c c c ========================================================= subroutine rp1eu(maxmx,meqn,mwaves,mbc,mx,ql,qr,maux, & auxl,auxr,wave,s,dfl,dfr) c ========================================================= c c # Riemann solver for the 1D Euler equations c # The waves are computed using the Roe approximation. c c # This is quite a bit slower than the Roe solver, c # but may give more accurate solutions for some problems. c c # On input, ql contains the state vector at the left edge of each cell c # qr contains the state vector at the right edge of each cell c # On output, wave contains the waves, c # s the speeds, c # dfl the left-going flux difference A^- \Delta q c # dfr the right-going flux difference A^+ \Delta q c c # Note that the i'th Riemann problem has left state qr(i-1,:) c # and right state ql(i,:) c # From the basic routine step1, rp is called with ql = qr = q. c c Author: Randall J. LeVeque c implicit double precision (a-h,o-z) dimension ql(1-mbc:maxmx+mbc, meqn) dimension qr(1-mbc:maxmx+mbc, meqn) dimension s(1-mbc:maxmx+mbc, mwaves) dimension wave(1-mbc:maxmx+mbc, meqn, mwaves) dimension dfr(1-mbc:maxmx+mbc, meqn) dimension dfl(1-mbc:maxmx+mbc, meqn) c c # local storage c --------------- parameter (max2 = 100002) !# assumes at most 100000 grid points with mbc=2 dimension delta(3) dimension u(-1:max2),enth(-1:max2),a(-1:max2) common /param/ gamma,gamma1 dimension f0(-1:max2,3), fl(-1:max2,3), fr(-1:max2,3) dimension sl(2), sr(2) c c # Riemann solver returns flux differences c ------------ common /rpnflx/ mrpnflx mrpnflx = 0 c c # Compute Roe-averaged quantities: c do 20 i=2-mbc,mx+mbc rhsqrtl = dsqrt(qr(i-1,1)) rhsqrtr = dsqrt(ql(i,1)) pl = gamma1*(qr(i-1,3) - 0.5d0*(qr(i-1,2)**2)/qr(i-1,1)) pr = gamma1*(ql(i,3) - 0.5d0*(ql(i,2)**2)/ql(i,1)) rhsq2 = rhsqrtl + rhsqrtr u(i) = (qr(i-1,2)/rhsqrtl + ql(i,2)/rhsqrtr) / rhsq2 enth(i) = (((qr(i-1,3)+pl)/rhsqrtl & + (ql(i,3)+pr)/rhsqrtr)) / rhsq2 a2 = gamma1*(enth(i) - .5d0*u(i)**2) a(i) = dsqrt(a2) 20 continue c c do 30 i=2-mbc,mx+mbc c c # find a1 thru a3, the coefficients of the 3 eigenvectors: c delta(1) = ql(i,1) - qr(i-1,1) delta(2) = ql(i,2) - qr(i-1,2) delta(3) = ql(i,3) - qr(i-1,3) a2 = gamma1/a(i)**2 * ((enth(i)-u(i)**2)*delta(1) & + u(i)*delta(2) - delta(3)) a3 = (delta(2) + (a(i)-u(i))*delta(1) - a(i)*a2) / (2.d0*a(i)) a1 = delta(1) - a2 - a3 c c # Compute the waves. c wave(i,1,1) = a1 wave(i,2,1) = a1*(u(i)-a(i)) wave(i,3,1) = a1*(enth(i) - u(i)*a(i)) s(i,1) = u(i)-a(i) c wave(i,1,2) = a2 wave(i,2,2) = a2*u(i) wave(i,3,2) = a2*0.5d0*u(i)**2 s(i,2) = u(i) c wave(i,1,3) = a3 wave(i,2,3) = a3*(u(i)+a(i)) wave(i,3,3) = a3*(enth(i)+u(i)*a(i)) s(i,3) = u(i)+a(i) 30 continue c c # compute Godunov flux f0 at each interface. c # Uses exact Riemann solver c do 200 i = 2-mbc, mx+mbc c rhol = qr(i-1,1) rhor = ql(i ,1) ul = qr(i-1,2)/qr(i-1,1) ur = ql(i ,2)/ql(i ,1) pl = gamma1*(qr(i-1,3) - 0.5d0*ul**2*qr(i-1,1)) pr = gamma1*(ql(i, 3) - 0.5d0*ur**2*ql(i ,1)) c c # iterate to find pstar, ustar: c alpha = 1. pstar = 0.5*(pl+pr) wr = dsqrt(pr*rhor) * phi(pstar/pr) wl = dsqrt(pl*rhol) * phi(pstar/pl) c if (pl.eq.pr .and. rhol.eq.rhor) go to 60 c 40 do 50 iter=1,20 p1 = (ul-ur+pr/wr+pl/wl) / (1./wr + 1./wl) pstar = dmax1(p1,1d-6)*alpha + (1.-alpha)*pstar wr1 = wr wl1 = wl wr = dsqrt(pr*rhor) * phi(pstar/pr) wl = dsqrt(pl*rhol) * phi(pstar/pl) if (dmax1(abs(wr1-wr),dabs(wl1-wl)) .lt. 1d-6) & go to 60 50 continue c c # nonconvergence: alpha = alpha/2. if (alpha .gt. 0.1) go to 40 c write(6,*) 'no convergence',wr1,wr,wl1,wl wr = .5*(wr+wr1) wl = .5*(wl+wl1) c 60 continue ustar = (pl-pr+wr*ur+wl*ul) / (wr+wl) c c # left wave: c ============ c if (pstar .gt. pl) then c c # shock: sl(1) = ul - wl/rhol sr(1) = sl(1) rho1 = wl/(ustar-sl(1)) c else c c # rarefaction: cl = dsqrt(gamma*pl/rhol) cstar = cl + 0.5*gamma1*(ul-ustar) sl(1) = ul-cl sr(1) = ustar-cstar rho1 = (pstar/pl)**(1./gamma) * rhol endif c c # right wave: c ============= c if (pstar .ge. pr) then c c # shock sl(2) = ur + wr/rhor sr(2) = sl(2) rho2 = wr/(sl(2)-ustar) c else c c # rarefaction: cr = dsqrt(gamma*pr/rhor) cstar = cr + 0.5*gamma1*(ustar-ur) sr(2) = ur+cr sl(2) = ustar+cstar rho2 = (pstar/pr)**(1./gamma)*rhor endif c c # compute flux: c =============== c c # compute state (rhos,us,ps) at x/t = 0: c if (sl(1).gt.0) then rhos = rhol us = ul ps = pl else if (sr(1).le.0. .and. ustar.ge. 0.) then rhos = rho1 us = ustar ps = pstar else if (ustar.lt.0. .and. sl(2).ge. 0.) then rhos = rho2 us = ustar ps = pstar else if (sr(2).lt.0) then rhos = rhor us = ur ps = pr else if (sl(1).le.0. .and. sr(1).ge.0.) then c # transonic 1-rarefaction us = (gamma1*ul + 2.*cl)/(gamma+1.) e0 = pl/(rhol**gamma) rhos = (us**2/(gamma*e0))**(1./gamma1) ps = e0*rhos**gamma else if (sl(2).le.0. .and. sr(2).ge.0.) then c # transonic 3-rarefaction us = (gamma1*ur - 2.*cr)/(gamma+1.) e0 = pr/(rhor**gamma) rhos = (us**2/(gamma*e0))**(1./gamma1) ps = e0*rhos**gamma endif c f0(i,1) = rhos*us f0(i,2) = rhos*us**2 + ps f0(i,3) = us*(gamma*ps/gamma1 + 0.5*rhos*us**2) 200 continue c c # compute fluxes in each cell: c call flx1(maxmx,meqn,mbc,mx,qr,maux,auxr,dfr) call flx1(maxmx,meqn,mbc,mx,ql,maux,auxl,dfl) c do 210 m=1,meqn do 210 i = 1-mbc, mx+mbc fr(i,m) = dfr(i,m) fl(i,m) = dfl(i,m) 210 continue c c # compute the leftgoing and rightgoing flux differences: do 220 m=1,meqn do 220 i = 2-mbc, mx+mbc dfl(i,m) = f0(i,m) - fr(i-1,m) dfr(i,m) = fl(i,m) - f0(i,m) 220 continue c return end c c double precision function phi(w) implicit double precision (a-h,o-z) common /param/ gamma,gamma1 c sqg = dsqrt(gamma) if (w .gt. 1.) then phi = dsqrt(w*(gamma+1.)/2. + gamma1/2.) else if (w .gt. 0.99999) then phi = sqg else if (w .gt. .999) then phi = sqg + (2*gamma**2 - 3.*gamma + 1) & *(w-1.) / (4.*sqg) else phi = gamma1*(1.-w) / (2.*sqg*(1.-w**(gamma1/(2.*gamma)))) endif return end c