Course Block-structured Adaptive Mesh Refinement in C++

Ralf Deiterding

University of Southampton Engineering and the Environment Highfield Campus, Southampton SO17 1BJ, UK

E-mail: r.deiterding@soton.ac.uk

Adaptive lattice Boltzmann method

Construction principles
Adaptive mesh refinement for LBM
Implementation
Verification

Adaptive lattice Boltzmann method

Construction principles
Adaptive mesh refinement for LBM
Implementation
Verification

Realistic aerodynamics computations

Vehicle geometries Simulation of wind turbine wakes Wake interaction prediction

Adaptive lattice Boltzmann method

Construction principles
Adaptive mesh refinement for LBM
Implementation
Verification

Realistic aerodynamics computations

Vehicle geometries Simulation of wind turbine wakes Wake interaction prediction

Adaptive geometric multigrid methods

Linear iterative methods for Poisson-type problems Multi-level algorithms Multigrid algorithms on SAMR data structures Example Comments on parabolic problems

Adaptive lattice Boltzmann method

Construction principles
Adaptive mesh refinement for LBM
Implementation
Verification

Realistic aerodynamics computations

Vehicle geometries Simulation of wind turbine wakes Wake interaction prediction

Adaptive geometric multigrid methods

Linear iterative methods for Poisson-type problems Multi-level algorithms Multigrid algorithms on SAMR data structures Example Comments on parabolic problems

Approximation of Boltzmann equation

Adaptive lattice Boltzmann method Construction principles

Is based on solving the Boltzmann equation with a simplified collision operator

$$\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f)$$

- ▶ $\operatorname{Kn} = I_f/L \ll 1$, where I_f is replaced with Δx
- Weak compressibilty and small Mach number assumed
- Assume a simplified phase space

Adaptive lattice Boltzmann method Construction principles

Is based on solving the Boltzmann equation with a simplified collision operator

$$\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f)$$

- $ightharpoonup \operatorname{Kn} = I_f/L \ll 1$, where I_f is replaced with Δx
- Weak compressibilty and small Mach number assumed
- Assume a simplified phase space

Equation is approximated with a splitting approach.

1.) Transport step solves $\partial_t f_\alpha + \mathbf{e}_\alpha \cdot \nabla f_\alpha = 0$

Operator:
$$\mathcal{T}$$
: $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t)$

Adaptive lattice Boltzmann method Construction principles

Is based on solving the Boltzmann equation with a simplified collision operator

$$\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f)$$

- $ightharpoonup \operatorname{Kn} = I_f/L \ll 1$, where I_f is replaced with Δx
- Weak compressibilty and small Mach number assumed
- Assume a simplified phase space

Equation is approximated with a splitting approach.

1.) Transport step solves $\partial_t f_\alpha + \mathbf{e}_\alpha \cdot \nabla f_\alpha = 0$

Operator: \mathcal{T} : $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t)$

$$\rho(\mathbf{x},t) = \sum_{\alpha=0}^{8} f_{\alpha}(\mathbf{x},t), \quad \rho(\mathbf{x},t)u_{i}(\mathbf{x},t) = \sum_{\alpha=0}^{8} \mathbf{e}_{\alpha i} f_{\alpha}(\mathbf{x},t)$$

Approximation of Boltzmann equation

Is based on solving the Boltzmann equation with a simplified collision operator

$$\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f)$$

- $ightharpoonup \operatorname{Kn} = I_f/L \ll 1$, where I_f is replaced with Δx
- Weak compressibilty and small Mach number assumed
- Assume a simplified phase space

Equation is approximated with a splitting approach.

1.) Transport step solves $\partial_t f_\alpha + \mathbf{e}_\alpha \cdot \nabla f_\alpha = 0$

Operator:
$$\mathcal{T}$$
: $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t)$

$$\rho(\mathbf{x},t) = \sum_{\alpha=0}^8 f_\alpha(\mathbf{x},t), \quad \rho(\mathbf{x},t)u_i(\mathbf{x},t) = \sum_{\alpha=0}^8 \mathbf{e}_{\alpha i} f_\alpha(\mathbf{x},t)$$

Discrete velocities:

$$\mathbf{e}_0 = (0,0), \mathbf{e}_1 = (1,0)c, \mathbf{e}_2 = (-1,0)c, \mathbf{e}_3 = (0,1)c, \mathbf{e}_4 = (1,1)c, \dots$$

Is based on solving the Boltzmann equation with a simplified collision operator

$$\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f)$$

- $ightharpoonup \operatorname{Kn} = I_f/L \ll 1$, where I_f is replaced with Δx
- Weak compressibilty and small Mach number assumed
- Assume a simplified phase space

Equation is approximated with a splitting approach.

1.) Transport step solves $\partial_t f_\alpha + \mathbf{e}_\alpha \cdot \nabla f_\alpha = 0$

Operator:
$$\mathcal{T}$$
: $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t)$

$$\rho(\mathbf{x},t) = \sum_{\alpha=0}^{8} f_{\alpha}(\mathbf{x},t), \quad \rho(\mathbf{x},t)u_{i}(\mathbf{x},t) = \sum_{\alpha=0}^{8} \mathbf{e}_{\alpha i} f_{\alpha}(\mathbf{x},t)$$

Discrete velocities:

Adaptive lattice Boltzmann method

Construction principles

$$\mathbf{e}_0 = (0,0), \mathbf{e}_1 = (1,0)c, \mathbf{e}_2 = (-1,0)c, \mathbf{e}_3 = (0,1)c, \mathbf{e}_4 = (1,1)c, \dots$$

$$c = \frac{\Delta x}{\Delta t}$$
, Physical speed of sound: $c_s = \frac{c}{\sqrt{3}}$

Is based on solving the Boltzmann equation with a simplified collision operator

$$\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f)$$

- $\mathrm{Kn} = I_f/L \ll 1$, where I_f is replaced with Δx
- Weak compressibilty and small Mach number assumed
- Assume a simplified phase space

Equation is approximated with a splitting approach.

1.) Transport step solves $\partial_t f_\alpha + \mathbf{e}_\alpha \cdot \nabla f_\alpha = 0$

Operator:
$$\mathcal{T}$$
: $ilde{f}_{lpha}(\mathbf{x}+\mathbf{e}_{lpha}\Delta t,t+\Delta t)=f_{lpha}(\mathbf{x},t)$

$$ho(\mathbf{x},t) = \sum_{lpha=0}^{18} f_{lpha}(\mathbf{x},t), \quad
ho(\mathbf{x},t)u_i(\mathbf{x},t) = \sum_{lpha=0}^{18} \mathbf{e}_{lpha i}f_{lpha}(\mathbf{x},t)$$

Discrete velocities:

Adaptive lattice Boltzmann method

OOOOOOO

Construction principles

$$\mathbf{e}_{\alpha} = \begin{cases} 0, & \alpha = 0, \\ (\pm 1, 0, 0)c, (0, \pm 1, 0)c, (0, 0, \pm 1)c, & \alpha = 1, \dots, 6, \\ (\pm 1, \pm 1, 0)c, (\pm 1, 0, \pm 1)c, (0, \pm 1, \pm 1)c, & \alpha = 7, \dots, 18, \end{cases}$$

2.) Collision step solves $\partial_t f_{\alpha} = \omega (f_{\alpha}^{eq} - f_{\alpha})$ Operator C:

$$f_{\alpha}(\cdot, t + \Delta t) = \tilde{f}_{\alpha}(\cdot, t + \Delta t) + \omega_{L}\Delta t \left(\tilde{f}_{\alpha}^{eq}(\cdot, t + \Delta t) - \tilde{f}_{\alpha}(\cdot, t + \Delta t)\right)$$

Approximation of thermal equilibrium

2.) Collision step solves $\partial_t f_{\alpha} = \omega (f_{\alpha}^{eq} - f_{\alpha})$ Operator C:

$$f_{lpha}(\cdot,t+\Delta t) = \tilde{f}_{lpha}(\cdot,t+\Delta t) + \omega_L \Delta t \left(\tilde{f}_{lpha}^{eq}(\cdot,t+\Delta t) - \tilde{f}_{lpha}(\cdot,t+\Delta t) \right)$$

with equilibrium function

$$f_{\alpha}^{eq}(\rho, \mathbf{u}) = \rho t_{\alpha} \left[1 + \frac{3\mathbf{e}_{\alpha}\mathbf{u}}{c^2} + \frac{9(\mathbf{e}_{\alpha}\mathbf{u})^2}{2c^4} - \frac{3\mathbf{u}^2}{2c^2} \right]$$

with $t_{\alpha} = \frac{1}{9} \left\{ 4, 1, 1, 1, \frac{1}{4}, \frac{1}{4}, 1, \frac{1}{4}, \frac{1}{4} \right\}$

Pressure $\delta p = \sum_{\alpha} f_{\alpha}^{eq} c_s^2 = \rho c_s^2$.

Dev. stress
$$\Sigma_{ij} = \left(1 - \frac{\omega_L \Delta t}{2}\right) \sum_{\alpha} \mathbf{e}_{\alpha i} \mathbf{e}_{\alpha j} (f_{\alpha}^{eq} - f_{\alpha})$$

Approximation of thermal equilibrium

2.) Collision step solves $\partial_t f_{\alpha} = \omega (f_{\alpha}^{eq} - f_{\alpha})$ Operator C:

$$f_{lpha}(\cdot,t+\Delta t)= ilde{f}_{lpha}(\cdot,t+\Delta t)+\omega_{L}\Delta t\left(ilde{f}_{lpha}^{eq}(\cdot,t+\Delta t)- ilde{f}_{lpha}(\cdot,t+\Delta t)
ight)$$

with equilibrium function

Adaptive lattice Boltzmann method Construction principles

$$f_{\alpha}^{eq}(\rho, \mathbf{u}) = \rho t_{\alpha} \left[1 + \frac{3\mathbf{e}_{\alpha}\mathbf{u}}{c^2} + \frac{9(\mathbf{e}_{\alpha}\mathbf{u})^2}{2c^4} - \frac{3\mathbf{u}^2}{2c^2} \right]$$

with $t_{\alpha} = \frac{1}{9} \left\{ 3, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac$

Pressure $\delta p = \sum_{\alpha} f_{\alpha}^{eq} c_s^2 = \rho c_s^2$.

Dev. stress
$$\Sigma_{ij} = \left(1 - rac{\omega_L \Delta t}{2}\right) \sum_{lpha} \mathbf{e}_{lpha j} (f_{lpha}^{eq} - f_{lpha})$$

2.) Collision step solves $\partial_t f_{\alpha} = \omega (f_{\alpha}^{eq} - f_{\alpha})$ Operator C:

$$f_{lpha}(\cdot,t+\Delta t) = \tilde{f}_{lpha}(\cdot,t+\Delta t) + \omega_L \Delta t \left(\tilde{f}_{lpha}^{eq}(\cdot,t+\Delta t) - \tilde{f}_{lpha}(\cdot,t+\Delta t) \right)$$

with equilibrium function

Adaptive lattice Boltzmann method

Construction principles

$$f_{\alpha}^{eq}(\rho, \mathbf{u}) = \rho t_{\alpha} \left[1 + \frac{3\mathbf{e}_{\alpha}\mathbf{u}}{c^2} + \frac{9(\mathbf{e}_{\alpha}\mathbf{u})^2}{2c^4} - \frac{3\mathbf{u}^2}{2c^2} \right]$$

with $t_{\alpha} = \frac{1}{9} \left\{ 3, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac$

Pressure $\delta p = \sum_{s} f_{cs}^{eq} c_{s}^{2} = \rho c_{s}^{2}$.

Dev. stress
$$\Sigma_{ij} = \left(1 - \frac{\omega_L \Delta t}{2}\right) \sum_{\alpha} \mathbf{e}_{\alpha i} \mathbf{e}_{\alpha j} (f_{\alpha}^{eq} - f_{\alpha})$$

Is derived by assuming a Maxwell-Boltzmann distribution of f_{α}^{eq} and approximating the involved exp() function with a Taylor series to second-order accuracy.

Approximation of thermal equilibrium

2.) Collision step solves $\partial_t f_\alpha = \omega (f_\alpha^{eq} - f_\alpha)$ Operator C:

$$f_{lpha}(\cdot,t+\Delta t) = \tilde{f}_{lpha}(\cdot,t+\Delta t) + \omega_L \Delta t \left(\tilde{f}^{eq}_{lpha}(\cdot,t+\Delta t) - \tilde{f}_{lpha}(\cdot,t+\Delta t) \right)$$

with equilibrium function

$$f_{\alpha}^{eq}(\rho, \mathbf{u}) = \rho t_{\alpha} \left[1 + \frac{3\mathbf{e}_{\alpha}\mathbf{u}}{c^2} + \frac{9(\mathbf{e}_{\alpha}\mathbf{u})^2}{2c^4} - \frac{3\mathbf{u}^2}{2c^2} \right]$$

with $t_{\alpha} = \frac{1}{9} \left\{ 3, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac$

Pressure $\delta p = \sum_{\alpha} f_{\alpha}^{eq} c_s^2 = \rho c_s^2$.

allows higher flow velocities.

Dev. stress
$$\Sigma_{ij} = \left(1 - rac{\omega_L \Delta t}{2}\right) \sum_{lpha} \mathbf{e}_{lpha i} \mathbf{e}_{lpha j} (f_{lpha}^{eq} - f_{lpha})$$

Is derived by assuming a Maxwell-Boltzmann distribution of f_{α}^{eq} and approximating the involved exp() function with a Taylor series to second-order accuracy.

Using the third-order equilibrium function

$$f_{\alpha}^{eq}(\rho, \mathbf{u}) = \rho t_{\alpha} \left[1 + \frac{3\mathbf{e}_{\alpha}\mathbf{u}}{c^2} + \frac{9(\mathbf{e}_{\alpha}\mathbf{u})^2}{2c^4} - \frac{3\mathbf{u}^2}{2c^2} + \frac{\mathbf{e}_{\alpha}\mathbf{u}}{3c^2} \left(\frac{9(\mathbf{e}_{\alpha}\mathbf{u})^2}{2c^4} - \frac{3\mathbf{u}^2}{2c^2} \right) \right]$$

Inserting a Chapman-Enskog expansion, that is,

$$f_{\alpha} = f_{\alpha}(0) + \epsilon f_{\alpha}(1) + \epsilon^{2} f_{\alpha}(2) + \dots$$

and using

$$\frac{\partial}{\partial t} = \epsilon \frac{\partial}{\partial t_1} + \epsilon^2 \frac{\partial}{\partial t_2} + ..., \qquad \nabla = \epsilon \nabla_1 + \epsilon^2 \nabla_2 + ...$$

into the LBM and summing over α one can show that the continuity and moment equations are recoverd to $O(\epsilon^2)$ [Hou et al., 1996]

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0$$
$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla \rho + \nu \nabla^2 \mathbf{u}$$

Relation to Navier-Stokes equations

Inserting a Chapman-Enskog expansion, that is,

$$f_{\alpha} = f_{\alpha}(0) + \epsilon f_{\alpha}(1) + \epsilon^{2} f_{\alpha}(2) + \dots$$

and using

$$\frac{\partial}{\partial t} = \epsilon \frac{\partial}{\partial t_1} + \epsilon^2 \frac{\partial}{\partial t_2} + \dots, \qquad \nabla = \epsilon \nabla_1 + \epsilon^2 \nabla_2 + \dots$$

into the LBM and summing over α one can show that the continuity and moment equations are recoverd to $O(\epsilon^2)$ [Hou et al., 1996]

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \nu \nabla^2 \mathbf{u}$$

Kinematic viscosity and collision time are connected by

$$\nu = \frac{1}{3} \left(\frac{\tau_L}{\Delta t} - \frac{1}{2} \right) c \Delta x$$

from which one gets with $\sqrt{3}c_s = \frac{\Delta x}{\Delta t}$ [Hähnel, 2004]

$$\omega_{L} = \tau_{L}^{-1} = \frac{c_{s}^{2}}{\nu + \Delta t c_{s}^{2}/2}$$

Turbulence modeling

Pursue a large-eddy simulation approach with \bar{f}_{α} and \bar{f}_{α}^{eq} , i.e.

1.)
$$\ddot{\bar{f}}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = \bar{f}_{\alpha}(\mathbf{x}, t)$$

2.)
$$\tilde{f}_{\alpha}(\cdot, t + \Delta t) = \tilde{\tilde{f}}_{\alpha}(\cdot, t + \Delta t) + \frac{1}{\tau^{*}} \Delta t \left(\tilde{\tilde{f}}_{\alpha}^{eq}(\cdot, t + \Delta t) - \tilde{\tilde{f}}_{\alpha}(\cdot, t + \Delta t) \right)$$

Adaptive lattice Boltzmann method Construction principles

Pursue a large-eddy simulation approach with \bar{f}_{α} and \bar{f}_{α}^{eq} , i.e.

1.)
$$\bar{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = \bar{f}_{\alpha}(\mathbf{x}, t)$$

2.)
$$\bar{f}_{\alpha}(\cdot, t + \Delta t) = \tilde{\bar{f}}_{\alpha}(\cdot, t + \Delta t) + \frac{1}{\tau^*} \Delta t \left(\tilde{\bar{f}}_{\alpha}^{eq}(\cdot, t + \Delta t) - \tilde{\bar{f}}_{\alpha}(\cdot, t + \Delta t) \right)$$

Effective viscosity:
$$\nu^{\star} = \nu + \nu_t = \frac{1}{3} \left(\frac{\tau_L^{\star}}{\Delta t} - \frac{1}{2} \right) c \Delta x$$
 with $\tau_L^{\star} = \tau_L + \tau_t$

Turbulence modeling

Adaptive lattice Boltzmann method Construction principles

Pursue a large-eddy simulation approach with \bar{f}_{α} and \bar{f}_{α}^{eq} , i.e.

1.)
$$\bar{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = \bar{f}_{\alpha}(\mathbf{x}, t)$$

2.)
$$\bar{f}_{\alpha}(\cdot, t + \Delta t) = \tilde{\bar{f}}_{\alpha}(\cdot, t + \Delta t) + \frac{1}{\tau^{*}} \Delta t \left(\tilde{\bar{f}}_{\alpha}^{eq}(\cdot, t + \Delta t) - \tilde{\bar{f}}_{\alpha}(\cdot, t + \Delta t) \right)$$

Effective viscosity:
$$\nu^{\star} = \nu + \nu_t = \frac{1}{3} \left(\frac{\tau_L^{\star}}{\Delta t} - \frac{1}{2} \right) c \Delta x$$
 with $\tau_L^{\star} = \tau_L + \tau_t$

Use Smagorinsky model to evaluate ν_t , e.g., $\nu_t = (C_{sm}\Delta x)^2 \bar{S}$, where

$$ar{S} = \sqrt{2\sum_{i,j} ar{\mathbf{S}}_{ij} ar{\mathbf{S}}_{ij}}$$

Adaptive lattice Boltzmann method Construction principles

Pursue a large-eddy simulation approach with \bar{f}_{α} and \bar{f}_{α}^{eq} , i.e.

- 1.) $\bar{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = \bar{f}_{\alpha}(\mathbf{x}, t)$
- 2.) $\bar{f}_{\alpha}(\cdot, t + \Delta t) = \tilde{f}_{\alpha}(\cdot, t + \Delta t) + \frac{1}{\tau^{*}} \Delta t \left(\tilde{f}_{\alpha}^{eq}(\cdot, t + \Delta t) \tilde{f}_{\alpha}(\cdot, t + \Delta t) \right)$

Effective viscosity: $\nu^* = \nu + \nu_t = \frac{1}{3} \left(\frac{\tau_L^*}{\Delta t} - \frac{1}{2} \right) c \Delta x$ with $\tau_L^* = \tau_L + \tau_t$

Use Smagorinsky model to evaluate ν_t , e.g., $\nu_t = (C_{sm}\Delta x)^2 \bar{S}$, where

$$ar{S} = \sqrt{2 \sum_{i,j} ar{\mathbf{S}}_{ij} ar{\mathbf{S}}_{ij}}$$

The filtered strain rate tensor $\bar{\mathbf{S}}_{ij} = (\partial_i \bar{u}_i + \partial_i \bar{u}_j)/2$ can be computed as a second moment as

$$oldsymbol{ar{S}}_{ij} = rac{oldsymbol{\Sigma}_{ij}}{2
ho c_s^2 au_L^{\star} \left(1 - rac{\omega_L \Delta t}{2}
ight)} = rac{1}{2
ho c_s^2 au_L^{\star}} \sum_{lpha} \mathbf{e}_{lpha i} \mathbf{e}_{lpha j} (ar{f}_{lpha}^{eq} - ar{f}_{lpha})$$

Turbulence modeling

Adaptive lattice Boltzmann method Construction principles

Pursue a large-eddy simulation approach with \bar{f}_{α} and \bar{f}_{α}^{eq} , i.e.

- 1.) $\bar{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = \bar{f}_{\alpha}(\mathbf{x}, t)$
- 2.) $\bar{f}_{\alpha}(\cdot, t + \Delta t) = \tilde{\bar{f}}_{\alpha}(\cdot, t + \Delta t) + \frac{1}{\tau^{\star}} \Delta t \left(\tilde{\bar{f}}_{\alpha}^{eq}(\cdot, t + \Delta t) \tilde{\bar{f}}_{\alpha}(\cdot, t + \Delta t) \right)$

Effective viscosity: $\nu^* = \nu + \nu_t = \frac{1}{3} \left(\frac{\tau_L^*}{\Delta t} - \frac{1}{2} \right) c \Delta x$ with $\tau_L^* = \tau_L + \tau_t$

Use Smagorinsky model to evaluate ν_t , e.g., $\nu_t = (C_{sm}\Delta x)^2 \bar{S}$, where

$$\bar{S} = \sqrt{2 \sum_{i,j} \bar{\mathbf{S}}_{ij} \bar{\mathbf{S}}_{ij}}$$

The filtered strain rate tensor $\bar{\mathbf{S}}_{ij} = (\partial_i \bar{u}_i + \partial_i \bar{u}_j)/2$ can be computed as a second moment as

$$\mathbf{ar{S}}_{ij} = rac{oldsymbol{\Sigma}_{ij}}{2
ho c_s^2 au_L^\star \left(1 - rac{\omega_L \Delta t}{2}
ight)} = rac{1}{2
ho c_s^2 au_L^\star} \sum_lpha \mathbf{e}_{lpha i} \mathbf{e}_{lpha j} (ar{f}_lpha^{eq} - ar{f}_lpha)$$

 τ_t can be obtained as [Yu, 2004, Hou et al., 1996]

$$\tau_t = \frac{1}{2} \left(\sqrt{\tau_{\text{L}}^2 + 18\sqrt{2}(\rho_0 c^2)^{-1} C_{\text{sm}}^2 \Delta x \overline{S}} - \tau_{\text{L}} \right)$$

Initial conditions are constructed as $f_{\alpha}^{eq}(\rho(t=0), \mathbf{u}(t=0))$

Simple boundary conditions:

Adaptive lattice Boltzmann method

000000000 Construction principles

Initial and boundary conditions

Initial conditions are constructed as $f_{\alpha}^{eq}(\rho(t=0),\mathbf{u}(t=0))$

Simple boundary conditions:

Initial and boundary conditions

Initial conditions are constructed as $f^{eq}_{lpha}(
ho(t=0),\mathbf{u}(t=0))$

Simple boundary conditions:

Initial and boundary conditions

Initial conditions are constructed as $f_{\alpha}^{eq}(\rho(t=0),\mathbf{u}(t=0))$

Simple boundary conditions:

- Outlet basically copies all distributions (zero gradient)
- ▶ Inlet and pressure boundary conditions use f_{α}^{eq}
- ► Embedded boundary conditions use ghost cell construction as before, then use $f_c^{eq}(\rho', \mathbf{u}')$ to construct distributions in embedded ghost cells

1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := \mathcal{CT}(f_{\alpha}^{C,n})$

Adaptive mesh refinement for LBM Adaptive LBM

Adaptive lattice Boltzmann method

000000000

- 1. Complete update on coarse grid: $f_{\alpha}^{\mathcal{C},n+1} := \mathcal{CT}(f_{\alpha}^{\mathcal{C},n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.

Adaptive lattice Boltzmann method

- 1. Complete update on coarse grid: $f_{\alpha}^{\mathcal{C},n+1} := \mathcal{CT}(f_{\alpha}^{\mathcal{C},n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.

$$f_{\alpha,in}^{f,n}$$

Adaptive lattice Boltzmann method

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := \mathcal{CT}(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.

Adaptive mesh refinement for LBM Adaptive LBM

Adaptive lattice Boltzmann method

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := \mathcal{CT}(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}_{\alpha}^{f,n+1/2} := \mathcal{T}(f_{\alpha}^{f,n+1/2})$ on whole fine mesh. $f_{\alpha}^{f,n+1} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n+1/2})$ in interior.

$$\tilde{f}_{\alpha,in}^{f,n+1/2}$$

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := \mathcal{CT}(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}_{\alpha}^{f,n+1/2} := \mathcal{T}(f_{\alpha}^{f,n+1/2})$ on whole fine mesh. $f_{\alpha}^{f,n+1} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n+1/2})$ in interior.

$$\tilde{f}_{\alpha,in}^{f,n+1/2}$$

$$f_{\alpha,out}^{f,n}$$

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := \mathcal{CT}(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}_{\alpha}^{f,n+1/2} := \mathcal{T}(f_{\alpha}^{f,n+1/2})$ on whole fine mesh. $f_{\alpha}^{f,n+1} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n+1/2})$ in interior.

$$\tilde{f}_{\alpha,in}^{f,n+1/2}$$

$$\tilde{f}_{\alpha,out}^{f,n}$$

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := \mathcal{CT}(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}_{\alpha}^{f,n+1/2} := \mathcal{T}(f_{\alpha}^{f,n+1/2})$ on whole fine mesh. $f_{\alpha}^{f,n+1} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n+1/2})$ in interior.

$$\tilde{f}_{\alpha,in}^{f,n+1/2}$$

$$\tilde{f}_{\alpha,out}^{f,n+1/}$$

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := \mathcal{CT}(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}_{\alpha}^{f,n+1/2} := \mathcal{T}(f_{\alpha}^{f,n+1/2})$ on whole fine mesh. $f_{\alpha}^{f,n+1} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n+1/2})$ in interior.

$$\tilde{f}_{\alpha,out}^{f,n+1/2}, \tilde{f}_{\alpha,in}^{f,n+1/2}$$

Adaptive lattice Boltzmann method

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := \mathcal{CT}(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}_{\alpha}^{f,n+1/2} := \mathcal{T}(f_{\alpha}^{f,n+1/2})$ on whole fine mesh. $f_{\alpha}^{f,n+1} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n+1/2})$ in interior.

$$\tilde{f}_{lpha, out}^{f, n+1/2}$$
, $\tilde{f}_{lpha, out}^{f, n}$

5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.

Adaptive lattice Boltzmann method

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := \mathcal{CT}(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}_{\alpha}^{f,n+1/2} := \mathcal{T}(f_{\alpha}^{f,n+1/2})$ on whole fine mesh. $f_{\alpha}^{f,n+1} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n+1/2})$ in interior.

5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.

Adaptive lattice Boltzmann method

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := \mathcal{CT}(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}_{\alpha}^{f,n+1/2} := \mathcal{T}(f_{\alpha}^{f,n+1/2})$ on whole fine mesh. $f_{\alpha}^{f,n+1} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n+1/2})$ in interior.

- 5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\bar{f}_{\alpha,out}^{C,n} := \mathcal{T}^{-1}(\tilde{f}_{\alpha,out}^{C,n})$

Adaptive lattice Boltzmann method

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := \mathcal{CT}(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}_{\alpha}^{f,n+1/2} := \mathcal{T}(f_{\alpha}^{f,n+1/2})$ on whole fine mesh. $f_{\alpha}^{f,n+1} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n+1/2})$ in interior.

- 5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\bar{f}_{\alpha, \text{out}}^{C, n} := \mathcal{T}^{-1}(\tilde{f}_{\alpha, \text{out}}^{C, n})$
- 7. Parallel synchronization of $f_{\alpha}^{\mathcal{C},n}, \overline{f}_{\alpha,out}^{\mathcal{C},n}$

Adaptive lattice Boltzmann method

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := \mathcal{CT}(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}_{\alpha}^{f,n+1/2} := \mathcal{T}(f_{\alpha}^{f,n+1/2})$ on whole fine mesh. $f_{\alpha}^{f,n+1} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n+1/2})$ in interior.

- 5. Average $\tilde{f}_{\alpha, \text{out}}^{f, n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha, \text{out}}^{f, n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\bar{f}_{\alpha, \text{out}}^{C, n} := \mathcal{T}^{-1}(\tilde{f}_{\alpha, \text{out}}^{C, n})$
- 7. Parallel synchronization of $f_{\alpha}^{C,n}, \bar{f}_{\alpha,out}^{C,n}$
- 8. Cell-wise update where correction is needed: $f_{\alpha}^{C,n+1} := \mathcal{CT}(f_{\alpha}^{C,n}, \overline{f}_{\alpha,\alpha}^{C,n})$

Adaptive lattice Boltzmann method

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := \mathcal{CT}(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}_{\alpha}^{f,n+1/2} := \mathcal{T}(f_{\alpha}^{f,n+1/2})$ on whole fine mesh. $f_{\alpha}^{f,n+1} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n+1/2})$ in interior.

- 5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\bar{f}_{\alpha}^{C,n} := \mathcal{T}^{-1}(\tilde{f}_{\alpha}^{C,n})$
- 7. Parallel synchronization of $f_{\alpha}^{C,n}$, $\bar{f}_{\alpha,out}^{C,n}$
- 8. Cell-wise update where correction is needed: $f_{\alpha}^{C,n+1} := \mathcal{CT}(f_{\alpha}^{C,n}, \overline{f}_{\alpha,out}^{C,n})$

Algorithm equivalent to [Chen et al., 2006].

Classes

Directory amroc/1bm contains the lattice Boltzmann integrator that is in C++ throughout and also is built on the classes in amroc/amr/Interfaces.

Several SchemeType-classes are already provided: LBMD1Q3<DataType
 <p>, LBMD2Q9<DataType >, LBMD3Q19<DataType >,
 LBMD2Q9Thermal<DataType >, LBMD3Q19Thermal<DataType >
 included a large number of boundary conditions.

```
code/amroc/doc/html/lbm/classLBMD1Q3.html code/amroc/doc/html/lbm/classLBMD2Q9.html
code/amroc/doc/html/lbm/classLBMD3Q19Thermal.html
```

- Using function within LBMD?D?, the special coarse-fine correction is implemented in LBMFixup<LBMType, FixupType, dim> code/amroc/doc/html/lbm/classiBMFixup.html
- ▶ LBMIntegrator<LBMType, dim >, LBMGFMBoundary<LBMType, dim >, etc. interface to the generic classes in amroc/amr/Interfaces code/amroc/doc/html/amr/classSchemeGFMBoundary.html
- Problem.h: Specific simulation is defined in Problem.h only. Predefined classes specified in LBMStdProblem.h, LBMStdGFMProblem.h and LBMProblem.h.

code/amroc/doc/html/lbm/LBMProblem_8h_source.html code/amroc/doc/html/lbm/LBMStdProblem_8h.html

code/amroc/doc/html/lbm/LBMStdGFMProblem 8h.html

Flow over 2D cylinder, $d = 2 \,\mathrm{cm}$

Air with $\nu = 1.61 \cdot 10^{-5} \,\mathrm{m}^2/\mathrm{s}$ $\rho = 1.205 \, \text{kg/m}^3$

Adaptive lattice Boltzmann method

Verification

- Domain size $[-8d, 24d] \times [-8d, 8d]$
- Dynamic refinement based on velocity. Last level to refine structure further.
- Inflow from left. Characteristic boundary conditions [Schlaffer, 2013] elsewhere.

- Base lattice 320 \times 160, 3 additional levels with factors $r_1 = 2, 4, 4$.
- Resolution: \sim 320 points in diameter d
- \triangleright Computation of C_D on 400 equidistant points along circle and averaged over time. Comparison above with [Henderson, 1995].

Isolines on refinement and distribution to processors

Mesh adaptation with LBM:

Adaptive lattice Boltzmann method

00000000 Verification

- 1. Level-wise evaluation of $\omega_L^I = \frac{c_{\rm s}^2}{\nu + \Delta t_i c^2/2}$
- 2. Exchange of distributions streaming across refinement interfaces

code/amroc/doc/html/apps/lbm_2applications_2Navier-Stokes_22d_2CylinderDrag_2src_2Problem_8h_source.html

Isolines on refinement and distribution to processors

Mesh adaptation with LBM:

Adaptive lattice Boltzmann method

00000000 Verification

- 1. Level-wise evaluation of $\omega_L^I = \frac{c_{\rm s}^2}{\nu + \Delta t_I c^2/2}$
- 2. Exchange of distributions streaming across refinement interfaces

code/amroc/doc/html/apps/lbm_2applications_2Navier-Stokes_22d_2CylinderDrag_2src_2Problem_8h_source.html

Isolines on refinement and distribution to processors

Mesh adaptation with LBM:

Adaptive lattice Boltzmann method

00000000 Verification

- 1. Level-wise evaluation of $\omega_L^I = \frac{c_s^2}{\nu + \Delta t \cdot c^2/2}$
- 2. Exchange of distributions streaming across refinement interfaces

code/amroc/doc/html/apps/lbm_2applications_2Navier-Stokes_22d_2CylinderDrag_2src_2Problem_8h_source.html

Isolines on refinement and distribution to processors

Mesh adaptation with LBM:

Adaptive lattice Boltzmann method

00000000 Verification

- 1. Level-wise evaluation of $\omega_L^I = \frac{c_s^2}{\nu + \Delta t \cdot c^2/2}$
- 2. Exchange of distributions streaming across refinement interfaces

code/amroc/doc/html/apps/lbm_2applications_2Navier-Stokes_22d_2CylinderDrag_2src_2Problem_8h_source.html

Isolines on refinement and distribution to processors

Mesh adaptation with LBM:

Adaptive lattice Boltzmann method

00000000 Verification

- 1. Level-wise evaluation of $\omega_L^I = \frac{c_s^2}{\nu + \Delta t \cdot c^2/2}$
- 2. Exchange of distributions streaming across refinement interfaces

code/amroc/doc/html/apps/lbm_2applications_2Navier-Stokes_22d_2CylinderDrag_2src_2Problem_8h_source.html

Isolines on refinement and distribution to processors

Mesh adaptation with LBM:

Adaptive lattice Boltzmann method

00000000 Verification

- 1. Level-wise evaluation of $\omega_L^I = \frac{c_{\rm s}^2}{\nu + \Delta t_i c^2/2}$
- 2. Exchange of distributions streaming across refinement interfaces

code/amroc/doc/html/apps/lbm_2applications_2Navier-Stokes_22d_2CylinderDrag_2src_2Problem_8h_source.html

Outline

Adaptive lattice Boltzmann method

Construction principles
Adaptive mesh refinement for LBN
Implementation
Verification

Realistic aerodynamics computations

Vehicle geometries Simulation of wind turbine wakes Wake interaction prediction

Adaptive geometric multigrid methods

Linear iterative methods for Poisson-type problems Multi-level algorithms Multigrid algorithms on SAMR data structures Example Comments on parabolic problems

Wind tunnel simulation of a prototype car

Fluid velocity and pressure on vehicle

- Inflow $40\,\mathrm{m/s}$. LES model active. Characteristic boundary conditions.
- \blacktriangleright To $t=0.5\,\mathrm{s}$ (\sim 4 characteristic lengths) with 31,416 time steps on finest level in \sim 37 h on 200 cores (7389 h CPU). Channel: $15 \,\mathrm{m} \times 5 \,\mathrm{m} \times 3.3 \,\mathrm{m}$

Mesh adaptation

Adaptive lattice Boltzmann method

Vehicle geometries

$Mesh \ adaptation \\ g_{sed \ refinement \ blocks \ and \ levels \ (indicated \ by \ color)}$

- SAMR base grid $600 \times 200 \times 132$ cells, $r_{1,2,3} = 2$ yielding finest resolution of $\Delta x = 3.125 \,\mathrm{mm}$
- Adaptation based on level set and scaled gradient of magnitude of vorticity vector
- \triangleright 236M cells vs. 8.1 billion (uniform) at $t = 0.4075 \,\mathrm{s}$

Refinement at $t = 0.4075 \,\mathrm{s}$

inest resolution of $\Delta x = 3.125 \mathrm{mm}$	Level	Grids	Cells
daptation based on level set and scaled gradient of nagnitude of vorticity vector	0	11,605	15,840,000
	1	11,513	23,646,984
9		31,382	144,447,872
nagnitude of vorticity vector 236M cells vs. 8.1 billion (uniform) at $t=0.4075\mathrm{s}$	3	21,221	52,388,336
code/amroc/doc/html/apps/lbm_2applications_2Navier-Stokes_23d_2VehicleOnGrou	nd_2src_2Pi	roblem_8h_sou	rce.html

Advanced topics

Adaptive lattice Boltzmann method

Vehicle geometries

Next Generation Train (NGT)

- 1:25 train model of 74,670 triangles
- ▶ Wind tunnel: air at room temperature with $33.48 \,\mathrm{m/s}$, Re = 250,000, yaw angle 30°
- Comparison between LBM (fluid air) and incompressible OpenFOAM solvers

code/amroc/doc/html/apps/lbm_2applications_2Navier-Stokes_23d_2NGT2_2src_2Problem_8h_source.html

Next Generation Train (NGT)

- 1:25 train model of 74,670 triangles
- ▶ Wind tunnel: air at room temperature with $33.48 \,\mathrm{m/s}$, Re = 250,000, yaw angle 30°
- Comparison between LBM (fluid air) and incompressible OpenFOAM solvers

Averaged vorticity OpenFOAM-LES

code/amroc/doc/html/apps/lbm_2applications_2Navier-Stokes_23d_2NGT2_2src_2Problem_8h_source.html

Adaptive lattice Boltzmann method

NGT model

Vehicle geometries

- ▶ LBM-AMR computation with 5 additional levels, factor 2 refinement (uniform: 120.4e9 cells)
- ▶ Dynamic AMR until $T_c = 34$, then static for $\sim 12T_C$ to obtain average coefficients
- OpenFOAM simulations by M. Fragner (DLR)

Simulation	Mesh	CFX	CFY	CMX
Wind tunnel	_	-0.06	-5.28	-3.46
DDES	low	-0.40	-5.45	-3.61
Σ only	low	0.10	-0.04	-0.05
LES	high	-0.45	-6.07	-4.14
DDES	high	-0.43	-5.72	-3.77
LBM - p only	-	-0.30	-5.09	-3.46

NGT model

- ▶ LBM-AMR computation with 5 additional levels, factor 2 refinement (uniform: 120.4e9 cells)
- Dynamic AMR until $T_c=34$, then static for $\sim 12T_C$ to obtain average coefficients
- OpenFOAM simulations by M. Fragner (DLR)

Simulation	Mesh	CFX	CFY	CMX
Wind tunnel	_	-0.06	-5.28	-3.46
DDES	low	-0.40	-5.45	-3.61
Σ only	low	0.10	-0.04	-0.05
LES	high	-0.45	-6.07	-4.14
DDES	high	-0.43	-5.72	-3.77
LBM - p only	-	-0.30	-5.09	-3.46

	LBM	DDES(I)	LES	DDES(h)
Cells	147M	34.1M	219M	219M
y ⁺	43	3.2	1.7	1.7
x^+ , z^+	43	313	140	140
Δx wake [mm]	0.936	3.0	1.5	1.5
Runtime $[T_C]$	34	35.7	10.3	9.2
Processors	200	80	280	280
CPU [h]	34,680	49,732	194,483	164,472
$T_C/\Delta t$	1790	1325	1695	1695
CPU $[h]/T_C/1M$ cells	5.61	39.75	86.4	81.36

NGT model

CPU $[h]/T_C/1M$ cells

- ▶ LBM-AMR computation with 5 additional levels, factor 2 refinement (uniform: 120.4e9 cells)
- ▶ Dynamic AMR until $T_c = 34$, then static for $\sim 12T_C$ to obtain average coefficients
- OpenFOAM simulations by M. Fragner (DLR)

Simulation	Mesh	CFX	CFY	CMX
Wind tunnel	_	-0.06	-5.28	-3.46
DDES	low	-0.40	-5.45	-3.61
Σ only	low	0.10	-0.04	-0.05
LES	high	-0.45	-6.07	-4.14
DDES	high	-0.43	-5.72	-3.77
LBM - p only	-	-0.30	-5.09	-3.46

5.61

DDES	high	-0	.43	-5.72	-3.77	
LBM - p only	-	-0	.30	-5.09	-3.46	
	LB	М	DE	DES(I)	LES	DDES(h)
Cells	147	'M	3.	4.1M	219M	219M
y^+	4:	3		3.2	1.7	1.7
x^+ , z^+	4:	3		313	140	140
Δx wake [mm]	0.9	36		3.0	1.5	1.5
Runtime $[T_C]$	34	4		35.7	10.3	9.2
Processors	20	0		80	280	280
CPU [h]	34,6	580	49	9,732	194,483	164,472
$T_C/\Delta t$	179	90]	L325	1695	1695

39.75

Adaptive LBM code 16x faster than OpenFOAM with PISO algorithm on static mesh!

86 4 Advanced topics

81.36

Adaptive lattice Boltzmann method

Vehicle geometries

- Computation is restarted from disk checkpoint at $t = 0.526408 \, \text{s}$ from 96 core run.
- Time for initial re-partitioning removed from henchmark
- 200 coarse level time steps computed.
- Regridding and re-partitioning every 2nd level-0 step.
- Computation starts with 51.8M cells (I3: 10.2M, I2: 15.3M, I1: 21.5M, I0= 4.8M) vs. 19.66 billion (uniform).
- Portions for parallel communication quite considerable (4 ghost cells still used).

Time per coarse level step

Time in % spent in main operations

Cores	48	96	192	288	384	576	768
Time per step	132.43s	69.79s	37.47s	27.12s	21.91s	17.45s	15.15s
Par. Efficiency	100.0	94.88	88.36	81.40	75.56	63.24	54.63
LBM Update	5.91	5.61	5.38	4.92	4.50	3.73	3.19
Regridding	15.44	12.02	11.38	10.92	10.02	8.94	8.24
Partitioning	4.16	2.43	1.16	1.02	1.04	1.16	1.34
Interpolation	3.76	3.53	3.33	3.05	2.83	2.37	2.06
Sync Boundaries	54.71	59.35	59.73	56.95	54.54	52.01	51.19
Sync Fixup	9.10	10.41	12.25	16.62	20.77	26.17	28.87
Level set	0.78	0.93	1.21	1.37	1.45	1.48	1.47
Interp./Extrap.	3.87	3.81	3.76	3.49	3.26	2.75	2.39
Misc	2.27	1.91	1.79	1.67	1.58	1.38	1.25

Motion solver

Based on the Newton-Euler method solution of dynamics equation of kinetic chains [Tsai, 1999]

$$\begin{pmatrix} \mathbf{F} \\ \boldsymbol{\tau}_{\mathrm{P}} \end{pmatrix} = \begin{pmatrix} m\mathbf{1} & -m[\mathbf{c}]^{\times} \\ m[\mathbf{c}]^{\times}\mathbf{I}_{\mathrm{cm}} & -m[\mathbf{c}]^{\times}[\mathbf{c}]^{\times} \end{pmatrix} \begin{pmatrix} \mathbf{a}_{\mathrm{P}} \\ \boldsymbol{\alpha} \end{pmatrix} + \begin{pmatrix} m[\boldsymbol{\omega}]^{\times}[\boldsymbol{\omega}]^{\times} \mathbf{c} \\ [\boldsymbol{\omega}]^{\times} (\mathbf{I}_{\mathrm{cm}} - m[\mathbf{c}]^{\times}[\mathbf{c}]^{\times}) \boldsymbol{\omega} \end{pmatrix}.$$

m = mass of the body, $1 = \text{the } 4 \times 4 \text{ homogeneous identity matrix}$,

 $\mathbf{a}_p =$ acceleration of link frame with origin at \mathbf{p} in the preceding link's frame,

 $\mathbf{I}_{\mathrm{cm}}=$ moment of inertia about the center of mass, $\boldsymbol{\omega}=$ angular velocity of the body,

 $\alpha =$ angular acceleration of the body,

c is the location of the body's center of mass,

and $[c]^{\times}$, $[\omega]^{\times}$ denote skew-symmetric cross product matrices.

Motion solver

Based on the Newton-Euler method solution of dynamics equation of kinetic chains [Tsai, 1999]

$$\begin{pmatrix} \mathbf{F} \\ \boldsymbol{\tau}_{\mathrm{P}} \end{pmatrix} = \begin{pmatrix} m\mathbf{1} & -m[\mathbf{c}]^{\times} \\ m[\mathbf{c}]^{\times}\mathbf{I}_{\mathrm{cm}} & -m[\mathbf{c}]^{\times}[\mathbf{c}]^{\times} \end{pmatrix} \begin{pmatrix} \mathbf{a}_{\mathrm{P}} \\ \boldsymbol{\alpha} \end{pmatrix} + \begin{pmatrix} m[\boldsymbol{\omega}]^{\times}[\boldsymbol{\omega}]^{\times} \mathbf{c} \\ [\boldsymbol{\omega}]^{\times} (\mathbf{I}_{\mathrm{cm}} - m[\mathbf{c}]^{\times}[\mathbf{c}]^{\times}) \boldsymbol{\omega} \end{pmatrix}.$$

m= mass of the body, 1= the 4×4 homogeneous identity matrix,

 $a_p =$ acceleration of link frame with origin at p in the preceding link's frame, $I_{\rm cm} =$ moment of inertia about the center of mass,

 $\omega =$ angular velocity of the body.

 $\alpha =$ angular acceleration of the body,

c is the location of the body's center of mass,

and $[c]^{\times}$, $[\omega]^{\times}$ denote skew-symmetric cross product matrices.

Here, we additionally define the total force and torque acting on a body,

$$\mathbf{F} = (\mathbf{F}_{FSI} + \mathbf{F}_{prescribed}) \cdot \mathbf{\mathcal{C}}_{xyz}$$
 and

$$\tau = (\tau_{FSI} + \tau_{prescribed}) \cdot \mathcal{C}_{\alpha\beta\gamma}$$
 respectively.

Where \mathcal{C}_{xyz} and $\mathcal{C}_{\alpha\beta\gamma}$ are the translational and rotational constraints, respectively.

- \blacktriangleright Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m$, tower height $\sim 35\,\rm m$. Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \,\mathrm{m} \times 100 \,\mathrm{m} \times 100 \,\mathrm{m}$.
- ▶ Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x = 3.125\,\mathrm{cm}$.
- ▶ 141,344 highest level iterations to $t_e = 30 \, \mathrm{s}$ computed.

- \blacktriangleright Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m$, tower height \sim 35 $\rm m$. Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \,\mathrm{m} \times 100 \,\mathrm{m} \times 100 \,\mathrm{m}$.
- ▶ Base mesh $400 \times 200 \times 200$ cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x = 3.125 \, \mathrm{cm}$.
- ▶ 141,344 highest level iterations to $t_e = 30 \, \mathrm{s}$ computed.

- \blacktriangleright Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m$, tower height \sim 35 $\rm m$. Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \,\mathrm{m} \times 100 \,\mathrm{m} \times 100 \,\mathrm{m}$.
- ▶ Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x = 3.125\,\mathrm{cm}$.
- ▶ 141,344 highest level iterations to $t_e = 30 \, \mathrm{s}$ computed.

- \blacktriangleright Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m$, tower height \sim 35 $\rm m$. Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \,\mathrm{m} \times 100 \,\mathrm{m} \times 100 \,\mathrm{m}$.
- ▶ Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x = 3.125\,\mathrm{cm}$.
- ▶ 141,344 highest level iterations to $t_e = 30 \, \mathrm{s}$ computed.

- \blacktriangleright Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m$, tower height \sim 35 $\rm m$. Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \,\mathrm{m} \times 100 \,\mathrm{m} \times 100 \,\mathrm{m}$.
- ▶ Base mesh $400 \times 200 \times 200$ cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x = 3.125 \, \mathrm{cm}$.
- ▶ 141,344 highest level iterations to $t_e = 30 \, \mathrm{s}$ computed.

- \blacktriangleright Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m$, tower height \sim 35 $\rm m$. Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \,\mathrm{m} \times 100 \,\mathrm{m} \times 100 \,\mathrm{m}$.
- ▶ Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x = 3.125\,\mathrm{cm}$.
- ▶ 141,344 highest level iterations to $t_e = 30 \, \mathrm{s}$ computed.

- \blacktriangleright Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m$, tower height $\sim 35\,\rm m$. Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \,\mathrm{m} \times 100 \,\mathrm{m} \times 100 \,\mathrm{m}$.
- ▶ Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x = 3.125\,\mathrm{cm}$.
- ▶ 141,344 highest level iterations to $t_e = 30 \, \mathrm{s}$ computed.

- \blacktriangleright Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m$, tower height $\sim 35\,\rm m$. Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \,\mathrm{m} \times 100 \,\mathrm{m} \times 100 \,\mathrm{m}$.
- ▶ Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x = 3.125\,\mathrm{cm}$.
- ▶ 141,344 highest level iterations to $t_e = 30 \, \mathrm{s}$ computed.

Adaptive refinement

Dynamic evolution of refinement blocks (indicated by color). code/doc/html/capps/motion-amroc_2WindTurbine__Terrain_2src_2FluidProblem_8h_source.html, code/doc/html/capps/motion-amroc_2WindTurbine__Terrain_2src_2SolidProblem_8h_source.html, code/doc/html/capps/Terrain_2src_2Terrain_8h_source.html,

Simulation of the SWIFT array

- ▶ Three Vestas V27 turbines. 225 kW power generation at wind speeds 14 to $25 \,\mathrm{m/s}$ (then cut-off)
- Prescribed motion of rotor with 33 and $43 \,\mathrm{rpm}$. Inflow velocity 8 and $25 \,\mathrm{m/s}$
- TSR: 5.84 and 2.43, $Re_r \approx 919,700$ and 1,208,000
- Simulation domain $448 \text{ m} \times 240 \text{ m} \times 100 \text{ m}$
- Base mesh $448 \times 240 \times 100$ cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x = 6.25 \,\mathrm{cm}$
- ▶ 94,224 highest level iterations to $t_e = 40 \, \mathrm{s}$ computed, then statistics are gathered for 10s [Deiterding and Wood, 2015]

Wake interaction prediction

Wake propagation through array $-25 \,\mathrm{m/s}$, $43 \,\mathrm{rpm}$

- On 288 cores Intel Xeon-Ivybride 10 s in 38.5 h (11,090 h CPU)
- Only levels 0 and 1 used for iso-surface visualization
- At t_e approximately 140M cells used vs. 44 billion (factor 315)

•	Only levels 0	and 1	used for	ico-curface	visualization

Level	Grids	Cells	
0	3,234	10,752,000	
1	11,921	21,020,256	
2	66,974	102,918,568	
3	896	5,116,992	

Aerodynamics cases

Refinement of wake up to level 2 ($\Delta x = 25 \,\mathrm{cm}$).

Vorticity generation - $u = 8 \,\mathrm{m/s}$, 33 rpm

- ▶ Refinement of wake up to level 2 ($\Delta x = 25 \, \mathrm{cm}$).
- Vortex break-up before 2nd turbine is reached.

Vorticity development - $u = 8 \,\mathrm{m/s}$, 33 rpm

Wake interaction prediction

Wake interaction prediction

Wake interaction prediction

Wake interaction prediction

Wake interaction prediction

Wake interaction prediction

- ► Turbines located at (0,0,0), (135, 0, 0), (-5.65, 80.80, 0)
- ▶ Lines of 13 sensors with $\Delta y = 5 \,\mathrm{m}, \ z = 37 \,\mathrm{m}$ (approx. center of rotor)
- u and p measured over $[40 \, s, 50 \, s]$ (1472 level-0 time steps) and averaged

Velocity deficits larger for higher TSR.

Wake interaction prediction

- Turbines located at (0,0,0), (135, 0, 0), (-5.65, 80.80, 0)
- Lines of 13 sensors with $\Delta y = 5 \,\mathrm{m}, \ z = 37 \,\mathrm{m}$ (approx. center of rotor)
- u and p measured over $[40 \, s, 50 \, s]$ (1472 level-0 time steps) and averaged

- Velocity deficits larger for higher TSR.
- Velocity deficit before 2nd turbine more homogenous.

x=50m x = 100 m

100

120

Adaptive lattice Boltzmann method

Wake interaction prediction

- ► Turbines located at (0,0,0), (135, 0, 0), (-5.65, 80.80, 0)
- ▶ Lines of 13 sensors with $\Delta y = 5 \,\mathrm{m}, \ z = 37 \,\mathrm{m}$ (approx. center of rotor)
- u and p measured over $[40 \, s, 50 \, s]$ (1472 level-0 time steps) and averaged

- Velocity deficits larger for higher TSR.
- Velocity deficit before 2nd turbine more homogenous.

Advanced topics

-20

O

20

40

y [m]

60

-5

Outline

Adaptive lattice Boltzmann method

Construction principles
Adaptive mesh refinement for LBN
Implementation
Verification

Realistic aerodynamics computations

Vehicle geometries
Simulation of wind turbine wakes
Wake interaction prediction

Adaptive geometric multigrid methods

Linear iterative methods for Poisson-type problems Multi-level algorithms
Multigrid algorithms on SAMR data structures
Example
Comments on parabolic problems

$$\begin{array}{rcl} \Delta q(\mathbf{x}) & = & \psi(\mathbf{x}) \,, & \mathbf{x} \in \Omega \subset \mathbb{R}^d, & q \in \mathrm{C}^2(\Omega), & \psi \in \mathrm{C}^0(\Omega) \\ q & = & \psi^{\Gamma}(\mathbf{x}) \,, & \mathbf{x} \in \partial \Omega \end{array}$$

$$\begin{array}{rcl} \Delta q(\mathbf{x}) & = & \psi(\mathbf{x}) \,, & \mathbf{x} \in \Omega \subset \mathbb{R}^d, & q \in \mathrm{C}^2(\Omega), & \psi \in \mathrm{C}^0(\Omega) \\ q & = & \psi^{\Gamma}(\mathbf{x}) \,, & \mathbf{x} \in \partial \Omega \end{array}$$

Discrete Poisson equation in 2D:

$$\frac{Q_{j+1,k} - 2Q_{jk} + Q_{j-1,k}}{\Delta x_1^2} + \frac{Q_{j,k+1} - 2Q_{jk} + Q_{j,k-1}}{\Delta x_2^2} = \psi_{jk}$$

$$\begin{array}{rcl} \Delta q(\mathbf{x}) & = & \psi(\mathbf{x}) \,, & \mathbf{x} \in \Omega \subset \mathbb{R}^d, & q \in \mathrm{C}^2(\Omega), & \psi \in \mathrm{C}^0(\Omega) \\ q & = & \psi^{\Gamma}(\mathbf{x}) \,, & \mathbf{x} \in \partial \Omega \end{array}$$

Discrete Poisson equation in 2D:

$$\frac{Q_{j+1,k} - 2Q_{jk} + Q_{j-1,k}}{\Delta x_1^2} + \frac{Q_{j,k+1} - 2Q_{jk} + Q_{j,k-1}}{\Delta x_2^2} = \psi_{jk}$$

Operator

$$\mathcal{A}(Q_{\Delta x_{1},\Delta x_{2}}) = \begin{bmatrix} \frac{1}{\Delta x_{1}^{2}} & -\left(\frac{2}{\Delta x_{1}^{2}} + \frac{2}{\Delta x_{2}^{2}}\right) & \frac{1}{\Delta x_{2}^{2}} \end{bmatrix} Q(x_{1,j}, x_{2,k}) = \psi_{jk}$$

$$\begin{array}{rcl} \Delta q(\mathbf{x}) & = & \psi(\mathbf{x}) \,, & \mathbf{x} \in \Omega \subset \mathbb{R}^d, & q \in \mathrm{C}^2(\Omega), & \psi \in \mathrm{C}^0(\Omega) \\ q & = & \psi^{\Gamma}(\mathbf{x}) \,, & \mathbf{x} \in \partial \Omega \end{array}$$

Discrete Poisson equation in 2D:

$$\frac{Q_{j+1,k} - 2Q_{jk} + Q_{j-1,k}}{\Delta x_1^2} + \frac{Q_{j,k+1} - 2Q_{jk} + Q_{j,k-1}}{\Delta x_2^2} = \psi_{jk}$$

Operator

$$\mathcal{A}(Q_{\Delta x_1,\Delta x_2}) = \left[egin{array}{ccc} rac{1}{\Delta x_2^2} & -\left(rac{2}{\Delta x_1^2} + rac{2}{\Delta x_2^2}
ight) & rac{1}{\Delta x_2^2} \ rac{1}{\Delta x_2^2} & \end{array}
ight] Q(x_{1,j},x_{2,k}) = \psi_{jk}$$

$$Q_{jk} = rac{1}{\sigma} \left[(Q_{j+1,k} + Q_{j-1,k}) \Delta x_2^2 + (Q_{j,k+1} + Q_{j,k-1}) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk}
ight]$$
 with $\sigma = rac{2\Delta x_1^2 + 2\Delta x_2^2}{\Delta x_2^2 \Delta x_2^2}$

Jacobi iteration

$$Q_{jk}^{m+1} = \frac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^m) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^m) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk} \right]$$

Jacobi iteration

$$Q_{jk}^{m+1} = rac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^m) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^m) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk}
ight]$$

Lexicographical Gauss-Seidel iteration (use updated values when they become available)

$$Q_{jk}^{m+1} = \frac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^{m+1}) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^{m+1}) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk} \right]$$

Jacobi iteration

$$Q_{jk}^{m+1} = rac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^m) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^m) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk}
ight]$$

Lexicographical Gauss-Seidel iteration (use updated values when they become available)

$$Q_{jk}^{m+1} = \frac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^{m+1}) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^{m+1}) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk} \right]$$

Efficient parallelization / patch-wise application not possible!

Jacobi iteration

$$Q_{jk}^{m+1} = rac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^m) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^m) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk}
ight]$$

Lexicographical Gauss-Seidel iteration (use updated values when they become available)

$$Q_{jk}^{m+1} = \frac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^{m+1}) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^{m+1}) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk} \right]$$

Efficient parallelization / patch-wise application not possible!

Checker-board or Red-Black Gauss Seidel iteration

1.
$$Q_{jk}^{m+1} = \frac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^m) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^m) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk} \right]$$

for $j + k \mod 2 = 0$

2.
$$Q_{jk}^{m+1} = \frac{1}{\sigma} \left[(Q_{j+1,k}^{m+1} + Q_{j-1,k}^{m+1}) \Delta x_2^2 + (Q_{j,k+1}^{m+1} + Q_{j,k-1}^{m+1}) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk} \right]$$

for $j+k \mod 2 = 1$

Jacobi iteration

$$Q_{jk}^{m+1} = rac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^m) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^m) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk}
ight]$$

Lexicographical Gauss-Seidel iteration (use updated values when they become available)

$$Q_{jk}^{m+1} = \frac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^{m+1}) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^{m+1}) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk} \right]$$

Efficient parallelization / patch-wise application not possible!

Checker-board or Red-Black Gauss Seidel iteration

1.
$$Q_{jk}^{m+1} = \frac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^m) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^m) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk} \right]$$

for $j + k \mod 2 = 0$

2.
$$Q_{jk}^{m+1} = \frac{1}{\sigma} \left[(Q_{j+1,k}^{m+1} + Q_{j-1,k}^{m+1}) \Delta x_2^2 + (Q_{j,k+1}^{m+1} + Q_{j,k-1}^{m+1}) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk} \right]$$
 for $j+k \mod 2 = 1$

Gauss-Seidel methods require $\sim 1/2$ of iterations than Jacobi method, however, iteration count still proportional to number of unknowns [Hackbusch, 1994]

Adaptive geometric multigrid methods 000000000000

Smoothing vs. solving

 ν iterations with iterative linear solver

$$Q^{m+\nu} = \mathcal{S}(Q^m, \psi, \nu)$$

 ν iterations with iterative linear solver

$$Q^{m+
u} = \mathcal{S}(Q^m, \psi, \nu)$$

Adaptive geometric multigrid methods 000000000000

Defect after *m* iterations

$$d^m = \psi - \mathcal{A}(Q^m)$$

Smoothing vs. solving

 ν iterations with iterative linear solver

$$Q^{m+\nu} = \mathcal{S}(Q^m, \psi, \nu)$$

Adaptive geometric multigrid methods 000000000000

Defect after *m* iterations

$$d^m = \psi - \mathcal{A}(Q^m)$$

Defect after $m + \nu$ iterations

$$d^{m+\nu} = \psi - \mathcal{A}(Q^{m+\nu}) = \psi - \mathcal{A}(Q^m + v_{\nu}^m) = d^m - \mathcal{A}(v_{\nu}^m)$$

with correction

$$v_{\nu}^{m} = \mathcal{S}(\vec{0}, d^{m}, \nu)$$

Adaptive lattice Boltzmann method

Smoothing vs. solving

 ν iterations with iterative linear solver

$$Q^{m+\nu} = \mathcal{S}(Q^m, \psi, \nu)$$

Adaptive geometric multigrid methods 000000000000

Defect after *m* iterations

$$d^m = \psi - \mathcal{A}(Q^m)$$

Defect after $m + \nu$ iterations

$$d^{m+\nu} = \psi - \mathcal{A}(Q^{m+\nu}) = \psi - \mathcal{A}(Q^m + v_{\nu}^m) = d^m - \mathcal{A}(v_{\nu}^m)$$

with correction

$$v_{\nu}^{m} = \mathcal{S}(\vec{0}, d^{m}, \nu)$$

Neglecting the sub-iterations in the smoother we write

$$Q^{n+1} = Q^n + v = Q^n + \mathcal{S}(d^n)$$

Smoothing vs. solving

 ν iterations with iterative linear solver

$$Q^{m+
u} = \mathcal{S}(Q^m, \psi, \nu)$$

Adaptive geometric multigrid methods 000000000000

Defect after *m* iterations

$$d^m = \psi - \mathcal{A}(Q^m)$$

Defect after $m + \nu$ iterations

$$d^{m+
u} = \psi - \mathcal{A}(Q^{m+
u}) = \psi - \mathcal{A}(Q^m + v_{\nu}^m) = d^m - \mathcal{A}(v_{\nu}^m)$$

with correction

$$v_{\nu}^{m} = \mathcal{S}(\vec{0}, d^{m}, \nu)$$

Neglecting the sub-iterations in the smoother we write

$$Q^{n+1} = Q^n + v = Q^n + \mathcal{S}(d^n)$$

Observation: Oscillations are damped faster on coarser grid.

33

Smoothing vs. solving

 ν iterations with iterative linear solver

$$Q^{m+\nu} = \mathcal{S}(Q^m, \psi, \nu)$$

Defect after *m* iterations

$$d^m = \psi - \mathcal{A}(Q^m)$$

Defect after $m + \nu$ iterations

$$d^{m+
u} = \psi - \mathcal{A}(Q^{m+
u}) = \psi - \mathcal{A}(Q^m + v_{
u}^m) = d^m - \mathcal{A}(v_{
u}^m)$$

with correction

$$v_{\nu}^{m} = \mathcal{S}(\vec{0}, d^{m}, \nu)$$

Neglecting the sub-iterations in the smoother we write

$$Q^{n+1} = Q^n + v = Q^n + \mathcal{S}(d^n)$$

Observation: Oscillations are damped faster on coarser grid.

Coarse grid correction:

$$Q^{n+1} = Q^n + v = Q^n + \mathcal{PSR}(d^n)$$

where ${\cal R}$ is suitable restriction operator and ${\cal P}$ a suitable prolongation operator

Relaxation on current grid:

$$ar{Q} = \mathcal{S}(Q^n, \psi,
u)$$
 $Q^{n+1} = ar{Q} + \mathcal{P}\mathcal{S}(ec{0}, \cdot, \mu)\mathcal{R}(\psi - \mathcal{A}(ar{Q}))$

Adaptive geometric multigrid methods 000000000000

Relaxation on current grid:

$$ar{Q} = \mathcal{S}(Q^n, \psi,
u)$$

$$Q^{n+1} = ar{Q} + \mathcal{P}\mathcal{S}(\vec{0}, \cdot, \mu)\mathcal{R}(\psi - \mathcal{A}(ar{Q}))$$

Adaptive geometric multigrid methods 0000000000000

Algorithm:

$$egin{aligned} ar{Q} &:= \mathcal{S}(Q^n, \psi,
u) \ d &:= \psi - \mathcal{A}(ar{Q}) \end{aligned} \ d_c &:= \mathcal{R}(d) \ v_c &:= \mathcal{S}(0, d_c, \mu) \ v &:= \mathcal{P}(v_c) \ Q^{n+1} &:= ar{Q} + v \end{aligned}$$

Relaxation on current grid:

$$ar{Q} = \mathcal{S}(Q^n, \psi, \nu)$$

$$Q^{n+1} = ar{Q} + \mathcal{P}\mathcal{S}(\vec{0}, \cdot, \mu)\mathcal{R}(\psi - \mathcal{A}(ar{Q}))$$

Adaptive geometric multigrid methods

0000000000000

Algorithm: with smoothing:

$$\begin{split} \bar{Q} &:= \mathcal{S}(Q^n, \psi, \nu) & d := \psi - \mathcal{A}(Q) \\ d &:= \psi - \mathcal{A}(\bar{Q}) & v := \mathcal{S}(0, d, \nu) \\ & r := d - \mathcal{A}(v) \\ d_c &:= \mathcal{R}(d) & d_c := \mathcal{R}(r) \\ v_c &:= \mathcal{S}(0, d_c, \mu) & v_c := \mathcal{S}(0, d_c, \mu) \\ v &:= \mathcal{P}(v_c) & v := v + \mathcal{P}(v_c) \\ Q^{n+1} &:= \bar{Q} + v & Q^{n+1} := Q + v \end{split}$$

Two-grid correction method

Relaxation on current grid:

$$ar{Q} = \mathcal{S}(Q^n, \psi, \nu)$$
 $Q^{n+1} = ar{Q} + \mathcal{P}\mathcal{S}(ar{0}, \cdot, \mu)\mathcal{R}(\psi - \mathcal{A}(ar{Q}))$

Algorithm:

Adaptive lattice Boltzmann method

Multi-level algorithms

with smoothing:

with pre- and post-iteration:

$$\begin{split} \bar{Q} &:= \mathcal{S}(Q^n, \psi, \nu) & d := \psi - \mathcal{A}(Q) \\ d &:= \psi - \mathcal{A}(\bar{Q}) & v := \mathcal{S}(0, d, \nu) \\ r &:= d - \mathcal{A}(v) \\ d_c &:= \mathcal{R}(d) & d_c := \mathcal{R}(r) \\ v_c &:= \mathcal{S}(0, d_c, \mu) & v_c := \mathcal{S}(0, d_c, \mu) \\ v &:= \mathcal{P}(v_c) & v := v + \mathcal{P}(v_c) \\ Q^{n+1} &:= \bar{Q} + v & Q^{n+1} := Q + v \end{split}$$

$$d := \psi - A(Q) v := S(0, d, \nu_1) r := d - A(v) d_c := R(r) v_c := S(0, d_c, \mu) v := v + P(v_c) d := d - A(v) r := S(0, d, \nu_2) Q^{n+1} := Q + v + r$$

[Hackbusch, 1985]

Adaptive geometric multigrid methods 000000000000

Multi-level methods and cycles

V-cycle $\gamma = 1$ 2-grid

Adaptive geometric multigrid methods 000000000000

Multi-level methods and cycles

Adaptive lattice Boltzmann method

Multi-level algorithms

Adaptive lattice Boltzmann method

Multi-level methods and cycles

Adaptive geometric multigrid methods 000000000000

W-cycle $\gamma = 2$

Multi-level methods and cycles

Adaptive lattice Boltzmann method

Multi-level algorithms

[Hackbusch, 1985] [Wesseling, 1992] ...

1D Example: Cell j,
$$\psi - \nabla \cdot \nabla q = 0$$

$$d_{j}^{l} = \psi_{j} - \frac{1}{\Delta x_{l}} \left(\frac{1}{\Delta x_{l}} (Q_{j+1}^{l} - Q_{j}^{l}) - \frac{1}{\Delta x_{l}} (Q_{j}^{l} - Q_{j-1}^{l}) \right)$$

Adaptive geometric multigrid methods 0000000000000

Stencil modification at coarse-fine boundaries in 1D

1D Example: Cell i, $\psi - \nabla \cdot \nabla q = 0$

$$d_{j}^{l} = \psi_{j} - \frac{1}{\Delta x_{l}} \left(\frac{1}{\Delta x_{l}} (Q_{j+1}^{l} - Q_{j}^{l}) - \frac{1}{\Delta x_{l}} (Q_{j}^{l} - Q_{j-1}^{l}) \right) = \psi_{j} - \frac{1}{\Delta x_{l}} \left(H_{j+\frac{1}{2}}^{l} - H_{j-\frac{1}{2}}^{l} \right)$$

H is approximation to derivative of Q^{I} .

1D Example: Cell $i, \psi - \nabla \cdot \nabla q = 0$

Adaptive lattice Boltzmann method

Multigrid algorithms on SAMR data structures

$$d_{j}^{I} = \psi_{j} - \frac{1}{\Delta x_{I}} \left(\frac{1}{\Delta x_{I}} (Q_{j+1}^{I} - Q_{j}^{I}) - \frac{1}{\Delta x_{I}} (Q_{j}^{I} - Q_{j-1}^{I}) \right) = \psi_{j} - \frac{1}{\Delta x_{I}} \left(H_{j+\frac{1}{2}}^{I} - H_{j-\frac{1}{2}}^{I} \right)$$

H is approximation to derivative of Q^{I} .

Consider 2-level situation with $r_{l+1} = 2$:

1D Example: Cell j, $\psi - \nabla \cdot \nabla q = 0$

$$d_{j}^{I} = \psi_{j} - \frac{1}{\Delta x_{I}} \left(\frac{1}{\Delta x_{I}} (Q_{j+1}^{I} - Q_{j}^{I}) - \frac{1}{\Delta x_{I}} (Q_{j}^{I} - Q_{j-1}^{I}) \right) = \psi_{j} - \frac{1}{\Delta x_{I}} \left(H_{j+\frac{1}{2}}^{I} - H_{j-\frac{1}{2}}^{I} \right)$$

H is approximation to *derivative* of Q^{I} . Consider 2-level situation with $r_{I+1} = 2$:

1D Example: Cell $i, \psi - \nabla \cdot \nabla a = 0$

$$d_{j}^{I} = \psi_{j} - \frac{1}{\Delta x_{I}} \left(\frac{1}{\Delta x_{I}} (Q_{j+1}^{I} - Q_{j}^{I}) - \frac{1}{\Delta x_{I}} (Q_{j}^{I} - Q_{j-1}^{I}) \right) = \psi_{j} - \frac{1}{\Delta x_{I}} \left(H_{j+\frac{1}{2}}^{I} - H_{j-\frac{1}{2}}^{I} \right)$$

H is approximation to derivative of Q^{I} .

Consider 2-level situation with $r_{l+1} = 2$:

1D Example: Cell j, $\psi - \nabla \cdot \nabla q = 0$

$$d_{j}^{I} = \psi_{j} - \frac{1}{\Delta x_{I}} \left(\frac{1}{\Delta x_{I}} (Q_{j+1}^{I} - Q_{j}^{I}) - \frac{1}{\Delta x_{I}} (Q_{j}^{I} - Q_{j-1}^{I}) \right) = \psi_{j} - \frac{1}{\Delta x_{I}} \left(H_{j+\frac{1}{2}}^{I} - H_{j-\frac{1}{2}}^{I} \right)$$

H is approximation to derivative of Q^{I} .

Consider 2-level situation with $r_{l+1} = 2$:

No specific modification necessary for 1D vertex-based stencils, cf. [Bastian, 1996]

Adaptive geometric multigrid methods 0000000000000

Set
$$H_{w+\frac{1}{2}}^{l+1}=H_{\mathcal{I}}$$
.

Set
$$H_{w+\frac{1}{2}}^{l+1} = H_{\mathcal{I}}$$
. Inserting Q gives

Adaptive lattice Boltzmann method

Multigrid algorithms on SAMR data structures

$$\frac{Q_{w+1}^{l+1} - Q_w^{l+1}}{\Delta x_{l+1}} = \frac{Q_j^l - Q_w^{l+1}}{\frac{3}{2}\Delta x_{l+1}}$$

Set $H_{w+\frac{1}{2}}^{l+1} = H_{\mathcal{I}}$. Inserting Q gives

$$\frac{Q_{w+1}^{l+1} - Q_w^{l+1}}{\Delta x_{l+1}} = \frac{Q_j^l - Q_w^{l+1}}{\frac{3}{2} \Delta x_{l+1}}$$

from which we readily derive

Adaptive lattice Boltzmann method

Multigrid algorithms on SAMR data structures

$$Q_{w+1}^{l+1} = \frac{2}{3}Q_j^l + \frac{1}{3}Q_w^{l+1}$$

for the boundary cell on l+1.

Set
$$H_{W+\frac{1}{2}}^{l+1} = H_{\mathcal{I}}$$
. Inserting Q gives

$$\frac{Q_{w+1}^{l+1} - Q_w^{l+1}}{\Delta x_{l+1}} = \frac{Q_j^l - Q_w^{l+1}}{\frac{3}{2} \Delta x_{l+1}}$$

from which we readily derive

Adaptive lattice Boltzmann method

Multigrid algorithms on SAMR data structures

$$Q_{w+1}^{l+1} = \frac{2}{3}Q_j^l + \frac{1}{3}Q_w^{l+1}$$

for the boundary cell on l+1. We use the flux correction procedure to enforce $H_{\omega+\frac{1}{2}}^{l+1} \equiv H_{i-\frac{1}{2}}^{l}$ and thereby $H_{i-\frac{1}{2}}^{l} \equiv H_{\mathcal{I}}$.

Set $H_{w+\frac{1}{2}}^{l+1} = H_{\mathcal{I}}$. Inserting Q gives

$$\frac{Q_{w+1}^{l+1} - Q_w^{l+1}}{\Delta x_{l+1}} = \frac{Q_j^l - Q_w^{l+1}}{\frac{3}{2} \Delta x_{l+1}}$$

from which we readily derive

Adaptive lattice Boltzmann method

Multigrid algorithms on SAMR data structures

$$Q_{w+1}^{l+1} = \frac{2}{3}Q_j^l + \frac{1}{3}Q_w^{l+1}$$

for the boundary cell on l+1. We use the flux correction procedure to enforce $H_{\omega+\frac{1}{2}}^{l+1} \equiv H_{i-\frac{1}{2}}^{l}$ and thereby $H_{i-\frac{1}{2}}^{l} \equiv H_{\mathcal{I}}$.

Correction pass [Martin, 1998]

1.
$$\delta H_{i-\frac{1}{2}}^{l+1} := -H_{i-\frac{1}{2}}^{l}$$

Set $H_{W+\frac{1}{2}}^{l+1} = H_{\mathcal{I}}$. Inserting Q gives

$$\frac{Q_{w+1}^{l+1} - Q_w^{l+1}}{\Delta x_{l+1}} = \frac{Q_j^l - Q_w^{l+1}}{\frac{3}{2} \Delta x_{l+1}}$$

from which we readily derive

$$Q_{w+1}^{l+1} = \frac{2}{3}Q_j^l + \frac{1}{3}Q_w^{l+1}$$

for the boundary cell on I+1. We use the flux correction procedure to enforce $H^{l+1}_{w+\frac{1}{2}}\equiv H^l_{j-\frac{1}{2}}$ and thereby $H^l_{j-\frac{1}{2}}\equiv H_{\mathcal{I}}$.

Correction pass [Martin, 1998]

1.
$$\delta H_{j-\frac{1}{2}}^{l+1} := -H_{j-\frac{1}{2}}^{l}$$

2.
$$\delta H_{j-\frac{1}{2}}^{l+1} := \delta H_{j-\frac{1}{2}}^{l+1} + H_{w+\frac{1}{2}}^{l+1} = -H_{j-\frac{1}{2}}^{l} + (Q_{j}^{l} - Q_{w}^{l+1})/\frac{3}{2}\Delta x_{l+1}$$

Set $H_{W+\frac{1}{2}}^{l+1} = H_{\mathcal{I}}$. Inserting Q gives

$$\frac{Q_{w+1}^{l+1} - Q_w^{l+1}}{\Delta x_{l+1}} = \frac{Q_j^l - Q_w^{l+1}}{\frac{3}{2} \Delta x_{l+1}}$$

from which we readily derive

$$Q_{w+1}^{l+1} = \frac{2}{3}Q_j^l + \frac{1}{3}Q_w^{l+1}$$

for the boundary cell on I+1. We use the flux correction procedure to enforce $H_{w+\frac{1}{2}}^{l+1}\equiv H_{j-\frac{1}{2}}^{l}$ and thereby $H_{j-\frac{1}{2}}^{l}\equiv H_{\mathcal{I}}$.

Correction pass [Martin, 1998]

1.
$$\delta H_{j-\frac{1}{2}}^{l+1} := -H_{j-\frac{1}{2}}^{l}$$

$$2. \ \delta H_{j-\frac{1}{2}}^{l+1} := \delta H_{j-\frac{1}{2}}^{l+1} + H_{w+\frac{1}{2}}^{l+1} = -H_{j-\frac{1}{2}}^{l} + (Q_{j}^{l} - Q_{w}^{l+1})/\frac{3}{2}\Delta x_{l+1}$$

3.
$$\check{d}'_j := d'_j + \frac{1}{\Delta x_i} \delta H_{j-\frac{1}{2}}^{l+1}$$

Set $H_{w+\frac{1}{2}}^{l+1} = H_{\mathcal{I}}$. Inserting Q gives

$$\frac{Q_{w+1}^{l+1} - Q_w^{l+1}}{\Delta x_{l+1}} = \frac{Q_j^l - Q_w^{l+1}}{\frac{3}{2}\Delta x_{l+1}}$$

from which we readily derive

$$Q_{w+1}^{l+1} = \frac{2}{3}Q_j^l + \frac{1}{3}Q_w^{l+1}$$

for the boundary cell on I+1. We use the flux correction procedure to enforce $H_{w+\frac{1}{2}}^{l+1}\equiv H_{j-\frac{1}{2}}^{l}$ and thereby $H_{j-\frac{1}{2}}^{l}\equiv H_{\mathcal{I}}$.

Correction pass [Martin, 1998]

1.
$$\delta H_{j-\frac{1}{2}}^{l+1} := -H_{j-\frac{1}{2}}^{l}$$

2.
$$\delta H_{j-\frac{1}{2}}^{l+1} := \delta H_{j-\frac{1}{2}}^{l+1} + H_{w+\frac{1}{2}}^{l+1} = -H_{j-\frac{1}{2}}^{l} + (Q_{j}^{l} - Q_{w}^{l+1})/\frac{3}{2}\Delta x_{l+1}$$

3.
$$\check{d}_{j}^{l} := d_{j}^{l} + \frac{1}{\Delta x_{l}} \delta H_{j-\frac{1}{2}}^{l+1}$$

yields

$$\check{d}_{j}^{l} = \psi_{j} - \frac{1}{\Delta x_{l}} \left(\frac{1}{\Delta x_{l}} (Q_{j+1}^{l} - Q_{j}^{l}) - \frac{2}{3\Delta x_{l+1}} (Q_{j}^{l} - Q_{w}^{l+1}) \right)$$

$$Q_{v,w-1}^{l+1} = +$$

$$Q_{v,w-1}^{l+1} = +$$

Adaptive lattice Boltzmann method

Multigrid algorithms on SAMR data structures

$$Q_{v,w-1}^{l+1} = + \left(rac{3}{4}Q_{jk}^{l} + rac{1}{4}Q_{j+1,k}^{l}
ight)$$

Stencil modification at coarse-fine boundaries: 2D

$$Q_{v,w-1}^{l+1} = \frac{1}{3} Q_{vw}^{l+1} + \frac{2}{3} \left(\frac{3}{4} Q_{jk}^{l} + \frac{1}{4} Q_{j+1,k}^{l} \right)$$

Stencil modification at coarse-fine boundaries: 2D

$$Q_{v,w-1}^{l+1} = \frac{1}{3} Q_{vw}^{l+1} + \frac{2}{3} \left(\frac{3}{4} Q_{jk}^{l} + \frac{1}{4} Q_{j+1,k}^{l} \right)$$

In general:

$$Q_{v,w-1}^{l+1} = \left(1 - \frac{2}{r_{l+1} + 1}\right) Q_{vw}^{l+1} + rac{2}{r_{l+1} + 1} \left((1 - f)Q_{jk}^{l} + fQ_{j+1,k}^{l}\right)$$
 with

$$f = \frac{x_{1,l+1}^{v} - x_{1,l}^{j}}{\Delta x_{1,l}}$$

0000000000000

Components of an SAMR multigrid method

Stencil operators

- Stencil operators
 - ▶ Application of defect $d^l = \psi^l \mathcal{A}(Q^l)$ on each grid $G_{l,m}$ of level l

Adaptive geometric multigrid methods 0000000000000

Stencil operators

Adaptive lattice Boltzmann method

Multigrid algorithms on SAMR data structures

- ▶ Application of defect $d' = \psi' \mathcal{A}(Q')$ on each grid $G_{l,m}$ of level I
- ▶ Computation of correction $v^l = S(0, d^l, \nu)$ on each grid of level l

Adaptive lattice Boltzmann method

Components of an SAMR multigrid method

- Stencil operators
 - ▶ Application of defect $d' = \psi' \mathcal{A}(Q')$ on each grid $G_{l,m}$ of level I

Adaptive geometric multigrid methods

0000000000000

- ▶ Computation of correction $v^l = S(0, d^l, \nu)$ on each grid of level l
- Boundary (ghost cell) operators

- Stencil operators
 - ▶ Application of defect $d' = \psi' \mathcal{A}(Q')$ on each grid $G_{l,m}$ of level I
 - ► Computation of correction $v^l = S(0, d^l, \nu)$ on each grid of level l
- Boundary (ghost cell) operators
 - Synchronization of Q^I and v^I on \tilde{S}_I^1

Adaptive lattice Boltzmann method

Components of an SAMR multigrid method

- Stencil operators
 - ▶ Application of defect $d' = \psi' \mathcal{A}(Q')$ on each grid $G_{l,m}$ of level I
 - ▶ Computation of correction $v' = S(0, d', \nu)$ on each grid of level I
- Boundary (ghost cell) operators
 - Synchronization of Q' and v' on \tilde{S}_l^1
 - Specification of Dirichlet boundary conditions for a finite volume discretization for $Q^l \equiv w$ and $v^l \equiv w$ on \tilde{P}_l^1

- Stencil operators
 - ▶ Application of defect $d' = \psi' \mathcal{A}(Q')$ on each grid $G_{l,m}$ of level I
 - ▶ Computation of correction $v' = S(0, d', \nu)$ on each grid of level I
- Boundary (ghost cell) operators
 - Synchronization of Q' and v' on \tilde{S}_{l}^{1}
 - Specification of Dirichlet boundary conditions for a finite volume discretization for Q^I ≡ w and v^I ≡ w on P

 _I
 - Specification of $v' \equiv 0$ on \tilde{l}_{l}^{1}

- Stencil operators
 - ▶ Application of defect $d' = \psi' A(Q')$ on each grid $G_{l,m}$ of level I
 - ► Computation of correction $v^l = S(0, d^l, \nu)$ on each grid of level l
- Boundary (ghost cell) operators
 - Synchronization of Q^I and v^I on \tilde{S}_I^I
 - Specification of Dirichlet boundary conditions for a finite volume discretization for $Q' \equiv w$ and $v' \equiv w$ on \tilde{P}_{i}^{1}
 - Specification of $v' \equiv 0$ on \tilde{I}_{l}^{1}
 - Specification of $Q_l = \frac{(r_l-1)Q^{l+1}+2Q^l}{r_l+1}$ on \tilde{I}_i^1

Stencil operators

Adaptive lattice Boltzmann method

Multigrid algorithms on SAMR data structures

- ▶ Application of defect $d' = \psi' A(Q')$ on each grid $G_{l,m}$ of level I
- ► Computation of correction $v^l = S(0, d^l, \nu)$ on each grid of level l
- Boundary (ghost cell) operators
 - Synchronization of Q^I and v^I on \tilde{S}_I^I
 - Specification of Dirichlet boundary conditions for a finite volume discretization for $Q' \equiv w$ and $v' \equiv w$ on \tilde{P}_{i}^{1}

Adaptive geometric multigrid methods

0000000000000

lacktriangle Coarse-fine boundary flux accumulation and application of δH^{l+1} on defect d^l

Stencil operators

Adaptive lattice Boltzmann method

Multigrid algorithms on SAMR data structures

- ▶ Application of defect $d' = \psi' A(Q')$ on each grid $G_{l,m}$ of level I
- ► Computation of correction $v^l = S(0, d^l, \nu)$ on each grid of level l
- Boundary (ghost cell) operators
 - Synchronization of Q^I and v^I on \tilde{S}_I^I
 - Specification of Dirichlet boundary conditions for a finite volume discretization for $Q' \equiv w$ and $v' \equiv w$ on \tilde{P}_{i}^{1}

- Coarse-fine boundary flux accumulation and application of δH^{l+1} on defect d^l
- Standard prolongation and restriction on grids between adjacent levels

Stencil operators

Adaptive lattice Boltzmann method

Multigrid algorithms on SAMR data structures

- ▶ Application of defect $d' = \psi' A(Q')$ on each grid $G_{l,m}$ of level I
- ► Computation of correction $v^l = S(0, d^l, \nu)$ on each grid of level l
- Boundary (ghost cell) operators
 - Synchronization of Q' and v' on \tilde{S}_{i}^{1}
 - Specification of Dirichlet boundary conditions for a finite volume discretization for $Q' \equiv w$ and $v' \equiv w$ on \tilde{P}_{i}^{1}
 - Specification of $v' \equiv 0$ on \tilde{I}_{l}^{1}
 - Specification of $Q_l = \frac{(r_l-1)Q^{l+1}+2Q^l}{r_l+1}$ on \tilde{I}_{l}^{1}

- Coarse-fine boundary flux accumulation and application of δH^{l+1} on defect d^l
- Standard prolongation and restriction on grids between adjacent levels
- Adaptation criteria

Adaptive lattice Boltzmann method

Components of an SAMR multigrid method

- Stencil operators
 - ▶ Application of defect $d' = \psi' A(Q')$ on each grid $G_{l,m}$ of level I
 - ► Computation of correction $v^l = S(0, d^l, \nu)$ on each grid of level l
- Boundary (ghost cell) operators
 - Synchronization of Q^I and v^I on \tilde{S}_I^I
 - Specification of Dirichlet boundary conditions for a finite volume discretization for $Q' \equiv w$ and $v' \equiv w$ on \tilde{P}_{i}^{1}

Adaptive geometric multigrid methods

0000000000000

- Coarse-fine boundary flux accumulation and application of δH^{l+1} on defect d^l
- Standard prolongation and restriction on grids between adjacent levels
- Adaptation criteria
 - ► E.g., standard restriction to project solution on 2x coarsended grid, then use local error estimation

Adaptive lattice Boltzmann method

Components of an SAMR multigrid method

- Stencil operators
 - ▶ Application of defect $d' = \psi' \mathcal{A}(Q')$ on each grid $G_{l,m}$ of level l
 - ▶ Computation of correction $v^l = S(0, d^l, \nu)$ on each grid of level l
- Boundary (ghost cell) operators
 - Synchronization of Q^I and v^I on \tilde{S}_I^1
 - Specification of Dirichlet boundary conditions for a finite volume discretization for $Q^l \equiv w$ and $v^l \equiv w$ on \tilde{P}_l^1

- Coarse-fine boundary flux accumulation and application of δH^{l+1} on defect d^l
- > Standard prolongation and restriction on grids between adjacent levels
- Adaptation criteria
 - E.g., standard restriction to project solution on 2x coarsended grid, then use local error estimation
- Looping instead of time steps and check of convergence

Additive geometric multigrid algorithm

AdvanceLevelMG(/) - Correction Scheme

```
Set ghost cells of Q^I
Calculate defect d' from Q', \psi'
                                                                  d' := \psi' - \mathcal{A}(Q')
If (1 < I_{max})
     Calculate updated defect r^{l+1} from v^{l+1}, d^{l+1}
                                                                        r^{l+1} := d^{l+1} - \mathcal{A}(v^{l+1})
     Restrict d^{l+1} onto d^{l}
                                                                        d' := \mathcal{R}_{l}^{l+1}(r^{l+1})
                                                                  v' := S(0, d', \nu_1)
Do \nu_1 smoothing steps to get correction v'
If (I > I_{min})
     Do \gamma > 1 times
           AdvanceLevelMG(I-1)
     Set ghost cells of v^{l-1}
     Prolongate and add v^{l-1} to v^{l}
                                                                        v' := v' + \mathcal{P}_{i}^{l-1}(v^{l-1})
     If (\nu_2 > 0)
           Set ghost cells of v^{\prime}
           Update defect d' according to v'
                                                                            d' := d' - \mathcal{A}(v')
                                                                            r' := \mathcal{S}(v', d', \nu_2)
           Do \nu_2 post-smoothing steps to get r'
           Add addional correction r' to v'
                                                                           v' := v' + r'
                                                                  Q' := Q' + v'
Add correction v' to Q'
```

Additive Geometric Multiplicative Multigrid Algorithm

```
Start - Start iteration on level I_{max}

For I = I_{max} Downto I_{min} + 1 Do

Restrict Q^I onto Q^{I-1}

Regrid(0)

AdvanceLevelMG(I_{max})

See also: [Trottenberg et al., 2001], [Canu and Ritzdorf, 1994]

Vertex-based: [Brandt, 1977], [Briggs et al., 2001]
```

Example

On
$$\Omega = [0,10] \times [0,10]$$
 use hat function

$$\psi = \left\{ egin{array}{ll} -A_n \cos \left(rac{\pi r}{2R_n}
ight) \;, & r < R_n \ 0 & ext{elsewhere} \end{array}
ight.$$

with
$$r = \sqrt{(x_1 - X_n)^2 + (x_2 - Y_n)^2}$$
 to define three sources with

n	A_n	R _n	X _n	Y_n
1	0.3	0.3	6.5	8.0
2	0.2	0.3	2.0	7.0
3	-0.1	0.4	7.0	3.0

Example

On
$$\Omega = [0,10] \times [0,10]$$
 use hat function

$$\psi = \begin{cases} -A_n \cos\left(\frac{\pi r}{2R_n}\right), & r < R_n \\ 0 & \text{elsewhere} \end{cases}$$

with
$$r = \sqrt{(x_1 - X_n)^2 + (x_2 - Y_n)^2}$$
 to define three sources with

	n	A_n	Rn	X _n	Yn
ĺ	1	0.3	0.3	6.5	8.0
	2	0.2	0.3	2.0	7.0
	3	-0.1	0.4	7.0	3.0

Example

Example

On
$$\Omega = [0,10] \times [0,10]$$
 use hat function

$$\psi = \left\{ egin{array}{ll} -A_n \cos \left(rac{\pi r}{2R_n}
ight) \;, & r < R_n \ 0 & ext{elsewhere} \end{array}
ight.$$

with
$$r = \sqrt{(x_1 - X_n)^2 + (x_2 - Y_n)^2}$$
 to define three sources with

n	A_n	R _n	X _n	Y_n
1	0.3	0.3	6.5	8.0
2	0.2	0.3	2.0	7.0
3	-0.1	0.4	7.0	3.0

	128×128	1024×1024	1024×1024
I _{max}	3	0	0
I _{min}	-4	-7	-4
ν_1	5	5	5
ν_2	5	5	5
V-Cycles	15	16	341
Time [sec]	9.4	27.7	563

Stop at $||d^{I}||_{max} < 10^{-7}$ for $I \ge 0$, $\gamma = 1$, $r_{I} = 2$

Some comments on parabolic problems

- Consequences of time step refinement
- ▶ Level-wise elliptic solves vs. global solve
- If time step refinement is used an elliptic flux correction is unavoidable.
- ➤ The correction is explained in Bell, J. (2004). Block-structured adaptive mesh refinement. Lecture 2. Available at https://ccse.lbl.gov/people/jbb/shortcourse/lecture2.pdf.

References I

- [Bastian, 1996] Bastian, P. (1996). Parallele adaptive Mehrgitterverfahren. Teubner Skripten zur Numerik. B. G. Teubner, Stuttgart.
- [Brandt, 1977] Brandt, A. (1977). Multi-level adaptive solutions to boundary-value problems. Mathematics of Computations, 31(183):333–390.
- [Briggs et al., 2001] Briggs, W. L., Henson, V. E., and McCormick, S. F. (2001). A Multigrid Tutorial. Society for Industrial and Applied Mathematics, 2nd edition.
- [Canu and Ritzdorf, 1994] Canu, J. and Ritzdorf, H. (1994). Adaptive, block-structured multigrid on local memory machines. In Hackbuch, W. and Wittum, G., editors, Adaptive Methods-Algorithms, Theory and Applications, pages 84–98, Braunschweig/Wiesbaden. Proceedings of the Ninth GAMM-Seminar, Vieweg & Sohn.
- [Chen et al., 2006] Chen, H., Filippova, O., Hoch, J., Molvig, K., Shock, R., Teixeira, C., and Zhang, R. (2006). Grid refinement in lattice Boltzmann methods based on volumetric formulation. *Physica A*, 362:158–167.

References II

- [Deiterding and Wood, 2015] Deiterding, R. and Wood, S. L. (2015). An adaptive lattice boltzmann method for predicting wake fields behind wind turbines. In Breitsamer, C. e. a., editor, *Proc. 19th DGLR-Fachsymposium der STAB, Munich, 2014*, Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer. in press.
- [Hackbusch, 1985] Hackbusch, W. (1985). Multi-Grid Methods and Applications. Springer Verlag, Berlin, Heidelberg.
- [Hackbusch, 1994] Hackbusch, W. (1994). Iterative solution of large sparse systems of equations. Springer Verlag, New York.
- [Hähnel, 2004] Hähnel, D. (2004). Molekulare Gasdynamik. Springer.
- [Henderson, 1995] Henderson, R. D. (1995). Details of the drag curve near the onset of vortex shedding. *Phys. Fluids*, 7:2102–2104.
- [Hou et al., 1996] Hou, S., Sterling, J., Chen, S., and Doolen, G. D. (1996). A lattice Boltzmann subgrid model for high Reynolds number flows. In Lawniczak, A. T. and Kapral, R., editors, *Pattern formation and lattice gas automata*, volume 6, pages 151–166. Fields Inst Comm.

References III

- [Martin, 1998] Martin, D. F. (1998). A cell-centered adaptive projection method for the incompressible Euler equations. PhD thesis, University of California at Berkeley.
- [Schlaffer, 2013] Schlaffer, M. B. (2013). Non-reflecting boundary conditions for the lattice Boltzmann method. PhD thesis, Technical University Munich.
- [Trottenberg et al., 2001] Trottenberg, U., Oosterlee, C., and Schüller, A. (2001).
 Multigrid. Academic Press, San Antonio.
- [Tsai, 1999] Tsai, L. (1999). Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley.
- [Wesseling, 1992] Wesseling, P. (1992). An introduction to multigrid methods. Wiley, Chichester.
- [Yu, 2004] Yu, H. (2004). Lattice Boltzmann equation simulations of turbulence, mixing, and combustion. PhD thesis, Texas A&M University.