Coefficient

N S AN o
\ P A ,
/ v / \ /
\ f \ / \ /
' \ ! \ ! k /
\ / ' \
150 ! \ / \ / v '
' \ v /
/ ’ \
\ / \ \ /
/ , \
v/ v v v
1as) N < - N
140
135
130
5 10 15
Nondimensional Time
[ I
Zvoticty 05 £4 03 02 o1 0 01 02 03 04 05

Lift Coefficient

BNt

Re Author(s) St [ c/
100  [Chiuetal, 2010]  0.167  1.35  0.30
AMROC-LBM 0.166 1.28 0.32
Present 0.165 1.36 0.35
200 [Chiu et al., 2010] 0.198 137 0.71
AMROC-LBM 0.196 1.26 0.70
Present 0.196 1.37 0.73
Re CPU-time Mesh
20 AMROC-LBM 24:55:21 297796
Present 06:08:41 65536
40 AMROC-LBM 27:10:08 317732
Present 05:57:17 65536
100 AMROC-LBM 113:15:37 1026116
Present 05:58:49 65536
200 AMROC-LBM 130:37:18 1130212
Present 06:03:42 65536
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Conclusions
°

Summary

Conclusions

Cartesian LBM is a very efficient low-dissipation method and especially
suitable for DNS and LES

Cartesian CFD with block-based AMR is faster than cell-cased AMR and
tailored for modern massively parallel computer systems

Fast dynamic mesh adaptation in AMROC makes FSI problems with
complex motion easily accessible. Time-explicit approach leads to very
tight coupling

For high Reynolds number flows around complex bodies an LES
turbulence model is vital for stability (so are higher-order in- and outflow
boundary conditions)

Currently validating and extending (dynamic) Smagorinsky with wall-near
damping and WALE model for realistic problems

Turbulent wall function boundary condition model under development
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Summary

Conclusions
Cartesian LBM is a very efficient low-dissipation method and especially
suitable for DNS and LES
Cartesian CFD with block-based AMR is faster than cell-cased AMR and
tailored for modern massively parallel computer systems

Fast dynamic mesh adaptation in AMROC makes FSI problems with
complex motion easily accessible. Time-explicit approach leads to very
tight coupling

For high Reynolds number flows around complex bodies an LES
turbulence model is vital for stability (so are higher-order in- and outflow
boundary conditions)

Currently validating and extending (dynamic) Smagorinsky with wall-near
damping and WALE model for realistic problems
Turbulent wall function boundary condition model under development

Accurate simulation of thin, wall-resolved boundary layers is dramatically
more efficient with the non-Cartesian LBM approach, despite the
availability of AMR in AMROC

Develop non-Cartesian version of AMROC-LBM as near-term goal
Chimera technique within AMROC-LBM might be long-term goal
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Supplementary

Closest point transform algorithm

The signed distance ¢ to a surface T satisfies the eikonal equation [Sethian, 1999]
V| =1 with |, =0
Solution smooth but non-diferentiable across characteristics.
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Supplementary

Closest point transform algorithm

The signed distance ¢ to a surface T satisfies the eikonal equation [Sethian, 1999]
V| =1 with |, =0

Solution smooth but non-diferentiable across characteristics.

Distance computation trivial for non-overlapping elementary shapes but difficult to do

efficiently for triangulated surface meshes:

Geometric solution approach with plosest-point-transform algorithm
[Mauch, 2003]
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Closest point transform algorithm

The signed distance ¢ to a surface T satisfies the eikonal equation [Sethian, 1999]
V| =1 with |, =0

Solution smooth but non-diferentiable across characteristics.

Distance computation trivial for non-overlapping elementary shapes but difficult to do

efficiently for triangulated surface meshes:

Geometric solution approach with plosest-point-transform algorithm
[Mauch, 2003]

A

Surface mesh 7 Distance ¢ Normal to closest point

Hi 100 150 200
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Supplementary

The characteristic / scan conversion algorithm

Characteristic polyhedra for faces, edges, and vertices

Build the characteristic
polyhedrons for the surface mesh

e LA
Vi, <59
AN

(©
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Supple

The characteristic / scan conversion algorithm

BUlld the Characteristic Characteristic polyhedra for faces, edges, and vertices
polyhedrons for the surface mesh
For each face/edge/vertex

Scan convert the polyhedron.

Slicing and scan conversion of apolygon
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Supplementary

The characteristic / scan conversion algorithm

Characteristic polyhedra for faces, edges, and vertices

Build the characteristic
polyhedrons for the surface mesh

For each face/edge/vertex
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Slicing and scan conversion of apolygon
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Supplementary

The characteristic / scan conversion algorithm

Characteristic polyhedra for faces, edges, and vertices

Build the characteristic
polyhedrons for the surface mesh

For each face/edge/vertex

Scan convert the polyhedron.
Compute distance to that
primitive for the scan
converted points

Computational complexity.

O(m) to build the b-rep and
the polyhedra.

O(n) to scan convert the
polyhedra and compute the
distance, etc.

Slicing and scan conversion of apolygon
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Supplementary

The characteristic / scan conversion algorithm

Characteristic polyhedra for faces, edges, and vertices

Build the characteristic
polyhedrons for the surface mesh

For each face/edge/vertex

Scan convert the polyhedron.
Compute distance to that
primitive for the scan
converted points

Computational complexity.

O(m) to build the b-rep and
the polyhedra.

O(n) to scan convert the
polyhedra and compute the
distance, etc.

Slicing and scan conversion of apolygon

Problem reduction by evaluation
only within specified max. distance

[Mauch, 2003], see also
[Deiterding et al., 2006]
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