
Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Lecture 1
Structured adaptive mesh refinement

Course Block-structured Adaptive Mesh Refinement in C++

Ralf Deiterding
University of Southampton

Engineering and the Environment
Highfield Campus, Southampton SO17 1BJ, UK

E-mail: r.deiterding@soton.ac.uk

Structured adaptive mesh refinement 1

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Outline

Meshes and adaptation
Adaptivity on unstructured and structured meshes
Available SAMR software

The serial Berger-Colella SAMR method
Data structures and numerical update
Conservative flux correction
Level transfer operators
The basic recursive algorithm
Block generation and flagging of cells

Parallel SAMR method
Domain decomposition
A parallel SAMR algorithm

AMROC
Overview and basic software design
Classes

Structured adaptive mesh refinement 2

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Outline

Meshes and adaptation
Adaptivity on unstructured and structured meshes
Available SAMR software

The serial Berger-Colella SAMR method
Data structures and numerical update
Conservative flux correction
Level transfer operators
The basic recursive algorithm
Block generation and flagging of cells

Parallel SAMR method
Domain decomposition
A parallel SAMR algorithm

AMROC
Overview and basic software design
Classes

Structured adaptive mesh refinement 2

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Outline

Meshes and adaptation
Adaptivity on unstructured and structured meshes
Available SAMR software

The serial Berger-Colella SAMR method
Data structures and numerical update
Conservative flux correction
Level transfer operators
The basic recursive algorithm
Block generation and flagging of cells

Parallel SAMR method
Domain decomposition
A parallel SAMR algorithm

AMROC
Overview and basic software design
Classes

Structured adaptive mesh refinement 2

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Outline

Meshes and adaptation
Adaptivity on unstructured and structured meshes
Available SAMR software

The serial Berger-Colella SAMR method
Data structures and numerical update
Conservative flux correction
Level transfer operators
The basic recursive algorithm
Block generation and flagging of cells

Parallel SAMR method
Domain decomposition
A parallel SAMR algorithm

AMROC
Overview and basic software design
Classes

Structured adaptive mesh refinement 2

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Outline

Meshes and adaptation
Adaptivity on unstructured and structured meshes
Available SAMR software

The serial Berger-Colella SAMR method
Data structures and numerical update
Conservative flux correction
Level transfer operators
The basic recursive algorithm
Block generation and flagging of cells

Parallel SAMR method
Domain decomposition
A parallel SAMR algorithm

AMROC
Overview and basic software design
Classes

Structured adaptive mesh refinement 3

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Elements of adaptive algorithms

I Base grid

I Solver

I Error indicators

I Grid manipulation

I Interpolation (restriction and prolongation)

I Load-balancing

Structured adaptive mesh refinement 4

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Elements of adaptive algorithms

I Base grid

I Solver

I Error indicators

I Grid manipulation

I Interpolation (restriction and prolongation)

I Load-balancing

Structured adaptive mesh refinement 4

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Elements of adaptive algorithms

I Base grid

I Solver

I Error indicators

I Grid manipulation

I Interpolation (restriction and prolongation)

I Load-balancing

Structured adaptive mesh refinement 4

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Elements of adaptive algorithms

I Base grid

I Solver

I Error indicators

I Grid manipulation

I Interpolation (restriction and prolongation)

I Load-balancing

Structured adaptive mesh refinement 4

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Elements of adaptive algorithms

I Base grid

I Solver

I Error indicators

I Grid manipulation

I Interpolation (restriction and prolongation)

I Load-balancing

Structured adaptive mesh refinement 4

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Elements of adaptive algorithms

I Base grid

I Solver

I Error indicators

I Grid manipulation

I Interpolation (restriction and prolongation)

I Load-balancing

Structured adaptive mesh refinement 4

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Structured adaptive mesh refinement 5

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Structured adaptive mesh refinement 5

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Structured adaptive mesh refinement 5

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Structured adaptive mesh refinement 5

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Structured adaptive mesh refinement 5

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Structured adaptive mesh refinement 5

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Structured adaptive mesh refinement 5

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Structured adaptive mesh refinement 5

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Structured adaptive mesh refinement 5

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Structured adaptive mesh refinement 5

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Structured adaptive mesh refinement 5

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Structured adaptive mesh refinement 5

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Structured adaptive mesh refinement 5

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Structured adaptive mesh refinement 6

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Structured adaptive mesh refinement 6

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Structured adaptive mesh refinement 6

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Structured adaptive mesh refinement 6

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Structured adaptive mesh refinement 6

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Structured adaptive mesh refinement 6

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Structured adaptive mesh refinement 6

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Structured adaptive mesh refinement 6

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Structured adaptive mesh refinement 6

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Structured adaptive mesh refinement 6

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Structured adaptive mesh refinement 6

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Structured adaptive mesh refinement 6

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Structured adaptive mesh refinement 7

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Structured adaptive mesh refinement 7

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Structured adaptive mesh refinement 7

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Structured adaptive mesh refinement 7

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Structured adaptive mesh refinement 7

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Structured adaptive mesh refinement 7

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Structured adaptive mesh refinement 7

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Structured adaptive mesh refinement 7

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Structured adaptive mesh refinement 7

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Structured adaptive mesh refinement 7

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Structured adaptive mesh refinement 7

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Structured adaptive mesh refinement 7

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Structured adaptive mesh refinement 7

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Adaptivity on unstructured and structured meshes

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Structured adaptive mesh refinement 7

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Available SAMR software

Simplified structured designs

Distributed memory parallelization fully supported if not otherwise states.

I PARAMESH (Parallel Adaptive Mesh Refinement)

I Library based on uniform refinement blocks [MacNeice et al., 2000]
I Both multigrid and explicit algorithms considered
I http://sourceforge.net/projects/paramesh

I Flash code (AMR code for astrophysical thermonuclear flashes)

I Built on PARAMESH
I Solves the magneto-hydrodynamic equations with self-gravitation
I http://www.flash.uchicago.edu/site/flashcode

I Uintah (AMR code for simulation of accidental fires and explosions)

I Only explicit algorithms considered
I FSI coupling Material Point Method and ICE Method (Implicit,

Continuous fluid, Eulerian)
I http://www.uintah.utah.edu

I DAGH/Grace [Parashar and Browne, 1997]

I Just C++ data structures but no methods
I All grids are aligned to bases mesh coarsened by factor 2
I http://userweb.cs.utexas.edu/users/dagh

Structured adaptive mesh refinement 8

http://sourceforge.net/projects/paramesh
http://www.flash.uchicago.edu/site/flashcode
http://www.uintah.utah.edu
http://userweb.cs.utexas.edu/users/dagh

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Available SAMR software

Simplified structured designs

Distributed memory parallelization fully supported if not otherwise states.

I PARAMESH (Parallel Adaptive Mesh Refinement)
I Library based on uniform refinement blocks [MacNeice et al., 2000]
I Both multigrid and explicit algorithms considered
I http://sourceforge.net/projects/paramesh

I Flash code (AMR code for astrophysical thermonuclear flashes)

I Built on PARAMESH
I Solves the magneto-hydrodynamic equations with self-gravitation
I http://www.flash.uchicago.edu/site/flashcode

I Uintah (AMR code for simulation of accidental fires and explosions)

I Only explicit algorithms considered
I FSI coupling Material Point Method and ICE Method (Implicit,

Continuous fluid, Eulerian)
I http://www.uintah.utah.edu

I DAGH/Grace [Parashar and Browne, 1997]

I Just C++ data structures but no methods
I All grids are aligned to bases mesh coarsened by factor 2
I http://userweb.cs.utexas.edu/users/dagh

Structured adaptive mesh refinement 8

http://sourceforge.net/projects/paramesh
http://www.flash.uchicago.edu/site/flashcode
http://www.uintah.utah.edu
http://userweb.cs.utexas.edu/users/dagh

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Available SAMR software

Simplified structured designs

Distributed memory parallelization fully supported if not otherwise states.

I PARAMESH (Parallel Adaptive Mesh Refinement)
I Library based on uniform refinement blocks [MacNeice et al., 2000]
I Both multigrid and explicit algorithms considered
I http://sourceforge.net/projects/paramesh

I Flash code (AMR code for astrophysical thermonuclear flashes)
I Built on PARAMESH
I Solves the magneto-hydrodynamic equations with self-gravitation
I http://www.flash.uchicago.edu/site/flashcode

I Uintah (AMR code for simulation of accidental fires and explosions)

I Only explicit algorithms considered
I FSI coupling Material Point Method and ICE Method (Implicit,

Continuous fluid, Eulerian)
I http://www.uintah.utah.edu

I DAGH/Grace [Parashar and Browne, 1997]

I Just C++ data structures but no methods
I All grids are aligned to bases mesh coarsened by factor 2
I http://userweb.cs.utexas.edu/users/dagh

Structured adaptive mesh refinement 8

http://sourceforge.net/projects/paramesh
http://www.flash.uchicago.edu/site/flashcode
http://www.uintah.utah.edu
http://userweb.cs.utexas.edu/users/dagh

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Available SAMR software

Simplified structured designs

Distributed memory parallelization fully supported if not otherwise states.

I PARAMESH (Parallel Adaptive Mesh Refinement)
I Library based on uniform refinement blocks [MacNeice et al., 2000]
I Both multigrid and explicit algorithms considered
I http://sourceforge.net/projects/paramesh

I Flash code (AMR code for astrophysical thermonuclear flashes)
I Built on PARAMESH
I Solves the magneto-hydrodynamic equations with self-gravitation
I http://www.flash.uchicago.edu/site/flashcode

I Uintah (AMR code for simulation of accidental fires and explosions)
I Only explicit algorithms considered
I FSI coupling Material Point Method and ICE Method (Implicit,

Continuous fluid, Eulerian)
I http://www.uintah.utah.edu

I DAGH/Grace [Parashar and Browne, 1997]

I Just C++ data structures but no methods
I All grids are aligned to bases mesh coarsened by factor 2
I http://userweb.cs.utexas.edu/users/dagh

Structured adaptive mesh refinement 8

http://sourceforge.net/projects/paramesh
http://www.flash.uchicago.edu/site/flashcode
http://www.uintah.utah.edu
http://userweb.cs.utexas.edu/users/dagh

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Available SAMR software

Simplified structured designs

Distributed memory parallelization fully supported if not otherwise states.

I PARAMESH (Parallel Adaptive Mesh Refinement)
I Library based on uniform refinement blocks [MacNeice et al., 2000]
I Both multigrid and explicit algorithms considered
I http://sourceforge.net/projects/paramesh

I Flash code (AMR code for astrophysical thermonuclear flashes)
I Built on PARAMESH
I Solves the magneto-hydrodynamic equations with self-gravitation
I http://www.flash.uchicago.edu/site/flashcode

I Uintah (AMR code for simulation of accidental fires and explosions)
I Only explicit algorithms considered
I FSI coupling Material Point Method and ICE Method (Implicit,

Continuous fluid, Eulerian)
I http://www.uintah.utah.edu

I DAGH/Grace [Parashar and Browne, 1997]
I Just C++ data structures but no methods
I All grids are aligned to bases mesh coarsened by factor 2
I http://userweb.cs.utexas.edu/users/dagh

Structured adaptive mesh refinement 8

http://sourceforge.net/projects/paramesh
http://www.flash.uchicago.edu/site/flashcode
http://www.uintah.utah.edu
http://userweb.cs.utexas.edu/users/dagh

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Available SAMR software

Systems that support general SAMR

I SAMRAI - Structured Adaptive Mesh Refinement Application
Infrastructure

I Very mature SAMR system [Hornung et al., 2006]
I Explicit algorithms directly supported, implicit methods through

interface to Hypre package
I Mapped geometry and some embedded boundary support
I https://computation-rnd.llnl.gov/SAMRAI/software.php

I BoxLib, AmrLib, MGLib, HGProj

I Berkley-Lab-AMR collection of C++ classes by J. Bell et al., 50, 000
LOC [Rendleman et al., 2000]

I Both multigrid and explicit algorithms supported
I https://ccse.lbl.gov/Downloads/index.html

I Chombo

I Redesign and extension of BoxLib by P. Colella et al.
I Both multigrid and explicit algorithms demonstrated
I Some embedded boundary support
I https://commons.lbl.gov/display/chombo

Structured adaptive mesh refinement 9

https://computation-rnd.llnl.gov/SAMRAI/software.php
https://ccse.lbl.gov/Downloads/index.html
https://commons.lbl.gov/display/chombo

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Available SAMR software

Systems that support general SAMR

I SAMRAI - Structured Adaptive Mesh Refinement Application
Infrastructure

I Very mature SAMR system [Hornung et al., 2006]
I Explicit algorithms directly supported, implicit methods through

interface to Hypre package
I Mapped geometry and some embedded boundary support
I https://computation-rnd.llnl.gov/SAMRAI/software.php

I BoxLib, AmrLib, MGLib, HGProj

I Berkley-Lab-AMR collection of C++ classes by J. Bell et al., 50, 000
LOC [Rendleman et al., 2000]

I Both multigrid and explicit algorithms supported
I https://ccse.lbl.gov/Downloads/index.html

I Chombo

I Redesign and extension of BoxLib by P. Colella et al.
I Both multigrid and explicit algorithms demonstrated
I Some embedded boundary support
I https://commons.lbl.gov/display/chombo

Structured adaptive mesh refinement 9

https://computation-rnd.llnl.gov/SAMRAI/software.php
https://ccse.lbl.gov/Downloads/index.html
https://commons.lbl.gov/display/chombo

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Available SAMR software

Systems that support general SAMR

I SAMRAI - Structured Adaptive Mesh Refinement Application
Infrastructure

I Very mature SAMR system [Hornung et al., 2006]
I Explicit algorithms directly supported, implicit methods through

interface to Hypre package
I Mapped geometry and some embedded boundary support
I https://computation-rnd.llnl.gov/SAMRAI/software.php

I BoxLib, AmrLib, MGLib, HGProj

I Berkley-Lab-AMR collection of C++ classes by J. Bell et al., 50, 000
LOC [Rendleman et al., 2000]

I Both multigrid and explicit algorithms supported
I https://ccse.lbl.gov/Downloads/index.html

I Chombo

I Redesign and extension of BoxLib by P. Colella et al.
I Both multigrid and explicit algorithms demonstrated
I Some embedded boundary support
I https://commons.lbl.gov/display/chombo

Structured adaptive mesh refinement 9

https://computation-rnd.llnl.gov/SAMRAI/software.php
https://ccse.lbl.gov/Downloads/index.html
https://commons.lbl.gov/display/chombo

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Available SAMR software

Systems that support general SAMR

I SAMRAI - Structured Adaptive Mesh Refinement Application
Infrastructure

I Very mature SAMR system [Hornung et al., 2006]
I Explicit algorithms directly supported, implicit methods through

interface to Hypre package
I Mapped geometry and some embedded boundary support
I https://computation-rnd.llnl.gov/SAMRAI/software.php

I BoxLib, AmrLib, MGLib, HGProj

I Berkley-Lab-AMR collection of C++ classes by J. Bell et al., 50, 000
LOC [Rendleman et al., 2000]

I Both multigrid and explicit algorithms supported
I https://ccse.lbl.gov/Downloads/index.html

I Chombo

I Redesign and extension of BoxLib by P. Colella et al.
I Both multigrid and explicit algorithms demonstrated
I Some embedded boundary support
I https://commons.lbl.gov/display/chombo

Structured adaptive mesh refinement 9

https://computation-rnd.llnl.gov/SAMRAI/software.php
https://ccse.lbl.gov/Downloads/index.html
https://commons.lbl.gov/display/chombo

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Available SAMR software

Further SAMR software

I Overture (Object-oriented tools for solving PDEs in complex geometries)

I Overlapping meshes for complex geometries by W. Henshaw et al.
[Brown et al., 1997]

I Explicit and implicit algorithms supported
I http://www.overtureframework.org

I AMRClaw within Clawpack [Berger and LeVeque, 1998]

I Serial 2D Fortran 77 code for the explicit Wave Propagation method
with own memory management

I http://depts.washington.edu/clawpack

I Amrita by J. Quirk

I Only 2D explicit finite volume methods supported
I Embedded boundary algorithm
I http://www.amrita-cfd.org

I Cell-based Cartesian AMR: RAGE

I Embedded boundary method
I Explicit and implicit algorithms
I [Gittings et al., 2008]

Structured adaptive mesh refinement 10

http://www.overtureframework.org
http://depts.washington.edu/clawpack
http://www.amrita-cfd.org
http://dx.doi.org/10.1088/1749-4699/1/1/015005

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Available SAMR software

Further SAMR software

I Overture (Object-oriented tools for solving PDEs in complex geometries)

I Overlapping meshes for complex geometries by W. Henshaw et al.
[Brown et al., 1997]

I Explicit and implicit algorithms supported
I http://www.overtureframework.org

I AMRClaw within Clawpack [Berger and LeVeque, 1998]

I Serial 2D Fortran 77 code for the explicit Wave Propagation method
with own memory management

I http://depts.washington.edu/clawpack

I Amrita by J. Quirk

I Only 2D explicit finite volume methods supported
I Embedded boundary algorithm
I http://www.amrita-cfd.org

I Cell-based Cartesian AMR: RAGE

I Embedded boundary method
I Explicit and implicit algorithms
I [Gittings et al., 2008]

Structured adaptive mesh refinement 10

http://www.overtureframework.org
http://depts.washington.edu/clawpack
http://www.amrita-cfd.org
http://dx.doi.org/10.1088/1749-4699/1/1/015005

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Available SAMR software

Further SAMR software

I Overture (Object-oriented tools for solving PDEs in complex geometries)

I Overlapping meshes for complex geometries by W. Henshaw et al.
[Brown et al., 1997]

I Explicit and implicit algorithms supported
I http://www.overtureframework.org

I AMRClaw within Clawpack [Berger and LeVeque, 1998]

I Serial 2D Fortran 77 code for the explicit Wave Propagation method
with own memory management

I http://depts.washington.edu/clawpack

I Amrita by J. Quirk

I Only 2D explicit finite volume methods supported
I Embedded boundary algorithm
I http://www.amrita-cfd.org

I Cell-based Cartesian AMR: RAGE

I Embedded boundary method
I Explicit and implicit algorithms
I [Gittings et al., 2008]

Structured adaptive mesh refinement 10

http://www.overtureframework.org
http://depts.washington.edu/clawpack
http://www.amrita-cfd.org
http://dx.doi.org/10.1088/1749-4699/1/1/015005

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Available SAMR software

Further SAMR software

I Overture (Object-oriented tools for solving PDEs in complex geometries)

I Overlapping meshes for complex geometries by W. Henshaw et al.
[Brown et al., 1997]

I Explicit and implicit algorithms supported
I http://www.overtureframework.org

I AMRClaw within Clawpack [Berger and LeVeque, 1998]

I Serial 2D Fortran 77 code for the explicit Wave Propagation method
with own memory management

I http://depts.washington.edu/clawpack

I Amrita by J. Quirk

I Only 2D explicit finite volume methods supported
I Embedded boundary algorithm
I http://www.amrita-cfd.org

I Cell-based Cartesian AMR: RAGE

I Embedded boundary method
I Explicit and implicit algorithms
I [Gittings et al., 2008]

Structured adaptive mesh refinement 10

http://www.overtureframework.org
http://depts.washington.edu/clawpack
http://www.amrita-cfd.org
http://dx.doi.org/10.1088/1749-4699/1/1/015005

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Available SAMR software

Further SAMR software

I Overture (Object-oriented tools for solving PDEs in complex geometries)

I Overlapping meshes for complex geometries by W. Henshaw et al.
[Brown et al., 1997]

I Explicit and implicit algorithms supported
I http://www.overtureframework.org

I AMRClaw within Clawpack [Berger and LeVeque, 1998]

I Serial 2D Fortran 77 code for the explicit Wave Propagation method
with own memory management

I http://depts.washington.edu/clawpack

I Amrita by J. Quirk

I Only 2D explicit finite volume methods supported
I Embedded boundary algorithm
I http://www.amrita-cfd.org

I Cell-based Cartesian AMR: RAGE

I Embedded boundary method
I Explicit and implicit algorithms
I [Gittings et al., 2008]

Structured adaptive mesh refinement 10

http://www.overtureframework.org
http://depts.washington.edu/clawpack
http://www.amrita-cfd.org
http://dx.doi.org/10.1088/1749-4699/1/1/015005

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Outline

Meshes and adaptation
Adaptivity on unstructured and structured meshes
Available SAMR software

The serial Berger-Colella SAMR method
Data structures and numerical update
Conservative flux correction
Level transfer operators
The basic recursive algorithm
Block generation and flagging of cells

Parallel SAMR method
Domain decomposition
A parallel SAMR algorithm

AMROC
Overview and basic software design
Classes

Structured adaptive mesh refinement 11

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

The mth refinement grid on level l

Notations:

I Boundary: ∂Gl,m

I Hull:
Ḡl,m = Gl,m ∪ ∂Gl,m

I Ghost cell region:
G̃σl,m = Gσl,m\Ḡl,m

µ1

µ2

Interior grid with buffer cells - Gl,m

Structured adaptive mesh refinement 12

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

The mth refinement grid on level l

Notations:

I Boundary: ∂Gl,m

I Hull:
Ḡl,m = Gl,m ∪ ∂Gl,m

I Ghost cell region:
G̃σl,m = Gσl,m\Ḡl,m

µ1

µ2

Interior grid with buffer cells - Gl,m

Structured adaptive mesh refinement 12

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

The mth refinement grid on level l

Notations:

I Boundary: ∂Gl,m

I Hull:
Ḡl,m = Gl,m ∪ ∂Gl,m

I Ghost cell region:
G̃σl,m = Gσl,m\Ḡl,m

µ1

µ2

Interior grid with buffer cells - Gl,m

Structured adaptive mesh refinement 12

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

The mth refinement grid on level l

Notations:

I Boundary: ∂Gl,m

I Hull:
Ḡl,m = Gl,m ∪ ∂Gl,m

I Ghost cell region:
G̃σl,m = Gσl,m\Ḡl,m

µ1

µ2

Interior grid with buffer cells - Gl,m

Complete grid

with ghost
cells - Gσ

l,m

Structured adaptive mesh refinement 12

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

The mth refinement grid on level l

Notations:

I Boundary: ∂Gl,m

I Hull:
Ḡl,m = Gl,m ∪ ∂Gl,m

I Ghost cell region:
G̃σl,m = Gσl,m\Ḡl,m

µ1

µ2

Interior grid with buffer cells - Gl,m

Complete grid

with ghost
cells - Gσ

l,m

Structured adaptive mesh refinement 12

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Refinement data

I Resolution: ∆tl :=
∆tl−1

rl
and ∆xn,l :=

∆xn,l−1

rl

I Refinement factor: rl ∈ N, rl ≥ 2 for l > 0 and r0 = 1

I Integer coordinate system for internal organization [Bell et al., 1994]:

∆xn,l
∼=

lmax∏
κ=l+1

rκ

I Computational Domain: G0 =
⋃M0

m=1 G0,m

I Domain of level l : Gl :=
⋃Ml

m=1 Gl,m with Gl,m ∩ Gl,n = ∅ for m 6= n

I Refinements are properly nested: G 1
l ⊂ Gl−1

I Assume a FD scheme with stencil radius s. Necessary data:

I Vector of state: Ql :=
⋃

m Q(G s
l,m)

I Numerical fluxes: Fn,l :=
⋃

m Fn(Ḡl,m)

I Flux corrections: δFn,l :=
⋃

m δF
n(∂Gl,m)

Structured adaptive mesh refinement 13

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Refinement data

I Resolution: ∆tl :=
∆tl−1

rl
and ∆xn,l :=

∆xn,l−1

rl

I Refinement factor: rl ∈ N, rl ≥ 2 for l > 0 and r0 = 1

I Integer coordinate system for internal organization [Bell et al., 1994]:

∆xn,l
∼=

lmax∏
κ=l+1

rκ

I Computational Domain: G0 =
⋃M0

m=1 G0,m

I Domain of level l : Gl :=
⋃Ml

m=1 Gl,m with Gl,m ∩ Gl,n = ∅ for m 6= n

I Refinements are properly nested: G 1
l ⊂ Gl−1

I Assume a FD scheme with stencil radius s. Necessary data:

I Vector of state: Ql :=
⋃

m Q(G s
l,m)

I Numerical fluxes: Fn,l :=
⋃

m Fn(Ḡl,m)

I Flux corrections: δFn,l :=
⋃

m δF
n(∂Gl,m)

Structured adaptive mesh refinement 13

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Refinement data

I Resolution: ∆tl :=
∆tl−1

rl
and ∆xn,l :=

∆xn,l−1

rl

I Refinement factor: rl ∈ N, rl ≥ 2 for l > 0 and r0 = 1

I Integer coordinate system for internal organization [Bell et al., 1994]:

∆xn,l
∼=

lmax∏
κ=l+1

rκ

I Computational Domain: G0 =
⋃M0

m=1 G0,m

I Domain of level l : Gl :=
⋃Ml

m=1 Gl,m with Gl,m ∩ Gl,n = ∅ for m 6= n

I Refinements are properly nested: G 1
l ⊂ Gl−1

I Assume a FD scheme with stencil radius s. Necessary data:

I Vector of state: Ql :=
⋃

m Q(G s
l,m)

I Numerical fluxes: Fn,l :=
⋃

m Fn(Ḡl,m)

I Flux corrections: δFn,l :=
⋃

m δF
n(∂Gl,m)

Structured adaptive mesh refinement 13

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Refinement data

I Resolution: ∆tl :=
∆tl−1

rl
and ∆xn,l :=

∆xn,l−1

rl

I Refinement factor: rl ∈ N, rl ≥ 2 for l > 0 and r0 = 1

I Integer coordinate system for internal organization [Bell et al., 1994]:

∆xn,l
∼=

lmax∏
κ=l+1

rκ

I Computational Domain: G0 =
⋃M0

m=1 G0,m

I Domain of level l : Gl :=
⋃Ml

m=1 Gl,m with Gl,m ∩ Gl,n = ∅ for m 6= n

I Refinements are properly nested: G 1
l ⊂ Gl−1

I Assume a FD scheme with stencil radius s. Necessary data:

I Vector of state: Ql :=
⋃

m Q(G s
l,m)

I Numerical fluxes: Fn,l :=
⋃

m Fn(Ḡl,m)

I Flux corrections: δFn,l :=
⋃

m δF
n(∂Gl,m)

Structured adaptive mesh refinement 13

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Refinement data

I Resolution: ∆tl :=
∆tl−1

rl
and ∆xn,l :=

∆xn,l−1

rl

I Refinement factor: rl ∈ N, rl ≥ 2 for l > 0 and r0 = 1

I Integer coordinate system for internal organization [Bell et al., 1994]:

∆xn,l
∼=

lmax∏
κ=l+1

rκ

I Computational Domain: G0 =
⋃M0

m=1 G0,m

I Domain of level l : Gl :=
⋃Ml

m=1 Gl,m with Gl,m ∩ Gl,n = ∅ for m 6= n

I Refinements are properly nested: G 1
l ⊂ Gl−1

I Assume a FD scheme with stencil radius s. Necessary data:

I Vector of state: Ql :=
⋃

m Q(G s
l,m)

I Numerical fluxes: Fn,l :=
⋃

m Fn(Ḡl,m)

I Flux corrections: δFn,l :=
⋃

m δF
n(∂Gl,m)

Structured adaptive mesh refinement 13

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Refinement data

I Resolution: ∆tl :=
∆tl−1

rl
and ∆xn,l :=

∆xn,l−1

rl

I Refinement factor: rl ∈ N, rl ≥ 2 for l > 0 and r0 = 1

I Integer coordinate system for internal organization [Bell et al., 1994]:

∆xn,l
∼=

lmax∏
κ=l+1

rκ

I Computational Domain: G0 =
⋃M0

m=1 G0,m

I Domain of level l : Gl :=
⋃Ml

m=1 Gl,m with Gl,m ∩ Gl,n = ∅ for m 6= n

I Refinements are properly nested: G 1
l ⊂ Gl−1

I Assume a FD scheme with stencil radius s. Necessary data:

I Vector of state: Ql :=
⋃

m Q(G s
l,m)

I Numerical fluxes: Fn,l :=
⋃

m Fn(Ḡl,m)

I Flux corrections: δFn,l :=
⋃

m δF
n(∂Gl,m)

Structured adaptive mesh refinement 13

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Refinement data

I Resolution: ∆tl :=
∆tl−1

rl
and ∆xn,l :=

∆xn,l−1

rl

I Refinement factor: rl ∈ N, rl ≥ 2 for l > 0 and r0 = 1

I Integer coordinate system for internal organization [Bell et al., 1994]:

∆xn,l
∼=

lmax∏
κ=l+1

rκ

I Computational Domain: G0 =
⋃M0

m=1 G0,m

I Domain of level l : Gl :=
⋃Ml

m=1 Gl,m with Gl,m ∩ Gl,n = ∅ for m 6= n

I Refinements are properly nested: G 1
l ⊂ Gl−1

I Assume a FD scheme with stencil radius s. Necessary data:

I Vector of state: Ql :=
⋃

m Q(G s
l,m)

I Numerical fluxes: Fn,l :=
⋃

m Fn(Ḡl,m)

I Flux corrections: δFn,l :=
⋃

m δF
n(∂Gl,m)

Structured adaptive mesh refinement 13

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Refinement data

I Resolution: ∆tl :=
∆tl−1

rl
and ∆xn,l :=

∆xn,l−1

rl

I Refinement factor: rl ∈ N, rl ≥ 2 for l > 0 and r0 = 1

I Integer coordinate system for internal organization [Bell et al., 1994]:

∆xn,l
∼=

lmax∏
κ=l+1

rκ

I Computational Domain: G0 =
⋃M0

m=1 G0,m

I Domain of level l : Gl :=
⋃Ml

m=1 Gl,m with Gl,m ∩ Gl,n = ∅ for m 6= n

I Refinements are properly nested: G 1
l ⊂ Gl−1

I Assume a FD scheme with stencil radius s. Necessary data:

I Vector of state: Ql :=
⋃

m Q(G s
l,m)

I Numerical fluxes: Fn,l :=
⋃

m Fn(Ḡl,m)

I Flux corrections: δFn,l :=
⋃

m δF
n(∂Gl,m)

Structured adaptive mesh refinement 13

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Refinement data

I Resolution: ∆tl :=
∆tl−1

rl
and ∆xn,l :=

∆xn,l−1

rl

I Refinement factor: rl ∈ N, rl ≥ 2 for l > 0 and r0 = 1

I Integer coordinate system for internal organization [Bell et al., 1994]:

∆xn,l
∼=

lmax∏
κ=l+1

rκ

I Computational Domain: G0 =
⋃M0

m=1 G0,m

I Domain of level l : Gl :=
⋃Ml

m=1 Gl,m with Gl,m ∩ Gl,n = ∅ for m 6= n

I Refinements are properly nested: G 1
l ⊂ Gl−1

I Assume a FD scheme with stencil radius s. Necessary data:

I Vector of state: Ql :=
⋃

m Q(G s
l,m)

I Numerical fluxes: Fn,l :=
⋃

m Fn(Ḡl,m)

I Flux corrections: δFn,l :=
⋃

m δF
n(∂Gl,m)

Structured adaptive mesh refinement 13

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Refinement data

I Resolution: ∆tl :=
∆tl−1

rl
and ∆xn,l :=

∆xn,l−1

rl

I Refinement factor: rl ∈ N, rl ≥ 2 for l > 0 and r0 = 1

I Integer coordinate system for internal organization [Bell et al., 1994]:

∆xn,l
∼=

lmax∏
κ=l+1

rκ

I Computational Domain: G0 =
⋃M0

m=1 G0,m

I Domain of level l : Gl :=
⋃Ml

m=1 Gl,m with Gl,m ∩ Gl,n = ∅ for m 6= n

I Refinements are properly nested: G 1
l ⊂ Gl−1

I Assume a FD scheme with stencil radius s. Necessary data:

I Vector of state: Ql :=
⋃

m Q(G s
l,m)

I Numerical fluxes: Fn,l :=
⋃

m Fn(Ḡl,m)

I Flux corrections: δFn,l :=
⋃

m δF
n(∂Gl,m)

Structured adaptive mesh refinement 13

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Setting of ghost cells

Structured adaptive mesh refinement 14

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Setting of ghost cells

Structured adaptive mesh refinement 14

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Setting of ghost cells

Synchronization with Gl - S̃
s
l,m = G̃ s

l,m ∩ Gl

Structured adaptive mesh refinement 14

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Setting of ghost cells

Synchronization with Gl - S̃
s
l,m = G̃ s

l,m ∩ Gl

Physical boundary conditions - P̃ s
l,m = G̃ s

l,m\G0

Structured adaptive mesh refinement 14

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Setting of ghost cells

Synchronization with Gl - S̃
s
l,m = G̃ s

l,m ∩ Gl

Interpolation from Gl−1 - Ĩ sl,m = G̃ s
l,m\(S̃ s

l,m ∪ P̃ s
l,m)

Physical boundary conditions - P̃ s
l,m = G̃ s

l,m\G0

Structured adaptive mesh refinement 14

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Numerical update

Time-explicit conservative finite volume scheme

H(∆t) : Qjk (t+∆t) = Qjk (t)− ∆t

∆x1

(
F1

j+ 1
2
,k − F1

j− 1
2
,k

)
− ∆t

∆x2

(
F2

j,k+ 1
2
− F2

j,k− 1
2

)

UpdateLevel(l)

For all m = 1 To Ml Do

Q(G s
l,m, t)

H(∆tl)

−→ Q(Gl,m, t + ∆tl) ,F
n(Ḡl,m, t)

If level l > 0
Add Fn(∂Gl,m, t) to δFn,l

If level l + 1 exists

Init δFn,l+1 with Fn(Ḡl,m ∩ ∂Gl+1, t)

Structured adaptive mesh refinement 15

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Numerical update

Time-explicit conservative finite volume scheme

H(∆t) : Qjk (t+∆t) = Qjk (t)− ∆t

∆x1

(
F1

j+ 1
2
,k − F1

j− 1
2
,k

)
− ∆t

∆x2

(
F2

j,k+ 1
2
− F2

j,k− 1
2

)
UpdateLevel(l)

For all m = 1 To Ml Do

Q(G s
l,m, t)

H(∆tl)

−→ Q(Gl,m, t + ∆tl) ,F
n(Ḡl,m, t)

If level l > 0
Add Fn(∂Gl,m, t) to δFn,l

If level l + 1 exists

Init δFn,l+1 with Fn(Ḡl,m ∩ ∂Gl+1, t)

Structured adaptive mesh refinement 15

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Numerical update

Time-explicit conservative finite volume scheme

H(∆t) : Qjk (t+∆t) = Qjk (t)− ∆t

∆x1

(
F1

j+ 1
2
,k − F1

j− 1
2
,k

)
− ∆t

∆x2

(
F2

j,k+ 1
2
− F2

j,k− 1
2

)
UpdateLevel(l)

For all m = 1 To Ml Do

Q(G s
l,m, t)

H(∆tl)

−→ Q(Gl,m, t + ∆tl) ,F
n(Ḡl,m, t)

If level l > 0
Add Fn(∂Gl,m, t) to δFn,l

If level l + 1 exists

Init δFn,l+1 with Fn(Ḡl,m ∩ ∂Gl+1, t)

Structured adaptive mesh refinement 15

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Numerical update

Time-explicit conservative finite volume scheme

H(∆t) : Qjk (t+∆t) = Qjk (t)− ∆t

∆x1

(
F1

j+ 1
2
,k − F1

j− 1
2
,k

)
− ∆t

∆x2

(
F2

j,k+ 1
2
− F2

j,k− 1
2

)
UpdateLevel(l)

For all m = 1 To Ml Do

Q(G s
l,m, t)

H(∆tl)

−→ Q(Gl,m, t + ∆tl) ,F
n(Ḡl,m, t)

If level l > 0
Add Fn(∂Gl,m, t) to δFn,l

If level l + 1 exists

Init δFn,l+1 with Fn(Ḡl,m ∩ ∂Gl+1, t)

Structured adaptive mesh refinement 15

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Conservative flux correction

Example: Cell j , k

Q̌l
jk (t + ∆tl) = Ql

jk (t)− ∆tl

∆x1,l

F1,l

j+ 1
2
,k
− 1

r 2
l+1

rl+1−1∑
κ=0

rl+1−1∑
ι=0

F1,l+1

v+ 1
2
,w+ι

(t + κ∆tl+1)


− ∆tl

∆x2,l

(
F2,l

j,k+ 1
2

− F2,l

j,k− 1
2

)

Correction pass:

1. δF1,l+1

j− 1
2
,k

:= −F1,l

j− 1
2
,k

2. δF1,l+1

j− 1
2
,k

:= δF1,l+1

j− 1
2
,k

+
1

r 2
l+1

rl+1−1∑
ι=0

F1,l+1

v+ 1
2
,w+ι

(t + κ∆tl+1)

3. Q̌l
jk (t + ∆tl) := Ql

jk (t + ∆tl) +
∆tl

∆x1,l
δF1,l+1

j− 1
2
,k

j − 1

v v+1

j

w

Structured adaptive mesh refinement 16

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Conservative flux correction

Example: Cell j , k

Q̌l
jk (t + ∆tl) = Ql

jk (t)− ∆tl

∆x1,l

F1,l

j+ 1
2
,k
− 1

r 2
l+1

rl+1−1∑
κ=0

rl+1−1∑
ι=0

F1,l+1

v+ 1
2
,w+ι

(t + κ∆tl+1)


− ∆tl

∆x2,l

(
F2,l

j,k+ 1
2

− F2,l

j,k− 1
2

)

Correction pass:

1. δF1,l+1

j− 1
2
,k

:= −F1,l

j− 1
2
,k

2. δF1,l+1

j− 1
2
,k

:= δF1,l+1

j− 1
2
,k

+
1

r 2
l+1

rl+1−1∑
ι=0

F1,l+1

v+ 1
2
,w+ι

(t + κ∆tl+1)

3. Q̌l
jk (t + ∆tl) := Ql

jk (t + ∆tl) +
∆tl

∆x1,l
δF1,l+1

j− 1
2
,k

j − 1

v v+1

j

w

Structured adaptive mesh refinement 16

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Conservative flux correction

Example: Cell j , k

Q̌l
jk (t + ∆tl) = Ql

jk (t)− ∆tl

∆x1,l

F1,l

j+ 1
2
,k
− 1

r 2
l+1

rl+1−1∑
κ=0

rl+1−1∑
ι=0

F1,l+1

v+ 1
2
,w+ι

(t + κ∆tl+1)


− ∆tl

∆x2,l

(
F2,l

j,k+ 1
2

− F2,l

j,k− 1
2

)

Correction pass:

1. δF1,l+1

j− 1
2
,k

:= −F1,l

j− 1
2
,k

2. δF1,l+1

j− 1
2
,k

:= δF1,l+1

j− 1
2
,k

+
1

r 2
l+1

rl+1−1∑
ι=0

F1,l+1

v+ 1
2
,w+ι

(t + κ∆tl+1)

3. Q̌l
jk (t + ∆tl) := Ql

jk (t + ∆tl) +
∆tl

∆x1,l
δF1,l+1

j− 1
2
,k

j − 1

v v+1

j

w

Structured adaptive mesh refinement 16

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Data structures and numerical update

Conservative flux correction

Example: Cell j , k

Q̌l
jk (t + ∆tl) = Ql

jk (t)− ∆tl

∆x1,l

F1,l

j+ 1
2
,k
− 1

r 2
l+1

rl+1−1∑
κ=0

rl+1−1∑
ι=0

F1,l+1

v+ 1
2
,w+ι

(t + κ∆tl+1)


− ∆tl

∆x2,l

(
F2,l

j,k+ 1
2

− F2,l

j,k− 1
2

)

Correction pass:

1. δF1,l+1

j− 1
2
,k

:= −F1,l

j− 1
2
,k

2. δF1,l+1

j− 1
2
,k

:= δF1,l+1

j− 1
2
,k

+
1

r 2
l+1

rl+1−1∑
ι=0

F1,l+1

v+ 1
2
,w+ι

(t + κ∆tl+1)

3. Q̌l
jk (t + ∆tl) := Ql

jk (t + ∆tl) +
∆tl

∆x1,l
δF1,l+1

j− 1
2
,k

j − 1

v v+1

j

w

Structured adaptive mesh refinement 16

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Conservative flux correction

Conservative flux correction II

I Level l cells needing
correction (G

rl+1
l+1 \Gl+1) ∩ Gl

I Corrections δFn,l+1 stored on
level l + 1 along ∂Gl+1

(lower-dimensional data
coarsened by rl+1)

I Init δFn,l+1 with level l fluxes
Fn,l (Ḡl ∩ ∂Gl+1)

I Add level l + 1 fluxes
Fn,l+1(∂Gl+1) to δFn,l

Structured adaptive mesh refinement 17

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Conservative flux correction

Conservative flux correction II

I Level l cells needing
correction (G

rl+1
l+1 \Gl+1) ∩ Gl

I Corrections δFn,l+1 stored on
level l + 1 along ∂Gl+1

(lower-dimensional data
coarsened by rl+1)

I Init δFn,l+1 with level l fluxes
Fn,l (Ḡl ∩ ∂Gl+1)

I Add level l + 1 fluxes
Fn,l+1(∂Gl+1) to δFn,l

Cells to correct

Structured adaptive mesh refinement 17

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Conservative flux correction

Conservative flux correction II

I Level l cells needing
correction (G

rl+1
l+1 \Gl+1) ∩ Gl

I Corrections δFn,l+1 stored on
level l + 1 along ∂Gl+1

(lower-dimensional data
coarsened by rl+1)

I Init δFn,l+1 with level l fluxes
Fn,l (Ḡl ∩ ∂Gl+1)

I Add level l + 1 fluxes
Fn,l+1(∂Gl+1) to δFn,l

Cells to correct δFn,l+1

Structured adaptive mesh refinement 17

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Conservative flux correction

Conservative flux correction II

I Level l cells needing
correction (G

rl+1
l+1 \Gl+1) ∩ Gl

I Corrections δFn,l+1 stored on
level l + 1 along ∂Gl+1

(lower-dimensional data
coarsened by rl+1)

I Init δFn,l+1 with level l fluxes
Fn,l (Ḡl ∩ ∂Gl+1)

I Add level l + 1 fluxes
Fn,l+1(∂Gl+1) to δFn,l

Cells to correct Fn,l δFn,l+1

Structured adaptive mesh refinement 17

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Conservative flux correction

Conservative flux correction II

I Level l cells needing
correction (G

rl+1
l+1 \Gl+1) ∩ Gl

I Corrections δFn,l+1 stored on
level l + 1 along ∂Gl+1

(lower-dimensional data
coarsened by rl+1)

I Init δFn,l+1 with level l fluxes
Fn,l (Ḡl ∩ ∂Gl+1)

I Add level l + 1 fluxes
Fn,l+1(∂Gl+1) to δFn,l

Cells to correct Fn,l Fn,l+1 δFn,l+1

Structured adaptive mesh refinement 17

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Level transfer operators

Level transfer operators
Conservative averaging (restriction):
Replace cells on level l covered by level l + 1, i.e.
Gl ∩ Gl+1, by

Q̂l
jk :=

1

(rl+1)2

rl+1−1∑
κ=0

rl+1−1∑
ι=0

Ql+1
v+κ,w+ι

Bilinear interpolation (prolongation):

Q̌l+1
vw := (1− f1)(1− f2)Ql

j−1,k−1 + f1(1− f2)Ql
j,k−1+

(1− f1)f2 Q
l
j−1,k + f1f2 Q

l
jk

k − 1

k

j − 1 j

v

w

(x j−1
1,l , xk−1

2,l)

with factors f1 :=
xv

1,l+1 − x j−1
1,l

∆x1,l
, f2 :=

xw
2,l+1 − xk−1

2,l

∆x2,l
derived from the spatial

coordinates of the cell centers (x j−1
1,l , x

k−1
2,l) and (xv

1,l+1, x
w
2,l+1).

For boundary conditions on Ĩ s
l : linear time interpolation

Q̃l+1(t+κ∆tl+1) :=

(
1− κ

rl+1

)
Q̌l+1(t)+

κ

rl+1
Q̌l+1(t+∆tl) for κ = 0, . . . rl+1

Structured adaptive mesh refinement 18

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Level transfer operators

Level transfer operators
Conservative averaging (restriction):
Replace cells on level l covered by level l + 1, i.e.
Gl ∩ Gl+1, by

Q̂l
jk :=

1

(rl+1)2

rl+1−1∑
κ=0

rl+1−1∑
ι=0

Ql+1
v+κ,w+ι

Bilinear interpolation (prolongation):

Q̌l+1
vw := (1− f1)(1− f2)Ql

j−1,k−1 + f1(1− f2)Ql
j,k−1+

(1− f1)f2 Q
l
j−1,k + f1f2 Q

l
jk

k − 1

k

j − 1 j

v

w

(x j−1
1,l , xk−1

2,l)

with factors f1 :=
xv

1,l+1 − x j−1
1,l

∆x1,l
, f2 :=

xw
2,l+1 − xk−1

2,l

∆x2,l
derived from the spatial

coordinates of the cell centers (x j−1
1,l , x

k−1
2,l) and (xv

1,l+1, x
w
2,l+1).

For boundary conditions on Ĩ s
l : linear time interpolation

Q̃l+1(t+κ∆tl+1) :=

(
1− κ

rl+1

)
Q̌l+1(t)+

κ

rl+1
Q̌l+1(t+∆tl) for κ = 0, . . . rl+1

Structured adaptive mesh refinement 18

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Level transfer operators

Level transfer operators
Conservative averaging (restriction):
Replace cells on level l covered by level l + 1, i.e.
Gl ∩ Gl+1, by

Q̂l
jk :=

1

(rl+1)2

rl+1−1∑
κ=0

rl+1−1∑
ι=0

Ql+1
v+κ,w+ι

Bilinear interpolation (prolongation):

Q̌l+1
vw := (1− f1)(1− f2)Ql

j−1,k−1 + f1(1− f2)Ql
j,k−1+

(1− f1)f2 Q
l
j−1,k + f1f2 Q

l
jk

k − 1

k

j − 1 j

v

w

(x j−1
1,l , xk−1

2,l)

with factors f1 :=
xv

1,l+1 − x j−1
1,l

∆x1,l
, f2 :=

xw
2,l+1 − xk−1

2,l

∆x2,l
derived from the spatial

coordinates of the cell centers (x j−1
1,l , x

k−1
2,l) and (xv

1,l+1, x
w
2,l+1).

For boundary conditions on Ĩ s
l : linear time interpolation

Q̃l+1(t+κ∆tl+1) :=

(
1− κ

rl+1

)
Q̌l+1(t)+

κ

rl+1
Q̌l+1(t+∆tl) for κ = 0, . . . rl+1

Structured adaptive mesh refinement 18

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

Recursive integration order

I Space-time interpolation of coarse data to set I s
l , l > 0

I Regridding:

I Creation of new grids, copy existing cells on level l > 0
I Spatial interpolation to initialize new cells on level l > 0

1

2

3 4

5

6 7

8

9 10

11

12 13

Root Level
r0 = 1

Level 1
r1 = 4

Level 2
r2 = 2

Time

Regridding of finer levels.
Base level () stays fixed.

Structured adaptive mesh refinement 19

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

Recursive integration order

I Space-time interpolation of coarse data to set I s
l , l > 0

I Regridding:

I Creation of new grids, copy existing cells on level l > 0
I Spatial interpolation to initialize new cells on level l > 0

1

2

3 4

5

6 7

8

9 10

11

12 13

Root Level
r0 = 1

Level 1
r1 = 4

Level 2
r2 = 2

Time

Regridding of finer levels.
Base level () stays fixed.

Structured adaptive mesh refinement 19

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

Recursive integration order

I Space-time interpolation of coarse data to set I s
l , l > 0

I Regridding:
I Creation of new grids, copy existing cells on level l > 0

I Spatial interpolation to initialize new cells on level l > 0

1

2

3 4

5

6 7

8

9 10

11

12 13

Root Level
r0 = 1

Level 1
r1 = 4

Level 2
r2 = 2

Time

Regridding of finer levels.
Base level () stays fixed.

Structured adaptive mesh refinement 19

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

Recursive integration order

I Space-time interpolation of coarse data to set I s
l , l > 0

I Regridding:
I Creation of new grids, copy existing cells on level l > 0
I Spatial interpolation to initialize new cells on level l > 0

1

2

3 4

5

6 7

8

9 10

11

12 13

Root Level
r0 = 1

Level 1
r1 = 4

Level 2
r2 = 2

Time

Regridding of finer levels.
Base level () stays fixed.

Structured adaptive mesh refinement 19

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

The basic recursive algorithm

AdvanceLevel(l)

Repeat rl times

Set ghost cells of Ql (t)

If time to regrid?

Regrid(l)

UpdateLevel(l)

If level l + 1 exists?

Set ghost cells of Ql (t + ∆tl)
AdvanceLevel(l + 1)
Average Ql+1(t + ∆tl) onto Ql (t + ∆tl)
Correct Ql (t + ∆tl) with δFl+1

t := t + ∆tl

Start - Start integration on level 0

l = 0, r0 = 1
AdvanceLevel(l)

I Recursion

I Restriction and flux
correction

I Re-organization of
hierarchical data

[Berger and Colella, 1988][Berger and Oliger, 1984]

Structured adaptive mesh refinement 20

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

The basic recursive algorithm

AdvanceLevel(l)

Repeat rl times

Set ghost cells of Ql (t)

If time to regrid?

Regrid(l)

UpdateLevel(l)
If level l + 1 exists?

Set ghost cells of Ql (t + ∆tl)
AdvanceLevel(l + 1)

Average Ql+1(t + ∆tl) onto Ql (t + ∆tl)
Correct Ql (t + ∆tl) with δFl+1

t := t + ∆tl

Start - Start integration on level 0

l = 0, r0 = 1
AdvanceLevel(l)

I Recursion

I Restriction and flux
correction

I Re-organization of
hierarchical data

[Berger and Colella, 1988][Berger and Oliger, 1984]

Structured adaptive mesh refinement 20

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

The basic recursive algorithm

AdvanceLevel(l)

Repeat rl times

Set ghost cells of Ql (t)

If time to regrid?

Regrid(l)

UpdateLevel(l)
If level l + 1 exists?

Set ghost cells of Ql (t + ∆tl)
AdvanceLevel(l + 1)
Average Ql+1(t + ∆tl) onto Ql (t + ∆tl)
Correct Ql (t + ∆tl) with δFl+1

t := t + ∆tl

Start - Start integration on level 0

l = 0, r0 = 1
AdvanceLevel(l)

I Recursion

I Restriction and flux
correction

I Re-organization of
hierarchical data

[Berger and Colella, 1988][Berger and Oliger, 1984]

Structured adaptive mesh refinement 20

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

The basic recursive algorithm

AdvanceLevel(l)

Repeat rl times

Set ghost cells of Ql (t)
If time to regrid?

Regrid(l)
UpdateLevel(l)
If level l + 1 exists?

Set ghost cells of Ql (t + ∆tl)
AdvanceLevel(l + 1)
Average Ql+1(t + ∆tl) onto Ql (t + ∆tl)
Correct Ql (t + ∆tl) with δFl+1

t := t + ∆tl

Start - Start integration on level 0

l = 0, r0 = 1
AdvanceLevel(l)

I Recursion

I Restriction and flux
correction

I Re-organization of
hierarchical data

[Berger and Colella, 1988][Berger and Oliger, 1984]

Structured adaptive mesh refinement 20

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

The basic recursive algorithm

AdvanceLevel(l)

Repeat rl times

Set ghost cells of Ql (t)
If time to regrid?

Regrid(l)
UpdateLevel(l)
If level l + 1 exists?

Set ghost cells of Ql (t + ∆tl)
AdvanceLevel(l + 1)
Average Ql+1(t + ∆tl) onto Ql (t + ∆tl)
Correct Ql (t + ∆tl) with δFl+1

t := t + ∆tl

Start - Start integration on level 0

l = 0, r0 = 1
AdvanceLevel(l)

I Recursion

I Restriction and flux
correction

I Re-organization of
hierarchical data

[Berger and Colella, 1988][Berger and Oliger, 1984]

Structured adaptive mesh refinement 20

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

The basic recursive algorithm

AdvanceLevel(l)

Repeat rl times

Set ghost cells of Ql (t)
If time to regrid?

Regrid(l)
UpdateLevel(l)
If level l + 1 exists?

Set ghost cells of Ql (t + ∆tl)
AdvanceLevel(l + 1)
Average Ql+1(t + ∆tl) onto Ql (t + ∆tl)
Correct Ql (t + ∆tl) with δFl+1

t := t + ∆tl

Start - Start integration on level 0

l = 0, r0 = 1
AdvanceLevel(l)

I Recursion

I Restriction and flux
correction

I Re-organization of
hierarchical data

[Berger and Colella, 1988][Berger and Oliger, 1984]

Structured adaptive mesh refinement 20

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

Regridding algorithm

Regrid(l) - Regrid all levels ι > l

For ι = lf Downto l Do

Flag Nι according to Qι(t)

If level ι+ 1 exists?

Flag Nι below Ğ ι+2

Flag buffer zone on Nι

Generate Ğ ι+1 from Nι

Ğl := Gl

For ι = l To lf Do

C Ğι := G0\Ğι
Ğι+1 := Ğι+1\C Ğ

1

ι

Recompose(l)

I Refinement flags:
N l :=

⋃
m N(∂Gl,m)

I Activate flags below higher
levels

I Flag buffer cells of b > κr cells,
κr steps between calls of
Regrid(l)

I Special cluster algorithm

I Use complement operation to
ensure proper nesting condition

Structured adaptive mesh refinement 21

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

Regridding algorithm

Regrid(l) - Regrid all levels ι > l

For ι = lf Downto l Do

Flag Nι according to Qι(t)

If level ι+ 1 exists?

Flag Nι below Ğ ι+2

Flag buffer zone on Nι

Generate Ğ ι+1 from Nι

Ğl := Gl

For ι = l To lf Do

C Ğι := G0\Ğι
Ğι+1 := Ğι+1\C Ğ

1

ι

Recompose(l)

I Refinement flags:
N l :=

⋃
m N(∂Gl,m)

I Activate flags below higher
levels

I Flag buffer cells of b > κr cells,
κr steps between calls of
Regrid(l)

I Special cluster algorithm

I Use complement operation to
ensure proper nesting condition

Structured adaptive mesh refinement 21

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

Regridding algorithm

Regrid(l) - Regrid all levels ι > l

For ι = lf Downto l Do

Flag Nι according to Qι(t)
If level ι+ 1 exists?

Flag Nι below Ğ ι+2

Flag buffer zone on Nι

Generate Ğ ι+1 from Nι

Ğl := Gl

For ι = l To lf Do

C Ğι := G0\Ğι
Ğι+1 := Ğι+1\C Ğ

1

ι

Recompose(l)

I Refinement flags:
N l :=

⋃
m N(∂Gl,m)

I Activate flags below higher
levels

I Flag buffer cells of b > κr cells,
κr steps between calls of
Regrid(l)

I Special cluster algorithm

I Use complement operation to
ensure proper nesting condition

Structured adaptive mesh refinement 21

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

Regridding algorithm

Regrid(l) - Regrid all levels ι > l

For ι = lf Downto l Do

Flag Nι according to Qι(t)
If level ι+ 1 exists?

Flag Nι below Ğ ι+2

Flag buffer zone on Nι

Generate Ğ ι+1 from Nι

Ğl := Gl

For ι = l To lf Do

C Ğι := G0\Ğι
Ğι+1 := Ğι+1\C Ğ

1

ι

Recompose(l)

I Refinement flags:
N l :=

⋃
m N(∂Gl,m)

I Activate flags below higher
levels

I Flag buffer cells of b > κr cells,
κr steps between calls of
Regrid(l)

I Special cluster algorithm

I Use complement operation to
ensure proper nesting condition

Structured adaptive mesh refinement 21

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

Regridding algorithm

Regrid(l) - Regrid all levels ι > l

For ι = lf Downto l Do

Flag Nι according to Qι(t)
If level ι+ 1 exists?

Flag Nι below Ğ ι+2

Flag buffer zone on Nι

Generate Ğ ι+1 from Nι

Ğl := Gl

For ι = l To lf Do

C Ğι := G0\Ğι
Ğι+1 := Ğι+1\C Ğ

1

ι

Recompose(l)

I Refinement flags:
N l :=

⋃
m N(∂Gl,m)

I Activate flags below higher
levels

I Flag buffer cells of b > κr cells,
κr steps between calls of
Regrid(l)

I Special cluster algorithm

I Use complement operation to
ensure proper nesting condition

Structured adaptive mesh refinement 21

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

Regridding algorithm

Regrid(l) - Regrid all levels ι > l

For ι = lf Downto l Do

Flag Nι according to Qι(t)
If level ι+ 1 exists?

Flag Nι below Ğ ι+2

Flag buffer zone on Nι

Generate Ğ ι+1 from Nι

Ğl := Gl

For ι = l To lf Do

C Ğι := G0\Ğι
Ğι+1 := Ğι+1\C Ğ

1

ι

Recompose(l)

I Refinement flags:
N l :=

⋃
m N(∂Gl,m)

I Activate flags below higher
levels

I Flag buffer cells of b > κr cells,
κr steps between calls of
Regrid(l)

I Special cluster algorithm

I Use complement operation to
ensure proper nesting condition

Structured adaptive mesh refinement 21

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

Regridding algorithm

Regrid(l) - Regrid all levels ι > l

For ι = lf Downto l Do

Flag Nι according to Qι(t)
If level ι+ 1 exists?

Flag Nι below Ğ ι+2

Flag buffer zone on Nι

Generate Ğ ι+1 from Nι

Ğl := Gl

For ι = l To lf Do

C Ğι := G0\Ğι
Ğι+1 := Ğι+1\C Ğ

1

ι

Recompose(l)

I Refinement flags:
N l :=

⋃
m N(∂Gl,m)

I Activate flags below higher
levels

I Flag buffer cells of b > κr cells,
κr steps between calls of
Regrid(l)

I Special cluster algorithm

I Use complement operation to
ensure proper nesting condition

Structured adaptive mesh refinement 21

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

Recomposition of data

Recompose(l) - Reorganize all levels ι > l

For ι = l + 1 To lf + 1 Do

Interpolate Qι−1(t) onto Q̆ι(t)

Copy Qι(t) onto Q̆ι(t)

Set ghost cells of Q̆ι(t)

Qι(t) := Q̆ι(t), Gι := Ğι

I Creates max. 1 level above lf , but can remove multiple level if Ğι
empty (no coarsening!)

I Use spatial interpolation on entire data Q̆ι(t)

I Overwrite where old data exists

I Synchronization and physical boundary conditions

Structured adaptive mesh refinement 22

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

Recomposition of data

Recompose(l) - Reorganize all levels ι > l

For ι = l + 1 To lf + 1 Do

Interpolate Qι−1(t) onto Q̆ι(t)

Copy Qι(t) onto Q̆ι(t)

Set ghost cells of Q̆ι(t)

Qι(t) := Q̆ι(t), Gι := Ğι

I Creates max. 1 level above lf , but can remove multiple level if Ğι
empty (no coarsening!)

I Use spatial interpolation on entire data Q̆ι(t)

I Overwrite where old data exists

I Synchronization and physical boundary conditions

Structured adaptive mesh refinement 22

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

Recomposition of data

Recompose(l) - Reorganize all levels ι > l

For ι = l + 1 To lf + 1 Do

Interpolate Qι−1(t) onto Q̆ι(t)

Copy Qι(t) onto Q̆ι(t)

Set ghost cells of Q̆ι(t)

Qι(t) := Q̆ι(t), Gι := Ğι

I Creates max. 1 level above lf , but can remove multiple level if Ğι
empty (no coarsening!)

I Use spatial interpolation on entire data Q̆ι(t)

I Overwrite where old data exists

I Synchronization and physical boundary conditions

Structured adaptive mesh refinement 22

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

Recomposition of data

Recompose(l) - Reorganize all levels ι > l

For ι = l + 1 To lf + 1 Do

Interpolate Qι−1(t) onto Q̆ι(t)

Copy Qι(t) onto Q̆ι(t)

Set ghost cells of Q̆ι(t)

Qι(t) := Q̆ι(t), Gι := Ğι

I Creates max. 1 level above lf , but can remove multiple level if Ğι
empty (no coarsening!)

I Use spatial interpolation on entire data Q̆ι(t)

I Overwrite where old data exists

I Synchronization and physical boundary conditions

Structured adaptive mesh refinement 22

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

The basic recursive algorithm

Recomposition of data

Recompose(l) - Reorganize all levels ι > l

For ι = l + 1 To lf + 1 Do

Interpolate Qι−1(t) onto Q̆ι(t)

Copy Qι(t) onto Q̆ι(t)

Set ghost cells of Q̆ι(t)

Qι(t) := Q̆ι(t), Gι := Ğι

I Creates max. 1 level above lf , but can remove multiple level if Ğι
empty (no coarsening!)

I Use spatial interpolation on entire data Q̆ι(t)

I Overwrite where old data exists

I Synchronization and physical boundary conditions

Structured adaptive mesh refinement 22

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

Clustering by signatures

x x

x x

x x

x x

x x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x x

2

2

0

2

2

2

3

3

6

6

6 6 2 3 2 2 2 2 2Υ

Υ Flagged cells per row/column
∆ Second derivative of Υ, ∆ = Υν+1 − 2 Υν + Υν−1

Technique from image detection: [Bell et al., 1994], see also

[Berger and Rigoutsos, 1991], [Berger, 1986]
Structured adaptive mesh refinement 23

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

Clustering by signatures

x x

x x

x x

x x

x x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x x

2

2

0

2

2

2

3

3

6

6

6 6 2 3 2 2 2 2 2Υ

Υ Flagged cells per row/column
∆ Second derivative of Υ, ∆ = Υν+1 − 2 Υν + Υν−1

Technique from image detection: [Bell et al., 1994], see also

[Berger and Rigoutsos, 1991], [Berger, 1986]
Structured adaptive mesh refinement 23

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

Clustering by signatures

x x

x x

x x

x x

x x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x x

2

2

0

2

2

2

3

3

6

6

6 6 2 3 2 2 2 2 2Υ

x x

x x

x x

x x

x x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x x

2

2

2

3

3

6

6

0

1

-1

3

-3

4 4 2 3 2 2 2 2 2

-2 3 -2 1 0 0 0

Υ

∆
Υ Flagged cells per row/column
∆ Second derivative of Υ, ∆ = Υν+1 − 2 Υν + Υν−1

Technique from image detection: [Bell et al., 1994], see also

[Berger and Rigoutsos, 1991], [Berger, 1986]
Structured adaptive mesh refinement 23

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

Clustering by signatures

x x

x x

x x

x x

x x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x x

2

2

0

2

2

2

3

3

6

6

6 6 2 3 2 2 2 2 2Υ

x x

x x

x x

x x

x x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x x

2

2

2

3

3

6

6

0

1

-1

3

-3

4 4 2 3 2 2 2 2 2

-2 3 -2 1 0 0 0

Υ

∆
Υ Flagged cells per row/column
∆ Second derivative of Υ, ∆ = Υν+1 − 2 Υν + Υν−1

Technique from image detection: [Bell et al., 1994], see also

[Berger and Rigoutsos, 1991], [Berger, 1986]
Structured adaptive mesh refinement 23

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

x x

x x

x x

x x

x x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x x

2

2

2

3

3

0

1

-1

4 4 2 1 1

-2 11

Υ

∆

Recursive generation of Ğl,m

1. 0 in Υ

2. Largest difference in ∆

3. Stop if ratio between flagged and unflagged cell > ηtol

Structured adaptive mesh refinement 24

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

x x

x x

x x

x x

x x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x x

2

2

2

3

3

0

1

-1

4 4 2 1 1

-2 11

Υ

∆

Recursive generation of Ğl,m

1. 0 in Υ

2. Largest difference in ∆

3. Stop if ratio between flagged and unflagged cell > ηtol

Structured adaptive mesh refinement 24

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

x x

x x

x x

x x

x x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x x

2

2

2

3

3

0

1

-1

4 4 2 1 1

-2 11

Υ

∆

x x

x x

x x

x x

x x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x x

1

3

2 1 1

1

Υ

∆

Recursive generation of Ğl,m

1. 0 in Υ

2. Largest difference in ∆

3. Stop if ratio between flagged and unflagged cell > ηtol

Structured adaptive mesh refinement 24

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

x x

x x

x x

x x

x x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x x

2

2

2

3

3

0

1

-1

4 4 2 1 1

-2 11

Υ

∆

x x

x x

x x

x x

x x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x x

1

3

2 1 1

1

Υ

∆

Recursive generation of Ğl,m

1. 0 in Υ

2. Largest difference in ∆

3. Stop if ratio between flagged and unflagged cell > ηtol

Structured adaptive mesh refinement 24

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

Refinement criteria

Scaled gradient of scalar quantity w

|w(Qj+1,k)−w(Qjk)| > εw , |w(Qj,k+1)−w(Qjk)| > εw , |w(Qj+1,k+1)−w(Qjk)| > εw

Heuristic error estimation [Berger, 1982]:
Local truncation error of scheme of order o

q(x, t + ∆t)−H(∆t)(q(·, t)) = C∆to+1 + O(∆to+2)

For q smooth after 2 steps ∆t

q(x, t + ∆t)−H(∆t)
2 (q(·, t −∆t)) = 2C∆to+1 + O(∆to+2)

and after 1 step with 2∆t

q(x, t + ∆t)−H(2∆t)(q(·, t −∆t)) = 2o+1C∆to+1 + O(∆to+2)

Gives

H(∆t)
2 (q(·, t −∆t))−H(2∆t)(q(·, t −∆t)) = (2o+1 − 2)C∆to+1 + O(∆to+2)

Structured adaptive mesh refinement 25

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

Refinement criteria

Scaled gradient of scalar quantity w

|w(Qj+1,k)−w(Qjk)| > εw , |w(Qj,k+1)−w(Qjk)| > εw , |w(Qj+1,k+1)−w(Qjk)| > εw

Heuristic error estimation [Berger, 1982]:
Local truncation error of scheme of order o

q(x, t + ∆t)−H(∆t)(q(·, t)) = C∆to+1 + O(∆to+2)

For q smooth after 2 steps ∆t

q(x, t + ∆t)−H(∆t)
2 (q(·, t −∆t)) = 2C∆to+1 + O(∆to+2)

and after 1 step with 2∆t

q(x, t + ∆t)−H(2∆t)(q(·, t −∆t)) = 2o+1C∆to+1 + O(∆to+2)

Gives

H(∆t)
2 (q(·, t −∆t))−H(2∆t)(q(·, t −∆t)) = (2o+1 − 2)C∆to+1 + O(∆to+2)

Structured adaptive mesh refinement 25

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

Refinement criteria

Scaled gradient of scalar quantity w

|w(Qj+1,k)−w(Qjk)| > εw , |w(Qj,k+1)−w(Qjk)| > εw , |w(Qj+1,k+1)−w(Qjk)| > εw

Heuristic error estimation [Berger, 1982]:
Local truncation error of scheme of order o

q(x, t + ∆t)−H(∆t)(q(·, t)) = C∆to+1 + O(∆to+2)

For q smooth after 2 steps ∆t

q(x, t + ∆t)−H(∆t)
2 (q(·, t −∆t)) = 2C∆to+1 + O(∆to+2)

and after 1 step with 2∆t

q(x, t + ∆t)−H(2∆t)(q(·, t −∆t)) = 2o+1C∆to+1 + O(∆to+2)

Gives

H(∆t)
2 (q(·, t −∆t))−H(2∆t)(q(·, t −∆t)) = (2o+1 − 2)C∆to+1 + O(∆to+2)

Structured adaptive mesh refinement 25

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

Refinement criteria

Scaled gradient of scalar quantity w

|w(Qj+1,k)−w(Qjk)| > εw , |w(Qj,k+1)−w(Qjk)| > εw , |w(Qj+1,k+1)−w(Qjk)| > εw

Heuristic error estimation [Berger, 1982]:
Local truncation error of scheme of order o

q(x, t + ∆t)−H(∆t)(q(·, t)) = C∆to+1 + O(∆to+2)

For q smooth after 2 steps ∆t

q(x, t + ∆t)−H(∆t)
2 (q(·, t −∆t)) = 2C∆to+1 + O(∆to+2)

and after 1 step with 2∆t

q(x, t + ∆t)−H(2∆t)(q(·, t −∆t)) = 2o+1C∆to+1 + O(∆to+2)

Gives

H(∆t)
2 (q(·, t −∆t))−H(2∆t)(q(·, t −∆t)) = (2o+1 − 2)C∆to+1 + O(∆to+2)

Structured adaptive mesh refinement 25

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

Refinement criteria

Scaled gradient of scalar quantity w

|w(Qj+1,k)−w(Qjk)| > εw , |w(Qj,k+1)−w(Qjk)| > εw , |w(Qj+1,k+1)−w(Qjk)| > εw

Heuristic error estimation [Berger, 1982]:
Local truncation error of scheme of order o

q(x, t + ∆t)−H(∆t)(q(·, t)) = C∆to+1 + O(∆to+2)

For q smooth after 2 steps ∆t

q(x, t + ∆t)−H(∆t)
2 (q(·, t −∆t)) = 2C∆to+1 + O(∆to+2)

and after 1 step with 2∆t

q(x, t + ∆t)−H(2∆t)(q(·, t −∆t)) = 2o+1C∆to+1 + O(∆to+2)

Gives

H(∆t)
2 (q(·, t −∆t))−H(2∆t)(q(·, t −∆t)) = (2o+1 − 2)C∆to+1 + O(∆to+2)

Structured adaptive mesh refinement 25

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

Heuristic error estimation for FV methods

1. Error estimation on
interior cells

Structured adaptive mesh refinement 26

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

Heuristic error estimation for FV methods

1. Error estimation on
interior cells

H∆tl Ql (tl −∆tl)

Structured adaptive mesh refinement 26

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

Heuristic error estimation for FV methods

1. Error estimation on
interior cells

H∆tl Ql (tl −∆tl)

Structured adaptive mesh refinement 26

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

Heuristic error estimation for FV methods

1. Error estimation on
interior cells

H∆tl Ql (tl −∆tl) H∆tl (H∆tl Ql (tl −∆tl))

= H∆tl
2 Ql (tl −∆tl)

Structured adaptive mesh refinement 26

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

Heuristic error estimation for FV methods

1. Error estimation on
interior cells

2. Create temporary Grid
coarsened by factor 2

Initialize with fine-grid-
values of preceding
time step

H∆tl Ql (tl −∆tl) H∆tl (H∆tl Ql (tl −∆tl))

= H∆tl
2 Ql (tl −∆tl)

Structured adaptive mesh refinement 26

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

Heuristic error estimation for FV methods

1. Error estimation on
interior cells

2. Create temporary Grid
coarsened by factor 2

Initialize with fine-grid-
values of preceding
time step

H∆tl Ql (tl −∆tl) H∆tl (H∆tl Ql (tl −∆tl))

= H∆tl
2 Ql (tl −∆tl)

H2∆tl Q̄l (tl −∆tl)

Structured adaptive mesh refinement 26

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

Heuristic error estimation for FV methods

1. Error estimation on
interior cells

2. Create temporary Grid
coarsened by factor 2

Initialize with fine-grid-
values of preceding
time step

3. Compare tempo-
rary solutions

H∆tl Ql (tl −∆tl) H∆tl (H∆tl Ql (tl −∆tl))

= H∆tl
2 Ql (tl −∆tl)

H2∆tl Q̄l (tl −∆tl)

Structured adaptive mesh refinement 26

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

Usage of heuristic error estimation

Current solution integrated tentatively 1 step with ∆tl and coarsened

Q̄(tl + ∆tl) := Restrict
(
H∆tl

2 Ql (tl −∆tl)
)

Previous solution coarsened and integrated 1 step with 2∆tl

Q(tl + ∆tl) := H2∆tl Restrict
(
Ql (tl −∆tl)

)

Local error estimation of scalar quantity w

τw
jk :=

|w(Q̄jk (t + ∆t))− w(Qjk (t + ∆t))|
2o+1 − 2

In practice [Deiterding, 2003] use

τw
jk

max(|w(Qjk (t + ∆t))|,Sw)
> ηr

w

Structured adaptive mesh refinement 27

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

Usage of heuristic error estimation

Current solution integrated tentatively 1 step with ∆tl and coarsened

Q̄(tl + ∆tl) := Restrict
(
H∆tl

2 Ql (tl −∆tl)
)

Previous solution coarsened and integrated 1 step with 2∆tl

Q(tl + ∆tl) := H2∆tl Restrict
(
Ql (tl −∆tl)

)
Local error estimation of scalar quantity w

τw
jk :=

|w(Q̄jk (t + ∆t))− w(Qjk (t + ∆t))|
2o+1 − 2

In practice [Deiterding, 2003] use

τw
jk

max(|w(Qjk (t + ∆t))|,Sw)
> ηr

w

Structured adaptive mesh refinement 27

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Block generation and flagging of cells

Usage of heuristic error estimation

Current solution integrated tentatively 1 step with ∆tl and coarsened

Q̄(tl + ∆tl) := Restrict
(
H∆tl

2 Ql (tl −∆tl)
)

Previous solution coarsened and integrated 1 step with 2∆tl

Q(tl + ∆tl) := H2∆tl Restrict
(
Ql (tl −∆tl)

)
Local error estimation of scalar quantity w

τw
jk :=

|w(Q̄jk (t + ∆t))− w(Qjk (t + ∆t))|
2o+1 − 2

In practice [Deiterding, 2003] use

τw
jk

max(|w(Qjk (t + ∆t))|,Sw)
> ηr

w

Structured adaptive mesh refinement 27

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Outline

Meshes and adaptation
Adaptivity on unstructured and structured meshes
Available SAMR software

The serial Berger-Colella SAMR method
Data structures and numerical update
Conservative flux correction
Level transfer operators
The basic recursive algorithm
Block generation and flagging of cells

Parallel SAMR method
Domain decomposition
A parallel SAMR algorithm

AMROC
Overview and basic software design
Classes

Structured adaptive mesh refinement 28

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Parallelization strategies

Decomposition of the hierarchical data

I Distribution of each grid

I Separate distribution of each level, cf.
[Rendleman et al., 2000]

I Rigorous domain decomposition

I Data of all levels resides on same
node

I Grid hierarchy defines unique
”floor-plan”

I Redistribution of data blocks
during reorganization of
hierarchical data

I Synchronization when setting
ghost cells

Processor 1 Processor 2

Structured adaptive mesh refinement 29

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Parallelization strategies

Decomposition of the hierarchical data

I Distribution of each grid

I Separate distribution of each level, cf.
[Rendleman et al., 2000]

I Rigorous domain decomposition

I Data of all levels resides on same
node

I Grid hierarchy defines unique
”floor-plan”

I Redistribution of data blocks
during reorganization of
hierarchical data

I Synchronization when setting
ghost cells

Processor 1 Processor 2

Structured adaptive mesh refinement 29

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Parallelization strategies

Decomposition of the hierarchical data

I Distribution of each grid

I Separate distribution of each level, cf.
[Rendleman et al., 2000]

I Rigorous domain decomposition

I Data of all levels resides on same
node

I Grid hierarchy defines unique
”floor-plan”

I Redistribution of data blocks
during reorganization of
hierarchical data

I Synchronization when setting
ghost cells

Processor 1 Processor 2

Structured adaptive mesh refinement 29

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Parallelization strategies

Decomposition of the hierarchical data

I Distribution of each grid

I Separate distribution of each level, cf.
[Rendleman et al., 2000]

I Rigorous domain decomposition

I Data of all levels resides on same
node

I Grid hierarchy defines unique
”floor-plan”

I Redistribution of data blocks
during reorganization of
hierarchical data

I Synchronization when setting
ghost cells

Processor 1 Processor 2

Structured adaptive mesh refinement 29

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Parallelization strategies

Decomposition of the hierarchical data

I Distribution of each grid

I Separate distribution of each level, cf.
[Rendleman et al., 2000]

I Rigorous domain decomposition

I Data of all levels resides on same
node

I Grid hierarchy defines unique
”floor-plan”

I Redistribution of data blocks
during reorganization of
hierarchical data

I Synchronization when setting
ghost cells

Processor 1 Processor 2

Structured adaptive mesh refinement 29

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Parallelization strategies

Decomposition of the hierarchical data

I Distribution of each grid

I Separate distribution of each level, cf.
[Rendleman et al., 2000]

I Rigorous domain decomposition

I Data of all levels resides on same
node

I Grid hierarchy defines unique
”floor-plan”

I Redistribution of data blocks
during reorganization of
hierarchical data

I Synchronization when setting
ghost cells

Processor 1 Processor 2

Structured adaptive mesh refinement 29

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Parallelization strategies

Decomposition of the hierarchical data

I Distribution of each grid

I Separate distribution of each level, cf.
[Rendleman et al., 2000]

I Rigorous domain decomposition

I Data of all levels resides on same
node

I Grid hierarchy defines unique
”floor-plan”

I Redistribution of data blocks
during reorganization of
hierarchical data

I Synchronization when setting
ghost cells

Processor 1 Processor 2

Structured adaptive mesh refinement 29

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Rigorous domain decomposition formalized

Parallel machine with P identical nodes. P non-overlapping portions G p
0 ,

p = 1, . . . ,P as

G0 =
P⋃

p=1

G p
0 with G p

0 ∩ G q
0 = ∅ for p 6= q

Higher level domains Gl follow decomposition of root level

G p
l := Gl ∩ G p

0

With Nl (·) denoting number of cells, we estimate the workload as

W(Ω) =

lmax∑
l=0

[
Nl (Gl ∩ Ω)

l∏
κ=0

rκ

]
Equal work distribution necessitates

Lp :=
P · W(G p

0)

W(G0)
≈ 1 for all p = 1, . . . ,P

[Deiterding, 2005]

Structured adaptive mesh refinement 30

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Rigorous domain decomposition formalized

Parallel machine with P identical nodes. P non-overlapping portions G p
0 ,

p = 1, . . . ,P as

G0 =
P⋃

p=1

G p
0 with G p

0 ∩ G q
0 = ∅ for p 6= q

Higher level domains Gl follow decomposition of root level

G p
l := Gl ∩ G p

0

With Nl (·) denoting number of cells, we estimate the workload as

W(Ω) =

lmax∑
l=0

[
Nl (Gl ∩ Ω)

l∏
κ=0

rκ

]
Equal work distribution necessitates

Lp :=
P · W(G p

0)

W(G0)
≈ 1 for all p = 1, . . . ,P

[Deiterding, 2005]

Structured adaptive mesh refinement 30

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Rigorous domain decomposition formalized

Parallel machine with P identical nodes. P non-overlapping portions G p
0 ,

p = 1, . . . ,P as

G0 =
P⋃

p=1

G p
0 with G p

0 ∩ G q
0 = ∅ for p 6= q

Higher level domains Gl follow decomposition of root level

G p
l := Gl ∩ G p

0

With Nl (·) denoting number of cells, we estimate the workload as

W(Ω) =

lmax∑
l=0

[
Nl (Gl ∩ Ω)

l∏
κ=0

rκ

]

Equal work distribution necessitates

Lp :=
P · W(G p

0)

W(G0)
≈ 1 for all p = 1, . . . ,P

[Deiterding, 2005]

Structured adaptive mesh refinement 30

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Rigorous domain decomposition formalized

Parallel machine with P identical nodes. P non-overlapping portions G p
0 ,

p = 1, . . . ,P as

G0 =
P⋃

p=1

G p
0 with G p

0 ∩ G q
0 = ∅ for p 6= q

Higher level domains Gl follow decomposition of root level

G p
l := Gl ∩ G p

0

With Nl (·) denoting number of cells, we estimate the workload as

W(Ω) =

lmax∑
l=0

[
Nl (Gl ∩ Ω)

l∏
κ=0

rκ

]
Equal work distribution necessitates

Lp :=
P · W(G p

0)

W(G0)
≈ 1 for all p = 1, . . . ,P

[Deiterding, 2005]

Structured adaptive mesh refinement 30

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Ghost cell setting

Local synchronization

S̃s,p
l,m = G̃ s,p

l,m ∩ G p
l

Parallel synchronization

S̃s,q
l,m = G̃ s,p

l,m ∩G q
l , q 6= p

Interpolation and physi-
cal boundary conditions
remain strictly local

I Scheme H(∆tl)

evaluated locally

I Restriction and
propolongation
local

Processor 1 Processor 2

Ghost cell values:

Interpolation
Local synchronization

Parallel synchronization
Physical boundary

Structured adaptive mesh refinement 31

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Ghost cell setting

Local synchronization

S̃s,p
l,m = G̃ s,p

l,m ∩ G p
l

Parallel synchronization

S̃s,q
l,m = G̃ s,p

l,m ∩G q
l , q 6= p

Interpolation and physi-
cal boundary conditions
remain strictly local

I Scheme H(∆tl)

evaluated locally

I Restriction and
propolongation
local

Processor 1 Processor 2

Ghost cell values:

Interpolation
Local synchronization

Parallel synchronization
Physical boundary

Structured adaptive mesh refinement 31

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Ghost cell setting

Local synchronization

S̃s,p
l,m = G̃ s,p

l,m ∩ G p
l

Parallel synchronization

S̃s,q
l,m = G̃ s,p

l,m ∩G q
l , q 6= p

Interpolation and physi-
cal boundary conditions
remain strictly local

I Scheme H(∆tl)

evaluated locally

I Restriction and
propolongation
local

Processor 1 Processor 2

Ghost cell values:

Interpolation
Local synchronization

Parallel synchronization
Physical boundary

Structured adaptive mesh refinement 31

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Ghost cell setting

Local synchronization

S̃s,p
l,m = G̃ s,p

l,m ∩ G p
l

Parallel synchronization

S̃s,q
l,m = G̃ s,p

l,m ∩G q
l , q 6= p

Interpolation and physi-
cal boundary conditions
remain strictly local

I Scheme H(∆tl)

evaluated locally

I Restriction and
propolongation
local

Processor 1 Processor 2

Ghost cell values:

Interpolation
Local synchronization

Parallel synchronization
Physical boundary

Structured adaptive mesh refinement 31

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Ghost cell setting

Local synchronization

S̃s,p
l,m = G̃ s,p

l,m ∩ G p
l

Parallel synchronization

S̃s,q
l,m = G̃ s,p

l,m ∩G q
l , q 6= p

Interpolation and physi-
cal boundary conditions
remain strictly local

I Scheme H(∆tl)

evaluated locally

I Restriction and
propolongation
local

Processor 1 Processor 2

Ghost cell values:

Interpolation
Local synchronization

Parallel synchronization
Physical boundary

Structured adaptive mesh refinement 31

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Parallel flux correction

1. Strictly local: Init δFn,l+1 with Fn(Ḡl,m ∩ ∂Gl+1, t)

2. Strictly local: Add Fn(∂Gl,m, t) to δFn,l

3. Parallel communication: Correct Ql (t + ∆tl) with δFl+1

Node p Node qv + 1
2

w

j − 1 j j − 1 j

k

Structured adaptive mesh refinement 32

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Parallel flux correction

1. Strictly local: Init δFn,l+1 with Fn(Ḡl,m ∩ ∂Gl+1, t)

2. Strictly local: Add Fn(∂Gl,m, t) to δFn,l

3. Parallel communication: Correct Ql (t + ∆tl) with δFl+1

Node p Node qv + 1
2

w

j − 1 j j − 1 j

k

Fn,l

Structured adaptive mesh refinement 32

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Parallel flux correction

1. Strictly local: Init δFn,l+1 with Fn(Ḡl,m ∩ ∂Gl+1, t)

2. Strictly local: Add Fn(∂Gl,m, t) to δFn,l

3. Parallel communication: Correct Ql (t + ∆tl) with δFl+1

Node p Node qv + 1
2

w

j − 1 j j − 1 j

k

Fn,l δFn,l+1

Structured adaptive mesh refinement 32

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Parallel flux correction

1. Strictly local: Init δFn,l+1 with Fn(Ḡl,m ∩ ∂Gl+1, t)

2. Strictly local: Add Fn(∂Gl,m, t) to δFn,l

3. Parallel communication: Correct Ql (t + ∆tl) with δFl+1

Node p Node qv + 1
2

w

j − 1 j j − 1 j

k

Fn,l Fn,l+1 δFn,l+1

Structured adaptive mesh refinement 32

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Domain decomposition

Parallel flux correction

1. Strictly local: Init δFn,l+1 with Fn(Ḡl,m ∩ ∂Gl+1, t)

2. Strictly local: Add Fn(∂Gl,m, t) to δFn,l

3. Parallel communication: Correct Ql (t + ∆tl) with δFl+1

Node p Node qv + 1
2

w

j − 1 j j − 1 j

k

Fn,l Fn,l+1 δFn,l+1

parallel exchange

Structured adaptive mesh refinement 32

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

The recursive algorithm in parallel
AdvanceLevel(l)

Repeat rl times

Set ghost cells of Ql (t)
If time to regrid?

Regrid(l)
UpdateLevel(l)
If level l + 1 exists?

Set ghost cells of Ql (t + ∆tl)
AdvanceLevel(l + 1)
Average Ql+1(t + ∆tl) onto Ql (t + ∆tl)
Correct Ql (t + ∆tl) with δFl+1

t := t + ∆tl

UpdateLevel(l)

For all m = 1 To Ml Do

Q(G s
l,m, t)

H(∆tl)

−→ Q(Gl,m, t + ∆tl) ,F
n(Ḡl,m, t)

If level l > 0
Add Fn(∂Gl,m, t) to δFn,l

If level l + 1 exists

Init δFn,l+1 with Fn(Ḡl,m ∩ ∂Gl+1, t)

I Numerical update
strictly local

I Inter-level transfer local

I Parallel synchronization

I Application of δFl+1 on
∂G q

l

Structured adaptive mesh refinement 33

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

The recursive algorithm in parallel
AdvanceLevel(l)

Repeat rl times

Set ghost cells of Ql (t)
If time to regrid?

Regrid(l)
UpdateLevel(l)
If level l + 1 exists?

Set ghost cells of Ql (t + ∆tl)
AdvanceLevel(l + 1)
Average Ql+1(t + ∆tl) onto Ql (t + ∆tl)
Correct Ql (t + ∆tl) with δFl+1

t := t + ∆tl

UpdateLevel(l)

For all m = 1 To Ml Do

Q(G s
l,m, t)

H(∆tl)

−→ Q(Gl,m, t + ∆tl) ,F
n(Ḡl,m, t)

If level l > 0
Add Fn(∂Gl,m, t) to δFn,l

If level l + 1 exists

Init δFn,l+1 with Fn(Ḡl,m ∩ ∂Gl+1, t)

I Numerical update
strictly local

I Inter-level transfer local

I Parallel synchronization

I Application of δFl+1 on
∂G q

l

Structured adaptive mesh refinement 33

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

The recursive algorithm in parallel
AdvanceLevel(l)

Repeat rl times

Set ghost cells of Ql (t)
If time to regrid?

Regrid(l)
UpdateLevel(l)
If level l + 1 exists?

Set ghost cells of Ql (t + ∆tl)
AdvanceLevel(l + 1)
Average Ql+1(t + ∆tl) onto Ql (t + ∆tl)
Correct Ql (t + ∆tl) with δFl+1

t := t + ∆tl

UpdateLevel(l)

For all m = 1 To Ml Do

Q(G s
l,m, t)

H(∆tl)

−→ Q(Gl,m, t + ∆tl) ,F
n(Ḡl,m, t)

If level l > 0
Add Fn(∂Gl,m, t) to δFn,l

If level l + 1 exists

Init δFn,l+1 with Fn(Ḡl,m ∩ ∂Gl+1, t)

I Numerical update
strictly local

I Inter-level transfer local

I Parallel synchronization

I Application of δFl+1 on
∂G q

l

Structured adaptive mesh refinement 33

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

The recursive algorithm in parallel
AdvanceLevel(l)

Repeat rl times

Set ghost cells of Ql (t)
If time to regrid?

Regrid(l)
UpdateLevel(l)
If level l + 1 exists?

Set ghost cells of Ql (t + ∆tl)
AdvanceLevel(l + 1)
Average Ql+1(t + ∆tl) onto Ql (t + ∆tl)
Correct Ql (t + ∆tl) with δFl+1

t := t + ∆tl

UpdateLevel(l)

For all m = 1 To Ml Do

Q(G s
l,m, t)

H(∆tl)

−→ Q(Gl,m, t + ∆tl) ,F
n(Ḡl,m, t)

If level l > 0
Add Fn(∂Gl,m, t) to δFn,l

If level l + 1 exists

Init δFn,l+1 with Fn(Ḡl,m ∩ ∂Gl+1, t)

I Numerical update
strictly local

I Inter-level transfer local

I Parallel synchronization

I Application of δFl+1 on
∂G q

l

Structured adaptive mesh refinement 33

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

The recursive algorithm in parallel
AdvanceLevel(l)

Repeat rl times

Set ghost cells of Ql (t)
If time to regrid?

Regrid(l)
UpdateLevel(l)
If level l + 1 exists?

Set ghost cells of Ql (t + ∆tl)
AdvanceLevel(l + 1)
Average Ql+1(t + ∆tl) onto Ql (t + ∆tl)
Correct Ql (t + ∆tl) with δFl+1

t := t + ∆tl

UpdateLevel(l)

For all m = 1 To Ml Do

Q(G s
l,m, t)

H(∆tl)

−→ Q(Gl,m, t + ∆tl) ,F
n(Ḡl,m, t)

If level l > 0
Add Fn(∂Gl,m, t) to δFn,l

If level l + 1 exists

Init δFn,l+1 with Fn(Ḡl,m ∩ ∂Gl+1, t)

I Numerical update
strictly local

I Inter-level transfer local

I Parallel synchronization

I Application of δFl+1 on
∂G q

l

Structured adaptive mesh refinement 33

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

The recursive algorithm in parallel
AdvanceLevel(l)

Repeat rl times

Set ghost cells of Ql (t)
If time to regrid?

Regrid(l)
UpdateLevel(l)
If level l + 1 exists?

Set ghost cells of Ql (t + ∆tl)
AdvanceLevel(l + 1)
Average Ql+1(t + ∆tl) onto Ql (t + ∆tl)
Correct Ql (t + ∆tl) with δFl+1

t := t + ∆tl

UpdateLevel(l)

For all m = 1 To Ml Do

Q(G s
l,m, t)

H(∆tl)

−→ Q(Gl,m, t + ∆tl) ,F
n(Ḡl,m, t)

If level l > 0
Add Fn(∂Gl,m, t) to δFn,l

If level l + 1 exists

Init δFn,l+1 with Fn(Ḡl,m ∩ ∂Gl+1, t)

I Numerical update
strictly local

I Inter-level transfer local

I Parallel synchronization

I Application of δFl+1 on
∂G q

l

Structured adaptive mesh refinement 33

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

Regridding algorithm in parallel

Regrid(l) - Regrid all levels ι > l

For ι = lf Downto l Do

Flag Nι according to Qι(t)
If level ι+ 1 exists?

Flag Nι below Ğ ι+2

Flag buffer zone on Nι

Generate Ğ ι+1 from Nι

Ğl := Gl

For ι = l To lf Do

CĞι := G0\Ğι
Ğι+1 := Ğι+1\CĞ

1
ι

Recompose(l)

I Need a ghost cell overlap of b
cells to ensure correct setting
of refinement flags in parallel

I Two options exist (we choose
the latter):

I Global clustering
algorithm

I Local clustering algorithm
and concatenation of new
lists Ğ ι+1

Structured adaptive mesh refinement 34

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

Regridding algorithm in parallel

Regrid(l) - Regrid all levels ι > l

For ι = lf Downto l Do

Flag Nι according to Qι(t)
If level ι+ 1 exists?

Flag Nι below Ğ ι+2

Flag buffer zone on Nι

Generate Ğ ι+1 from Nι

Ğl := Gl

For ι = l To lf Do

CĞι := G0\Ğι
Ğι+1 := Ğι+1\CĞ

1
ι

Recompose(l)

I Need a ghost cell overlap of b
cells to ensure correct setting
of refinement flags in parallel

I Two options exist (we choose
the latter):

I Global clustering
algorithm

I Local clustering algorithm
and concatenation of new
lists Ğ ι+1

Structured adaptive mesh refinement 34

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

Regridding algorithm in parallel

Regrid(l) - Regrid all levels ι > l

For ι = lf Downto l Do

Flag Nι according to Qι(t)
If level ι+ 1 exists?

Flag Nι below Ğ ι+2

Flag buffer zone on Nι

Generate Ğ ι+1 from Nι

Ğl := Gl

For ι = l To lf Do

CĞι := G0\Ğι
Ğι+1 := Ğι+1\CĞ

1
ι

Recompose(l)

I Need a ghost cell overlap of b
cells to ensure correct setting
of refinement flags in parallel

I Two options exist (we choose
the latter):

I Global clustering
algorithm

I Local clustering algorithm
and concatenation of new
lists Ğ ι+1

Structured adaptive mesh refinement 34

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

Regridding algorithm in parallel

Regrid(l) - Regrid all levels ι > l

For ι = lf Downto l Do

Flag Nι according to Qι(t)
If level ι+ 1 exists?

Flag Nι below Ğ ι+2

Flag buffer zone on Nι

Generate Ğ ι+1 from Nι

Ğl := Gl

For ι = l To lf Do

CĞι := G0\Ğι
Ğι+1 := Ğι+1\CĞ

1
ι

Recompose(l)

I Need a ghost cell overlap of b
cells to ensure correct setting
of refinement flags in parallel

I Two options exist (we choose
the latter):

I Global clustering
algorithm

I Local clustering algorithm
and concatenation of new
lists Ğ ι+1

Structured adaptive mesh refinement 34

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

Regridding algorithm in parallel

Regrid(l) - Regrid all levels ι > l

For ι = lf Downto l Do

Flag Nι according to Qι(t)
If level ι+ 1 exists?

Flag Nι below Ğ ι+2

Flag buffer zone on Nι

Generate Ğ ι+1 from Nι

Ğl := Gl

For ι = l To lf Do

CĞι := G0\Ğι
Ğι+1 := Ğι+1\CĞ

1
ι

Recompose(l)

I Need a ghost cell overlap of b
cells to ensure correct setting
of refinement flags in parallel

I Two options exist (we choose
the latter):

I Global clustering
algorithm

I Local clustering algorithm
and concatenation of new
lists Ğ ι+1

Structured adaptive mesh refinement 34

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

Regridding algorithm in parallel

Regrid(l) - Regrid all levels ι > l

For ι = lf Downto l Do

Flag Nι according to Qι(t)
If level ι+ 1 exists?

Flag Nι below Ğ ι+2

Flag buffer zone on Nι

Generate Ğ ι+1 from Nι

Ğl := Gl

For ι = l To lf Do

CĞι := G0\Ğι
Ğι+1 := Ğι+1\CĞ

1
ι

Recompose(l)

I Need a ghost cell overlap of b
cells to ensure correct setting
of refinement flags in parallel

I Two options exist (we choose
the latter):

I Global clustering
algorithm

I Local clustering algorithm
and concatenation of new
lists Ğ ι+1

Structured adaptive mesh refinement 34

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

Recomposition algorithm in parallel

Recompose(l) - Reorganize all levels

Generate G p
0 from {G0, ...,Gl , Ğl+1, ..., Ğlf +1}

For ι = l + 1 To lf + 1 Do

If ι > l

Ğ p
ι := Ğι ∩ G p

0

Interpolate Qι−1(t) onto Q̆ι(t)

else

Ğ p
ι := Gι ∩ G p

0
If ι > 0

Copy δFn,ι onto δF̆n,ι

δFn,ι := δF̆n,ι

If ι ≥ l then κι = 0 else κι = 1
For κ = 0 To κι Do

Copy Qι(t) onto Q̆ι(t)

Set ghost cells of Q̆ι(t)

Qι(t) := Q̆ι(t)

Gι := Ğι

I Global redistribution can also
be required when regridding
higher levels and G0, ...,Gl do
not change (drawback of
domain decomposition)

I When ι > l do nothing special

I For ι ≤ l , redistribute
additionally

I Flux corrections δFn,ι

I Already updated time
level Qι(t + κ∆tι)

Structured adaptive mesh refinement 35

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

Recomposition algorithm in parallel

Recompose(l) - Reorganize all levels

Generate G p
0 from {G0, ...,Gl , Ğl+1, ..., Ğlf +1}

For ι = 0 To lf + 1 Do

If ι > l

Ğ p
ι := Ğι ∩ G p

0

Interpolate Qι−1(t) onto Q̆ι(t)

else

Ğ p
ι := Gι ∩ G p

0
If ι > 0

Copy δFn,ι onto δF̆n,ι

δFn,ι := δF̆n,ι

If ι ≥ l then κι = 0 else κι = 1
For κ = 0 To κι Do

Copy Qι(t) onto Q̆ι(t)

Set ghost cells of Q̆ι(t)

Qι(t) := Q̆ι(t)

G p
ι := Ğ p

ι , Gι :=
⋃

p G p
ι

I Global redistribution can also
be required when regridding
higher levels and G0, ...,Gl do
not change (drawback of
domain decomposition)

I When ι > l do nothing special

I For ι ≤ l , redistribute
additionally

I Flux corrections δFn,ι

I Already updated time
level Qι(t + κ∆tι)

Structured adaptive mesh refinement 35

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

Recomposition algorithm in parallel

Recompose(l) - Reorganize all levels

Generate G p
0 from {G0, ...,Gl , Ğl+1, ..., Ğlf +1}

For ι = 0 To lf + 1 Do

If ι > l

Ğ p
ι := Ğι ∩ G p

0

Interpolate Qι−1(t) onto Q̆ι(t)

else

Ğ p
ι := Gι ∩ G p

0
If ι > 0

Copy δFn,ι onto δF̆n,ι

δFn,ι := δF̆n,ι

If ι ≥ l then κι = 0 else κι = 1
For κ = 0 To κι Do

Copy Qι(t) onto Q̆ι(t)

Set ghost cells of Q̆ι(t)

Qι(t) := Q̆ι(t)

G p
ι := Ğ p

ι , Gι :=
⋃

p G p
ι

I Global redistribution can also
be required when regridding
higher levels and G0, ...,Gl do
not change (drawback of
domain decomposition)

I When ι > l do nothing special

I For ι ≤ l , redistribute
additionally

I Flux corrections δFn,ι

I Already updated time
level Qι(t + κ∆tι)

Structured adaptive mesh refinement 35

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

Recomposition algorithm in parallel

Recompose(l) - Reorganize all levels

Generate G p
0 from {G0, ...,Gl , Ğl+1, ..., Ğlf +1}

For ι = 0 To lf + 1 Do

If ι > l

Ğ p
ι := Ğι ∩ G p

0

Interpolate Qι−1(t) onto Q̆ι(t)
else

Ğ p
ι := Gι ∩ G p

0
If ι > 0

Copy δFn,ι onto δF̆n,ι

δFn,ι := δF̆n,ι

If ι ≥ l then κι = 0 else κι = 1
For κ = 0 To κι Do

Copy Qι(t) onto Q̆ι(t)

Set ghost cells of Q̆ι(t)

Qι(t) := Q̆ι(t)

G p
ι := Ğ p

ι , Gι :=
⋃

p G p
ι

I Global redistribution can also
be required when regridding
higher levels and G0, ...,Gl do
not change (drawback of
domain decomposition)

I When ι > l do nothing special

I For ι ≤ l , redistribute
additionally

I Flux corrections δFn,ι

I Already updated time
level Qι(t + κ∆tι)

Structured adaptive mesh refinement 35

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

Recomposition algorithm in parallel

Recompose(l) - Reorganize all levels

Generate G p
0 from {G0, ...,Gl , Ğl+1, ..., Ğlf +1}

For ι = 0 To lf + 1 Do

If ι > l

Ğ p
ι := Ğι ∩ G p

0

Interpolate Qι−1(t) onto Q̆ι(t)
else

Ğ p
ι := Gι ∩ G p

0
If ι > 0

Copy δFn,ι onto δF̆n,ι

δFn,ι := δF̆n,ι

If ι ≥ l then κι = 0 else κι = 1
For κ = 0 To κι Do

Copy Qι(t + κ∆tι) onto Q̆ι(t + κ∆tι)

Set ghost cells of Q̆ι(t + κ∆tι)

Qι(t + κ∆tι) := Q̆ι(t + κ∆tι)

G p
ι := Ğ p

ι , Gι :=
⋃

p G p
ι

I Global redistribution can also
be required when regridding
higher levels and G0, ...,Gl do
not change (drawback of
domain decomposition)

I When ι > l do nothing special

I For ι ≤ l , redistribute
additionally

I Flux corrections δFn,ι

I Already updated time
level Qι(t + κ∆tι)

Structured adaptive mesh refinement 35

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

Recomposition algorithm in parallel

Recompose(l) - Reorganize all levels

Generate G p
0 from {G0, ...,Gl , Ğl+1, ..., Ğlf +1}

For ι = 0 To lf + 1 Do

If ι > l

Ğ p
ι := Ğι ∩ G p

0

Interpolate Qι−1(t) onto Q̆ι(t)
else

Ğ p
ι := Gι ∩ G p

0
If ι > 0

Copy δFn,ι onto δF̆n,ι

δFn,ι := δF̆n,ι

If ι ≥ l then κι = 0 else κι = 1
For κ = 0 To κι Do

Copy Qι(t + κ∆tι) onto Q̆ι(t + κ∆tι)

Set ghost cells of Q̆ι(t + κ∆tι)

Qι(t + κ∆tι) := Q̆ι(t + κ∆tι)

G p
ι := Ğ p

ι , Gι :=
⋃

p G p
ι

I Global redistribution can also
be required when regridding
higher levels and G0, ...,Gl do
not change (drawback of
domain decomposition)

I When ι > l do nothing special

I For ι ≤ l , redistribute
additionally

I Flux corrections δFn,ι

I Already updated time
level Qι(t + κ∆tι)

Structured adaptive mesh refinement 35

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

Space-filling curve algorithm

High Workload

Medium Workload

Low Workload

Calculation
domain

Structured adaptive mesh refinement 36

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

Space-filling curve algorithm

High Workload

Medium Workload

Low Workload

Calculation
domain

Structured adaptive mesh refinement 36

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

Space-filling curve algorithm

High Workload

Medium Workload

Low Workload

Calculation
domain

Necessary domain of
Space-Filling Curve

Structured adaptive mesh refinement 36

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

Space-filling curve algorithm

High Workload

Medium Workload

Low Workload

Calculation
domain

Necessary domain of
Space-Filling Curve

Structured adaptive mesh refinement 36

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

Space-filling curve algorithm

High Workload

Medium Workload

Low Workload

Proc. 1

Calculation
domain

Necessary domain of
Space-Filling Curve

Structured adaptive mesh refinement 36

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

Space-filling curve algorithm

High Workload

Medium Workload

Low Workload

Proc. 1

Proc. 2

Calculation
domain

Necessary domain of
Space-Filling Curve

Structured adaptive mesh refinement 36

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

A parallel SAMR algorithm

Space-filling curve algorithm

High Workload

Medium Workload

Low Workload

Proc. 1

Proc. 2

Proc. 3

Calculation
domain

Necessary domain of
Space-Filling Curve

Structured adaptive mesh refinement 36

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Overview and basic software design

Overview

I “Adaptive Mesh Refinement in Object-oriented C++”

I ∼ 46, 000 LOC for C++ SAMR kernel, ∼ 140, 000 total C++, C,
Fortran-77

I uses parallel hierarchical data structures that have evolved from DAGH

I Implements explicit SAMR with different finite volume solvers

I Embedded boundary method, FSI coupling

I The Virtual Test Facility: AMROC V2.0 plus solid mechanics solvers

I ∼ 430, 000 lines of code total in C++, C, Fortran-77, Fortran-90

I autoconf / automake environment with support for typical parallel
high-performance system

I http://www.vtf.website [Deiterding et al., 2006][Deiterding et al., 2007]

Structured adaptive mesh refinement 37

http://www.vtf.website

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Overview and basic software design

UML design of AMROC

I Classical framework approach with
generic main program in C++

I Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

I Predefined, scheme-specific classes
provided for standard simulations

I Clawpack, WENO: Standard
simulations require only linking to F77
functions for initial and boundary
conditions, source terms. No C++
knowledge required

I Expert usage (algorithm modification,
advanced output, etc.) in C++

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1

Structured adaptive mesh refinement 38

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Overview and basic software design

UML design of AMROC

I Classical framework approach with
generic main program in C++

I Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

I Predefined, scheme-specific classes
provided for standard simulations

I Clawpack, WENO: Standard
simulations require only linking to F77
functions for initial and boundary
conditions, source terms. No C++
knowledge required

I Expert usage (algorithm modification,
advanced output, etc.) in C++

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1

Structured adaptive mesh refinement 38

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Overview and basic software design

UML design of AMROC

I Classical framework approach with
generic main program in C++

I Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

I Predefined, scheme-specific classes
provided for standard simulations

I Clawpack, WENO: Standard
simulations require only linking to F77
functions for initial and boundary
conditions, source terms. No C++
knowledge required

I Expert usage (algorithm modification,
advanced output, etc.) in C++

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1

Structured adaptive mesh refinement 38

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Overview and basic software design

UML design of AMROC

I Classical framework approach with
generic main program in C++

I Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

I Predefined, scheme-specific classes
provided for standard simulations

I Clawpack, WENO: Standard
simulations require only linking to F77
functions for initial and boundary
conditions, source terms. No C++
knowledge required

I Expert usage (algorithm modification,
advanced output, etc.) in C++

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1

Structured adaptive mesh refinement 38

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Overview and basic software design

UML design of AMROC

I Classical framework approach with
generic main program in C++

I Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

I Predefined, scheme-specific classes
provided for standard simulations

I Clawpack, WENO: Standard
simulations require only linking to F77
functions for initial and boundary
conditions, source terms. No C++
knowledge required

I Expert usage (algorithm modification,
advanced output, etc.) in C++

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1

Structured adaptive mesh refinement 38

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Overview and basic software design

Commonalities in software design

I Index coordinate system based on ∆xn,l
∼=

lmax∏
κ=l+1

rκ to uniquely

identify a cell witin the hierarchy

I Box<dim>, BoxList<dim> class that define rectangular regions Gm,l

by lowerleft, upperright, stepsize and specify topological
operations ∩, ∪, \

I Patch<dim,type> class that assigns data to a rectangular grid Gm,l

I A class, here GridFunction<dim,type>, that defines topogical
relations between lists of Patch objects to implement sychronization,
restriction, prolongation, re-distribution

I Hierarchical parallel data structures are typically C++, routines on
patches often Fortran

Structured adaptive mesh refinement 39

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Overview and basic software design

Commonalities in software design

I Index coordinate system based on ∆xn,l
∼=

lmax∏
κ=l+1

rκ to uniquely

identify a cell witin the hierarchy

I Box<dim>, BoxList<dim> class that define rectangular regions Gm,l

by lowerleft, upperright, stepsize and specify topological
operations ∩, ∪, \

I Patch<dim,type> class that assigns data to a rectangular grid Gm,l

I A class, here GridFunction<dim,type>, that defines topogical
relations between lists of Patch objects to implement sychronization,
restriction, prolongation, re-distribution

I Hierarchical parallel data structures are typically C++, routines on
patches often Fortran

Structured adaptive mesh refinement 39

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Overview and basic software design

Commonalities in software design

I Index coordinate system based on ∆xn,l
∼=

lmax∏
κ=l+1

rκ to uniquely

identify a cell witin the hierarchy

I Box<dim>, BoxList<dim> class that define rectangular regions Gm,l

by lowerleft, upperright, stepsize and specify topological
operations ∩, ∪, \

I Patch<dim,type> class that assigns data to a rectangular grid Gm,l

I A class, here GridFunction<dim,type>, that defines topogical
relations between lists of Patch objects to implement sychronization,
restriction, prolongation, re-distribution

I Hierarchical parallel data structures are typically C++, routines on
patches often Fortran

Structured adaptive mesh refinement 39

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Overview and basic software design

Commonalities in software design

I Index coordinate system based on ∆xn,l
∼=

lmax∏
κ=l+1

rκ to uniquely

identify a cell witin the hierarchy

I Box<dim>, BoxList<dim> class that define rectangular regions Gm,l

by lowerleft, upperright, stepsize and specify topological
operations ∩, ∪, \

I Patch<dim,type> class that assigns data to a rectangular grid Gm,l

I A class, here GridFunction<dim,type>, that defines topogical
relations between lists of Patch objects to implement sychronization,
restriction, prolongation, re-distribution

I Hierarchical parallel data structures are typically C++, routines on
patches often Fortran

Structured adaptive mesh refinement 39

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Overview and basic software design

Commonalities in software design

I Index coordinate system based on ∆xn,l
∼=

lmax∏
κ=l+1

rκ to uniquely

identify a cell witin the hierarchy

I Box<dim>, BoxList<dim> class that define rectangular regions Gm,l

by lowerleft, upperright, stepsize and specify topological
operations ∩, ∪, \

I Patch<dim,type> class that assigns data to a rectangular grid Gm,l

I A class, here GridFunction<dim,type>, that defines topogical
relations between lists of Patch objects to implement sychronization,
restriction, prolongation, re-distribution

I Hierarchical parallel data structures are typically C++, routines on
patches often Fortran

Structured adaptive mesh refinement 39

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Classes

Hierarchical data structures

Directory amroc/hds. Key classes:

I Coords: Point in index coordinator system
code/amroc/doc/html/hds/classCoords.html

I BBox: Rectangular region
code/amroc/doc/html/hds/classBBox.html

I BBoxList: Set of BBox elements
code/amroc/doc/html/hds/classBBoxList.html

I GridBox: Has a BBox member, but adds level and partitioning
information
code/amroc/doc/html/hds/classGridBox.html

I GridBoxList: Set of GridBox elements
code/amroc/doc/html/hds/classBBoxList.html

I GridData<Type, dim>: Creates array data of Type of same dimension as
BBox, has extensive math operators
code/amroc/doc/html/hds/classGridData_3_01Type_00_012_01_4.html

I Vector<Scalar, length>: Vector of state is usually Vector<double, N>
code/amroc/doc/html/hds/classVector.html

Structured adaptive mesh refinement 40

code/amroc/doc/html/hds/classCoords.html
code/amroc/doc/html/hds/classBBox.html
code/amroc/doc/html/hds/classBBoxList.html
code/amroc/doc/html/hds/classGridBox.html
code/amroc/doc/html/hds/classBBoxList.html
code/amroc/doc/html/hds/classGridData_3_01Type_00_012_01_4.html
code/amroc/doc/html/hds/classVector.html

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Classes

Hierarchical data structures - II

I GridDataBlock<Type, dim>: The Patch-class. Has a GridData<Type,
dim>member, knows about relations of current patch within AMR
hierarchy
code/amroc/doc/html/hds/classGridDataBlock.html

I GridFunction<Type, dim>: Uses GridDataBlock<Type, dim>objects to
organize hierarchical data of Type after receiving GridBoxLists. Has
extensive math operators for whole levels. Recreates
GridDataBlock<Type, dim>lists automatically when GridBoxList changes.
Calls interlevel operations are automatically when required.
code/amroc/doc/html/hds/classGridFunction.html

I GridHierarchy<Type, dim>: Uses sets of GridBoxList to organize
topology of the hierarchy. All GridFunction<Type, dim>are members and
receive updated GridBoxList after regridding and repartitioning. Calls
DAGHDistribution of partitioning. Implements parallel Recompose().
code/amroc/doc/html/hds/classGridHierarchy.html

Structured adaptive mesh refinement 41

code/amroc/doc/html/hds/classGridDataBlock.html
code/amroc/doc/html/hds/classGridFunction.html
code/amroc/doc/html/hds/classGridHierarchy.html

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Classes

AMR level

Directory amroc/amr. Central class is AMRSolver<VectorType, FixupType,
FlagType, dim>:
code/amroc/doc/html/amr/classAMRSolver.html

I Uses Integrator<VectorType, dim> to interface and call the patch-wise
numerical update
code/amroc/doc/html/amr/classIntegrator.html

I Uses InitialCondition<VectorType, dim > to call initial conditions
patch-wise
code/amroc/doc/html/amr/classInitialCondition.html

I Uses BoundaryConditions<VectorType, dim > to call boundary
conditions per side and patch
code/amroc/doc/html/amr/classBoundaryConditions.html

I Fortran interfaces to above classes are in amroc/amr/F77Interfaces,
convenient C++ interfaces in amroc/amr/Interfaces.

I Implements parallel AdvanceLevel(), RegridLevel().

Structured adaptive mesh refinement 42

code/amroc/doc/html/amr/classAMRSolver.html
code/amroc/doc/html/amr/classIntegrator.html
code/amroc/doc/html/amr/classInitialCondition.html
code/amroc/doc/html/amr/classBoundaryConditions.html

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

Classes

AMR level - II

I AMRFixup<VectorType, FixupType, dim> implements the conservative
flux correction, holds lower dimensional GridFunctions for correction terms
code/amroc/doc/html/amr/classAMRFixup.html

I AMRFlagging<VectorType, FixupType, FlagType, dim> calls a list of
refinement criteria and stores results in scalar GridFunction for flags. All
criteria are in amroc/amr/Criteria
code/amroc/doc/html/amr/classAMRFlagging.html

I LevelTransfer<VectorType, dim> provides patch-wise interpolation and
restriction routines that are passed as parameters to GridFunction
code/amroc/doc/html/amr/classLevelTransfer.html

I AMRTimeStep implements time step control for a Solver
code/amroc/doc/html/amr/classAMRTimeStep.html

I AMRInterpolation<VectorType, dim> is an interpolation at arbitrary
point location, typically used for post-processing
code/amroc/doc/html/amr/classAMRInterpolation.html

Structured adaptive mesh refinement 43

code/amroc/doc/html/amr/classAMRFixup.html
code/amroc/doc/html/amr/classAMRFlagging.html
code/amroc/doc/html/amr/classLevelTransfer.html
code/amroc/doc/html/amr/classAMRTimeStep.html
code/amroc/doc/html/amr/classAMRInterpolation.html

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

References

References I

[Bell et al., 1994] Bell, J., Berger, M., Saltzman, J., and Welcome, M. (1994).
Three-dimensional adaptive mesh refinement for hyperbolic conservation laws.
SIAM J. Sci. Comp., 15(1):127–138.

[Berger, 1982] Berger, M. (1982). Adaptive mesh refinement for hyperbolic differential
equations. PhD thesis, Stanford University. Report No. STAN-CS-82-924.

[Berger, 1986] Berger, M. (1986). Data structures for adaptive grid generation. SIAM
J. Sci. Stat. Comput., 7(3):904–916.

[Berger and Colella, 1988] Berger, M. and Colella, P. (1988). Local adaptive mesh
refinement for shock hydrodynamics. J. Comput. Phys., 82:64–84.

[Berger and LeVeque, 1998] Berger, M. and LeVeque, R. (1998). Adaptive mesh
refinement using wave-propagation algorithms for hyperbolic systems. SIAM J.
Numer. Anal., 35(6):2298–2316.

[Berger and Oliger, 1984] Berger, M. and Oliger, J. (1984). Adaptive mesh refinement
for hyperbolic partial differential equations. J. Comput. Phys., 53:484–512.

Structured adaptive mesh refinement 44

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

References

References II

[Berger and Rigoutsos, 1991] Berger, M. and Rigoutsos, I. (1991). An algorithm for
point clustering and grid generation. IEEE Transactions on Systems, Man, and
Cybernetics, 21(5):1278–1286.

[Brown et al., 1997] Brown, D. L., Henshaw, W. D., and Quinlan, D. J. (1997).
Overture: An object oriented framework for solving partial differential equations. In
Proc. ISCOPE 1997, appeared in Scientific Computing in Object-Oriented Parallel
Environments, number 1343 in Springer Lecture Notes in Computer Science.

[Deiterding, 2003] Deiterding, R. (2003). Parallel adaptive simulation of
multi-dimensional detonation structures. PhD thesis, Brandenburgische Technische
Universität Cottbus.

[Deiterding, 2005] Deiterding, R. (2005). Construction and application of an AMR
algorithm for distributed memory computers. In Plewa, T., Linde, T., and Weirs,
V. G., editors, Adaptive Mesh Refinement - Theory and Applications, volume 41 of
Lecture Notes in Computational Science and Engineering, pages 361–372. Springer.

[Deiterding et al., 2007] Deiterding, R., Cirak, F., Mauch, S. P., and Meiron, D. I.
(2007). A virtual test facility for simulating detonation- and shock-induced
deformation and fracture of thin flexible shells. Int. J. Multiscale Computational
Engineering, 5(1):47–63.

Structured adaptive mesh refinement 45

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

References

References III

[Deiterding et al., 2006] Deiterding, R., Radovitzky, R., Mauch, S. P., Noels, L.,
Cummings, J. C., and Meiron, D. I. (2006). A virtual test facility for the efficient
simulation of solid materials under high energy shock-wave loading. Engineering
with Computers, 22(3-4):325–347.

[Gittings et al., 2008] Gittings, M., Weaver, R., Clover, M., Betlach, T., Byrne, N.,
Coker, R., Dendy, E., Hueckstaedt, R., New, K., Oakes, R., Rantal, D., and Stefan,
R. (2008). The RAGE radiation-hydrodynamics code. Comput. Sci. Disc., 1.
doi:10.1088/1749-4699/1/1/015005.

[Hornung et al., 2006] Hornung, R. D., Wissink, A. M., and Kohn, S. H. (2006).
Managing complex data and geometry in parallel structured AMR applications.
Engineering with Computers, 22:181–195.

[MacNeice et al., 2000] MacNeice, P., Olson, K. M., Mobarry, C., deFainchtein, R.,
and Packer, C. (2000). PARAMESH: A parallel adaptive mesh refinement
community toolkit. Computer Physics Communications, 126:330–354.

Structured adaptive mesh refinement 46

Meshes and adaptation Serial SAMR method Parallel SAMR method AMROC References

References

References IV

[Parashar and Browne, 1997] Parashar, M. and Browne, J. C. (1997). System
engineering for high performance computing software: The HDDA/DAGH
infrastructure for implementation of parallel structured adaptive mesh refinement.
In Structured Adaptive Mesh Refinement Grid Methods, IMA Volumes in
Mathematics and its Applications. Springer.

[Rendleman et al., 2000] Rendleman, C. A., Beckner, V. E., Lijewski, M., Crutchfield,
W., and Bell, J. B. (2000). Parallelization of structured, hierarchical adaptive mesh
refinement algorithms. Computing and Visualization in Science, 3:147–157.

Structured adaptive mesh refinement 47

	Meshes and adaptation
	Adaptivity on unstructured and structured meshes
	Available SAMR software

	The serial Berger-Colella SAMR method
	Data structures and numerical update
	Conservative flux correction
	Level transfer operators
	The basic recursive algorithm
	Block generation and flagging of cells

	Parallel SAMR method
	Domain decomposition
	A parallel SAMR algorithm

	AMROC
	Overview and basic software design
	Classes

