
Available SAMR software AMROC Massively parallel SAMR References

Lecture 6
The AMROC software system

Course Block-structured Adaptive Finite Volume Methods for
Shock-Induced Combustion Simulation

Ralf Deiterding
German Aerospace Center (DLR)

Institute for Aerodynamics and Flow Technology
Bunsenstr. 10, Göttingen, Germany

E-mail: ralf.deiterding@dlr.de

The AMROC software system 1



Available SAMR software AMROC Massively parallel SAMR References

Outline

Available SAMR software
Simplified block-based AMR
General patch-based SAMR

AMROC
Overview
Layered software structure

Massively parallel SAMR
Performance data from AMROC

The AMROC software system 2



Available SAMR software AMROC Massively parallel SAMR References

Outline

Available SAMR software
Simplified block-based AMR
General patch-based SAMR

AMROC
Overview
Layered software structure

Massively parallel SAMR
Performance data from AMROC

The AMROC software system 2



Available SAMR software AMROC Massively parallel SAMR References

Outline

Available SAMR software
Simplified block-based AMR
General patch-based SAMR

AMROC
Overview
Layered software structure

Massively parallel SAMR
Performance data from AMROC

The AMROC software system 2



Available SAMR software AMROC Massively parallel SAMR References

Simplified block-based AMR

Simplified structured designs

Distributed memory parallelization fully supported if not otherwise states.

I PARAMESH (Parallel Adaptive Mesh Refinement)

I Library based on uniform refinement blocks [MacNeice et al., 2000]
I Both multigrid and explicit algorithms considered
I http://sourceforge.net/projects/paramesh

I Flash code (AMR code for astrophysical thermonuclear flashes)

I Built on PARAMESH
I Solves the magneto-hydrodynamic equations with self-gravitation
I http://www.flash.uchicago.edu/site/flashcode

I Uintah (AMR code for simulation of accidental fires and explosions)

I Only explicit algorithms considered
I FSI coupling Material Point Method and ICE Method (Implicit,

Continuous fluid, Eulerian)
I http://www.uintah.utah.edu

I DAGH/Grace [Parashar and Browne, 1997]

I Just C++ data structures but no methods
I All grids are aligned to bases mesh coarsened by factor 2
I http://userweb.cs.utexas.edu/users/dagh

The AMROC software system 3

http://sourceforge.net/projects/paramesh
http://www.flash.uchicago.edu/site/flashcode
http://www.uintah.utah.edu
http://userweb.cs.utexas.edu/users/dagh


Available SAMR software AMROC Massively parallel SAMR References

Simplified block-based AMR

Simplified structured designs

Distributed memory parallelization fully supported if not otherwise states.

I PARAMESH (Parallel Adaptive Mesh Refinement)
I Library based on uniform refinement blocks [MacNeice et al., 2000]
I Both multigrid and explicit algorithms considered
I http://sourceforge.net/projects/paramesh

I Flash code (AMR code for astrophysical thermonuclear flashes)

I Built on PARAMESH
I Solves the magneto-hydrodynamic equations with self-gravitation
I http://www.flash.uchicago.edu/site/flashcode

I Uintah (AMR code for simulation of accidental fires and explosions)

I Only explicit algorithms considered
I FSI coupling Material Point Method and ICE Method (Implicit,

Continuous fluid, Eulerian)
I http://www.uintah.utah.edu

I DAGH/Grace [Parashar and Browne, 1997]

I Just C++ data structures but no methods
I All grids are aligned to bases mesh coarsened by factor 2
I http://userweb.cs.utexas.edu/users/dagh

The AMROC software system 3

http://sourceforge.net/projects/paramesh
http://www.flash.uchicago.edu/site/flashcode
http://www.uintah.utah.edu
http://userweb.cs.utexas.edu/users/dagh


Available SAMR software AMROC Massively parallel SAMR References

Simplified block-based AMR

Simplified structured designs

Distributed memory parallelization fully supported if not otherwise states.

I PARAMESH (Parallel Adaptive Mesh Refinement)
I Library based on uniform refinement blocks [MacNeice et al., 2000]
I Both multigrid and explicit algorithms considered
I http://sourceforge.net/projects/paramesh

I Flash code (AMR code for astrophysical thermonuclear flashes)
I Built on PARAMESH
I Solves the magneto-hydrodynamic equations with self-gravitation
I http://www.flash.uchicago.edu/site/flashcode

I Uintah (AMR code for simulation of accidental fires and explosions)

I Only explicit algorithms considered
I FSI coupling Material Point Method and ICE Method (Implicit,

Continuous fluid, Eulerian)
I http://www.uintah.utah.edu

I DAGH/Grace [Parashar and Browne, 1997]

I Just C++ data structures but no methods
I All grids are aligned to bases mesh coarsened by factor 2
I http://userweb.cs.utexas.edu/users/dagh

The AMROC software system 3

http://sourceforge.net/projects/paramesh
http://www.flash.uchicago.edu/site/flashcode
http://www.uintah.utah.edu
http://userweb.cs.utexas.edu/users/dagh


Available SAMR software AMROC Massively parallel SAMR References

Simplified block-based AMR

Simplified structured designs

Distributed memory parallelization fully supported if not otherwise states.

I PARAMESH (Parallel Adaptive Mesh Refinement)
I Library based on uniform refinement blocks [MacNeice et al., 2000]
I Both multigrid and explicit algorithms considered
I http://sourceforge.net/projects/paramesh

I Flash code (AMR code for astrophysical thermonuclear flashes)
I Built on PARAMESH
I Solves the magneto-hydrodynamic equations with self-gravitation
I http://www.flash.uchicago.edu/site/flashcode

I Uintah (AMR code for simulation of accidental fires and explosions)
I Only explicit algorithms considered
I FSI coupling Material Point Method and ICE Method (Implicit,

Continuous fluid, Eulerian)
I http://www.uintah.utah.edu

I DAGH/Grace [Parashar and Browne, 1997]

I Just C++ data structures but no methods
I All grids are aligned to bases mesh coarsened by factor 2
I http://userweb.cs.utexas.edu/users/dagh

The AMROC software system 3

http://sourceforge.net/projects/paramesh
http://www.flash.uchicago.edu/site/flashcode
http://www.uintah.utah.edu
http://userweb.cs.utexas.edu/users/dagh


Available SAMR software AMROC Massively parallel SAMR References

Simplified block-based AMR

Simplified structured designs

Distributed memory parallelization fully supported if not otherwise states.

I PARAMESH (Parallel Adaptive Mesh Refinement)
I Library based on uniform refinement blocks [MacNeice et al., 2000]
I Both multigrid and explicit algorithms considered
I http://sourceforge.net/projects/paramesh

I Flash code (AMR code for astrophysical thermonuclear flashes)
I Built on PARAMESH
I Solves the magneto-hydrodynamic equations with self-gravitation
I http://www.flash.uchicago.edu/site/flashcode

I Uintah (AMR code for simulation of accidental fires and explosions)
I Only explicit algorithms considered
I FSI coupling Material Point Method and ICE Method (Implicit,

Continuous fluid, Eulerian)
I http://www.uintah.utah.edu

I DAGH/Grace [Parashar and Browne, 1997]
I Just C++ data structures but no methods
I All grids are aligned to bases mesh coarsened by factor 2
I http://userweb.cs.utexas.edu/users/dagh

The AMROC software system 3

http://sourceforge.net/projects/paramesh
http://www.flash.uchicago.edu/site/flashcode
http://www.uintah.utah.edu
http://userweb.cs.utexas.edu/users/dagh


Available SAMR software AMROC Massively parallel SAMR References

General patch-based SAMR

Systems that support general SAMR

I SAMRAI - Structured Adaptive Mesh Refinement Application
Infrastructure

I Very mature SAMR system [Hornung et al., 2006]
I Explicit algorithms directly supported, implicit methods through

interface to Hypre package
I Mapped geometry and some embedded boundary support
I https://computation-rnd.llnl.gov/SAMRAI/software.php

I BoxLib, AmrLib, MGLib, HGProj

I Berkley-Lab-AMR collection of C++ classes by J. Bell et al., 50, 000
LOC [Rendleman et al., 2000]

I Both multigrid and explicit algorithms supported
I https://ccse.lbl.gov/Downloads/index.html

I Chombo

I Redesign and extension of BoxLib by P. Colella et al.
I Both multigrid and explicit algorithms demonstrated
I Some embedded boundary support
I https://commons.lbl.gov/display/chombo

The AMROC software system 4

https://computation-rnd.llnl.gov/SAMRAI/software.php
https://ccse.lbl.gov/Downloads/index.html
https://commons.lbl.gov/display/chombo


Available SAMR software AMROC Massively parallel SAMR References

General patch-based SAMR

Systems that support general SAMR

I SAMRAI - Structured Adaptive Mesh Refinement Application
Infrastructure

I Very mature SAMR system [Hornung et al., 2006]
I Explicit algorithms directly supported, implicit methods through

interface to Hypre package
I Mapped geometry and some embedded boundary support
I https://computation-rnd.llnl.gov/SAMRAI/software.php

I BoxLib, AmrLib, MGLib, HGProj

I Berkley-Lab-AMR collection of C++ classes by J. Bell et al., 50, 000
LOC [Rendleman et al., 2000]

I Both multigrid and explicit algorithms supported
I https://ccse.lbl.gov/Downloads/index.html

I Chombo

I Redesign and extension of BoxLib by P. Colella et al.
I Both multigrid and explicit algorithms demonstrated
I Some embedded boundary support
I https://commons.lbl.gov/display/chombo

The AMROC software system 4

https://computation-rnd.llnl.gov/SAMRAI/software.php
https://ccse.lbl.gov/Downloads/index.html
https://commons.lbl.gov/display/chombo


Available SAMR software AMROC Massively parallel SAMR References

General patch-based SAMR

Systems that support general SAMR

I SAMRAI - Structured Adaptive Mesh Refinement Application
Infrastructure

I Very mature SAMR system [Hornung et al., 2006]
I Explicit algorithms directly supported, implicit methods through

interface to Hypre package
I Mapped geometry and some embedded boundary support
I https://computation-rnd.llnl.gov/SAMRAI/software.php

I BoxLib, AmrLib, MGLib, HGProj

I Berkley-Lab-AMR collection of C++ classes by J. Bell et al., 50, 000
LOC [Rendleman et al., 2000]

I Both multigrid and explicit algorithms supported
I https://ccse.lbl.gov/Downloads/index.html

I Chombo

I Redesign and extension of BoxLib by P. Colella et al.
I Both multigrid and explicit algorithms demonstrated
I Some embedded boundary support
I https://commons.lbl.gov/display/chombo

The AMROC software system 4

https://computation-rnd.llnl.gov/SAMRAI/software.php
https://ccse.lbl.gov/Downloads/index.html
https://commons.lbl.gov/display/chombo


Available SAMR software AMROC Massively parallel SAMR References

General patch-based SAMR

Systems that support general SAMR

I SAMRAI - Structured Adaptive Mesh Refinement Application
Infrastructure

I Very mature SAMR system [Hornung et al., 2006]
I Explicit algorithms directly supported, implicit methods through

interface to Hypre package
I Mapped geometry and some embedded boundary support
I https://computation-rnd.llnl.gov/SAMRAI/software.php

I BoxLib, AmrLib, MGLib, HGProj

I Berkley-Lab-AMR collection of C++ classes by J. Bell et al., 50, 000
LOC [Rendleman et al., 2000]

I Both multigrid and explicit algorithms supported
I https://ccse.lbl.gov/Downloads/index.html

I Chombo

I Redesign and extension of BoxLib by P. Colella et al.
I Both multigrid and explicit algorithms demonstrated
I Some embedded boundary support
I https://commons.lbl.gov/display/chombo

The AMROC software system 4

https://computation-rnd.llnl.gov/SAMRAI/software.php
https://ccse.lbl.gov/Downloads/index.html
https://commons.lbl.gov/display/chombo


Available SAMR software AMROC Massively parallel SAMR References

General patch-based SAMR

Further SAMR software

I Overture (Object-oriented tools for solving PDEs in complex geometries)

I Overlapping meshes for complex geometries by W. Henshaw et al.
[Brown et al., 1997]

I Explicit and implicit algorithms supported
I http://www.overtureframework.org

I AMRClaw within Clawpack [Berger and LeVeque, 1998]

I Serial 2D Fortran 77 code for the explicit Wave Propagation method
with own memory management

I http://depts.washington.edu/clawpack

I Amrita by J. Quirk

I Only 2D explicit finite volume methods supported
I Embedded boundary algorithm
I http://www.amrita-cfd.org

I Cell-based Cartesian AMR: RAGE

I Embedded boundary method
I Explicit and implicit algorithms
I [Gittings et al., 2008]

The AMROC software system 5

http://www.overtureframework.org
http://depts.washington.edu/clawpack
http://www.amrita-cfd.org
http://dx.doi.org/10.1088/1749-4699/1/1/015005


Available SAMR software AMROC Massively parallel SAMR References

General patch-based SAMR

Further SAMR software

I Overture (Object-oriented tools for solving PDEs in complex geometries)

I Overlapping meshes for complex geometries by W. Henshaw et al.
[Brown et al., 1997]

I Explicit and implicit algorithms supported
I http://www.overtureframework.org

I AMRClaw within Clawpack [Berger and LeVeque, 1998]

I Serial 2D Fortran 77 code for the explicit Wave Propagation method
with own memory management

I http://depts.washington.edu/clawpack

I Amrita by J. Quirk

I Only 2D explicit finite volume methods supported
I Embedded boundary algorithm
I http://www.amrita-cfd.org

I Cell-based Cartesian AMR: RAGE

I Embedded boundary method
I Explicit and implicit algorithms
I [Gittings et al., 2008]

The AMROC software system 5

http://www.overtureframework.org
http://depts.washington.edu/clawpack
http://www.amrita-cfd.org
http://dx.doi.org/10.1088/1749-4699/1/1/015005


Available SAMR software AMROC Massively parallel SAMR References

General patch-based SAMR

Further SAMR software

I Overture (Object-oriented tools for solving PDEs in complex geometries)

I Overlapping meshes for complex geometries by W. Henshaw et al.
[Brown et al., 1997]

I Explicit and implicit algorithms supported
I http://www.overtureframework.org

I AMRClaw within Clawpack [Berger and LeVeque, 1998]

I Serial 2D Fortran 77 code for the explicit Wave Propagation method
with own memory management

I http://depts.washington.edu/clawpack

I Amrita by J. Quirk

I Only 2D explicit finite volume methods supported
I Embedded boundary algorithm
I http://www.amrita-cfd.org

I Cell-based Cartesian AMR: RAGE

I Embedded boundary method
I Explicit and implicit algorithms
I [Gittings et al., 2008]

The AMROC software system 5

http://www.overtureframework.org
http://depts.washington.edu/clawpack
http://www.amrita-cfd.org
http://dx.doi.org/10.1088/1749-4699/1/1/015005


Available SAMR software AMROC Massively parallel SAMR References

General patch-based SAMR

Further SAMR software

I Overture (Object-oriented tools for solving PDEs in complex geometries)

I Overlapping meshes for complex geometries by W. Henshaw et al.
[Brown et al., 1997]

I Explicit and implicit algorithms supported
I http://www.overtureframework.org

I AMRClaw within Clawpack [Berger and LeVeque, 1998]

I Serial 2D Fortran 77 code for the explicit Wave Propagation method
with own memory management

I http://depts.washington.edu/clawpack

I Amrita by J. Quirk

I Only 2D explicit finite volume methods supported
I Embedded boundary algorithm
I http://www.amrita-cfd.org

I Cell-based Cartesian AMR: RAGE

I Embedded boundary method
I Explicit and implicit algorithms
I [Gittings et al., 2008]

The AMROC software system 5

http://www.overtureframework.org
http://depts.washington.edu/clawpack
http://www.amrita-cfd.org
http://dx.doi.org/10.1088/1749-4699/1/1/015005


Available SAMR software AMROC Massively parallel SAMR References

General patch-based SAMR

Further SAMR software

I Overture (Object-oriented tools for solving PDEs in complex geometries)

I Overlapping meshes for complex geometries by W. Henshaw et al.
[Brown et al., 1997]

I Explicit and implicit algorithms supported
I http://www.overtureframework.org

I AMRClaw within Clawpack [Berger and LeVeque, 1998]

I Serial 2D Fortran 77 code for the explicit Wave Propagation method
with own memory management

I http://depts.washington.edu/clawpack

I Amrita by J. Quirk

I Only 2D explicit finite volume methods supported
I Embedded boundary algorithm
I http://www.amrita-cfd.org

I Cell-based Cartesian AMR: RAGE

I Embedded boundary method
I Explicit and implicit algorithms
I [Gittings et al., 2008]

The AMROC software system 5

http://www.overtureframework.org
http://depts.washington.edu/clawpack
http://www.amrita-cfd.org
http://dx.doi.org/10.1088/1749-4699/1/1/015005


Available SAMR software AMROC Massively parallel SAMR References

Overview

AMROC

I “Adaptive Mesh Refinement in
Object-oriented C++”

I ∼ 46, 000 LOC for C++ SAMR
kernel, ∼ 140, 000 total C++, C,
Fortran-77

I uses parallel hierarchical data
structures that have evolved from
DAGH

I Right: point explosion in box, 4 level,
Euler computation, 7 compute nodes

I V1.0: http://amroc.sourceforge.net

lmax Level 0 Level 1 Level 2 Level 3 Level 4
1 43/22500 145/38696AMROC’s
2 42/22500 110/48708 283/83688DAGH
3 36/22500 78/54796 245/109476 582/165784grids/cells
4 41/22500 88/56404 233/123756 476/220540 1017/294828
1 238/22500 125/41312Original
2 494/22500 435/48832 190/105216DAGH
3 695/22500 650/55088 462/133696 185/297984grids/cells
4 875/22500 822/57296 677/149952 428/349184 196/897024
Comparison of number of cells and grids in DAGH and AMROC

The AMROC software system 6

http://amroc.sourceforge.net


Available SAMR software AMROC Massively parallel SAMR References

Overview

AMROC

I “Adaptive Mesh Refinement in
Object-oriented C++”

I ∼ 46, 000 LOC for C++ SAMR
kernel, ∼ 140, 000 total C++, C,
Fortran-77

I uses parallel hierarchical data
structures that have evolved from
DAGH

I Right: point explosion in box, 4 level,
Euler computation, 7 compute nodes

I V1.0: http://amroc.sourceforge.net

lmax Level 0 Level 1 Level 2 Level 3 Level 4
1 43/22500 145/38696AMROC’s
2 42/22500 110/48708 283/83688DAGH
3 36/22500 78/54796 245/109476 582/165784grids/cells
4 41/22500 88/56404 233/123756 476/220540 1017/294828
1 238/22500 125/41312Original
2 494/22500 435/48832 190/105216DAGH
3 695/22500 650/55088 462/133696 185/297984grids/cells
4 875/22500 822/57296 677/149952 428/349184 196/897024
Comparison of number of cells and grids in DAGH and AMROC

The AMROC software system 6

http://amroc.sourceforge.net


Available SAMR software AMROC Massively parallel SAMR References

Overview

AMROC

I “Adaptive Mesh Refinement in
Object-oriented C++”

I ∼ 46, 000 LOC for C++ SAMR
kernel, ∼ 140, 000 total C++, C,
Fortran-77

I uses parallel hierarchical data
structures that have evolved from
DAGH

I Right: point explosion in box, 4 level,
Euler computation, 7 compute nodes

I V1.0: http://amroc.sourceforge.net

lmax Level 0 Level 1 Level 2 Level 3 Level 4
1 43/22500 145/38696AMROC’s
2 42/22500 110/48708 283/83688DAGH
3 36/22500 78/54796 245/109476 582/165784grids/cells
4 41/22500 88/56404 233/123756 476/220540 1017/294828
1 238/22500 125/41312Original
2 494/22500 435/48832 190/105216DAGH
3 695/22500 650/55088 462/133696 185/297984grids/cells
4 875/22500 822/57296 677/149952 428/349184 196/897024
Comparison of number of cells and grids in DAGH and AMROC

The AMROC software system 6

http://amroc.sourceforge.net


Available SAMR software AMROC Massively parallel SAMR References

Overview

The Virtual Test Facility

I Implements all described algorithms beside multigrid methods

I AMROC V2.0 plus solid mechanics solvers

I Implements explicit SAMR with different finite volume solvers

I Embedded boundary method, FSI coupling

I ∼ 430, 000 lines of code total in C++, C, Fortran-77, Fortran-90

I autoconf / automake environment with support for typical parallel
high-performance system

I http://www.cacr.caltech.edu/asc

I [Deiterding et al., 2006][Deiterding et al., 2007]

The AMROC software system 7

http://www.cacr.caltech.edu/asc


Available SAMR software AMROC Massively parallel SAMR References

Layered software structure

UML design of AMROC

I Classical framework approach with
generic main program in C++

I Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

I Predefined, scheme-specific classes
(with F77 interfaces) provided for
standard simulations

I Standard simulations require only
linking to F77 functions for initial and
boundary conditions, source terms.
No C++ knowledge required

I Interface mimics Clawpack

I Expert usage (algorithm modification,
advanced output, etc.) in C++

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1

The AMROC software system 8



Available SAMR software AMROC Massively parallel SAMR References

Layered software structure

UML design of AMROC

I Classical framework approach with
generic main program in C++

I Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

I Predefined, scheme-specific classes
(with F77 interfaces) provided for
standard simulations

I Standard simulations require only
linking to F77 functions for initial and
boundary conditions, source terms.
No C++ knowledge required

I Interface mimics Clawpack

I Expert usage (algorithm modification,
advanced output, etc.) in C++

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1

The AMROC software system 8



Available SAMR software AMROC Massively parallel SAMR References

Layered software structure

UML design of AMROC

I Classical framework approach with
generic main program in C++

I Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

I Predefined, scheme-specific classes
(with F77 interfaces) provided for
standard simulations

I Standard simulations require only
linking to F77 functions for initial and
boundary conditions, source terms.
No C++ knowledge required

I Interface mimics Clawpack

I Expert usage (algorithm modification,
advanced output, etc.) in C++

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1

The AMROC software system 8



Available SAMR software AMROC Massively parallel SAMR References

Layered software structure

UML design of AMROC

I Classical framework approach with
generic main program in C++

I Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

I Predefined, scheme-specific classes
(with F77 interfaces) provided for
standard simulations

I Standard simulations require only
linking to F77 functions for initial and
boundary conditions, source terms.
No C++ knowledge required

I Interface mimics Clawpack

I Expert usage (algorithm modification,
advanced output, etc.) in C++

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1

The AMROC software system 8



Available SAMR software AMROC Massively parallel SAMR References

Layered software structure

UML design of AMROC

I Classical framework approach with
generic main program in C++

I Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

I Predefined, scheme-specific classes
(with F77 interfaces) provided for
standard simulations

I Standard simulations require only
linking to F77 functions for initial and
boundary conditions, source terms.
No C++ knowledge required

I Interface mimics Clawpack

I Expert usage (algorithm modification,
advanced output, etc.) in C++

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1

The AMROC software system 8



Available SAMR software AMROC Massively parallel SAMR References

Layered software structure

UML design of AMROC

I Classical framework approach with
generic main program in C++

I Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

I Predefined, scheme-specific classes
(with F77 interfaces) provided for
standard simulations

I Standard simulations require only
linking to F77 functions for initial and
boundary conditions, source terms.
No C++ knowledge required

I Interface mimics Clawpack

I Expert usage (algorithm modification,
advanced output, etc.) in C++

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1

The AMROC software system 8



Available SAMR software AMROC Massively parallel SAMR References

Layered software structure

Commonalities in software design

I Index coordinate system based on ∆xn,l
∼=

lmax∏
κ=l+1

rκ to uniquely

identify a cell witin the hierarchy

I Box<dim>, BoxList<dim> class that define rectangular regions Gm,l

by lowerleft, upperright, stepsize and specify topological
operations ∩, ∪, \

I Patch<dim,type> class that assigns data to a rectangular grid Gm,l

I A class, here GridFunction<dim,type>, that defines topogical
relations between lists of Patch objects to implement sychronization,
restriction, prolongation, re-distribution

I Hierarchical parallel data structures are typically C++, routines on
patches often Fortran

The AMROC software system 9



Available SAMR software AMROC Massively parallel SAMR References

Layered software structure

Commonalities in software design

I Index coordinate system based on ∆xn,l
∼=

lmax∏
κ=l+1

rκ to uniquely

identify a cell witin the hierarchy

I Box<dim>, BoxList<dim> class that define rectangular regions Gm,l

by lowerleft, upperright, stepsize and specify topological
operations ∩, ∪, \

I Patch<dim,type> class that assigns data to a rectangular grid Gm,l

I A class, here GridFunction<dim,type>, that defines topogical
relations between lists of Patch objects to implement sychronization,
restriction, prolongation, re-distribution

I Hierarchical parallel data structures are typically C++, routines on
patches often Fortran

The AMROC software system 9



Available SAMR software AMROC Massively parallel SAMR References

Layered software structure

Commonalities in software design

I Index coordinate system based on ∆xn,l
∼=

lmax∏
κ=l+1

rκ to uniquely

identify a cell witin the hierarchy

I Box<dim>, BoxList<dim> class that define rectangular regions Gm,l

by lowerleft, upperright, stepsize and specify topological
operations ∩, ∪, \

I Patch<dim,type> class that assigns data to a rectangular grid Gm,l

I A class, here GridFunction<dim,type>, that defines topogical
relations between lists of Patch objects to implement sychronization,
restriction, prolongation, re-distribution

I Hierarchical parallel data structures are typically C++, routines on
patches often Fortran

The AMROC software system 9



Available SAMR software AMROC Massively parallel SAMR References

Layered software structure

Commonalities in software design

I Index coordinate system based on ∆xn,l
∼=

lmax∏
κ=l+1

rκ to uniquely

identify a cell witin the hierarchy

I Box<dim>, BoxList<dim> class that define rectangular regions Gm,l

by lowerleft, upperright, stepsize and specify topological
operations ∩, ∪, \

I Patch<dim,type> class that assigns data to a rectangular grid Gm,l

I A class, here GridFunction<dim,type>, that defines topogical
relations between lists of Patch objects to implement sychronization,
restriction, prolongation, re-distribution

I Hierarchical parallel data structures are typically C++, routines on
patches often Fortran

The AMROC software system 9



Available SAMR software AMROC Massively parallel SAMR References

Layered software structure

Commonalities in software design

I Index coordinate system based on ∆xn,l
∼=

lmax∏
κ=l+1

rκ to uniquely

identify a cell witin the hierarchy

I Box<dim>, BoxList<dim> class that define rectangular regions Gm,l

by lowerleft, upperright, stepsize and specify topological
operations ∩, ∪, \

I Patch<dim,type> class that assigns data to a rectangular grid Gm,l

I A class, here GridFunction<dim,type>, that defines topogical
relations between lists of Patch objects to implement sychronization,
restriction, prolongation, re-distribution

I Hierarchical parallel data structures are typically C++, routines on
patches often Fortran

The AMROC software system 9



Available SAMR software AMROC Massively parallel SAMR References

Layered software structure

Embedded boundary method / FSI coupling

I Multiple independent
EmbeddedBoundaryMethod objects
possible

I Specialization of GFM boundary
conditions, level set description in
scheme-specific F77 interface classes +calculate_in_patch()

Extra-/Interpolation

+apply_boundary_conditions()

EmbeddedBoundaryMethod

+set_patch()

LevelSetEvaluation

EBMHypSAMRSolver

HypSAMRSolver

0..*1

+set_cells_in_patch()

EmbeddedBoundaryConditions

1

1

GridFunction

1

+phi1

0..1
1

1

1

+fluid_step()

-advance_level()

-stable_fluid_timestep()

CoupledHypSAMRSolver

EBMHypSAMRSolver

+next_step()

CoupledSolver11

TimeStepControler

1

1

+solid_step()

-stable_solid_timestep()

CoupledSolidSolver

1 1

+send_interface_data()

+receive_interface_data()

InterSolverCommunication

1

1

1

1

EmbeddedMovingWalls+cpt()

-scan_convert()

ClosestPointTransform

+set_cells_in_patch()

EmbeddedBoundaryConditionsLevelSetEvaluation

1

1

1

1

+update_solid()

SolidSolver

I Coupling algorithm implemented in
further derived HypSAMRSolver class

I Level set evaluation always with CPT
algorithm

I Parallel communication through
efficient non-blocking communication
module

I Time step selection for both solvers
through CoupledSolver class

The AMROC software system 10



Available SAMR software AMROC Massively parallel SAMR References

Layered software structure

Embedded boundary method / FSI coupling

I Multiple independent
EmbeddedBoundaryMethod objects
possible

I Specialization of GFM boundary
conditions, level set description in
scheme-specific F77 interface classes +calculate_in_patch()

Extra-/Interpolation

+apply_boundary_conditions()

EmbeddedBoundaryMethod

+set_patch()

LevelSetEvaluation

EBMHypSAMRSolver

HypSAMRSolver

0..*1

+set_cells_in_patch()

EmbeddedBoundaryConditions

1

1

GridFunction

1

+phi1

0..1
1

1

1

+fluid_step()

-advance_level()

-stable_fluid_timestep()

CoupledHypSAMRSolver

EBMHypSAMRSolver

+next_step()

CoupledSolver11

TimeStepControler

1

1

+solid_step()

-stable_solid_timestep()

CoupledSolidSolver

1 1

+send_interface_data()

+receive_interface_data()

InterSolverCommunication

1

1

1

1

EmbeddedMovingWalls+cpt()

-scan_convert()

ClosestPointTransform

+set_cells_in_patch()

EmbeddedBoundaryConditionsLevelSetEvaluation

1

1

1

1

+update_solid()

SolidSolver

I Coupling algorithm implemented in
further derived HypSAMRSolver class

I Level set evaluation always with CPT
algorithm

I Parallel communication through
efficient non-blocking communication
module

I Time step selection for both solvers
through CoupledSolver class

The AMROC software system 10



Available SAMR software AMROC Massively parallel SAMR References

Parallelized construction of space-filling curve

Computation of space filling curve

I Partition-Init

1. Compute aggregated workload for
new grid hierarchy and project result
onto level 0

2. Construct recursively SFC-units until
work in each unit is homogeneous,
GuCFactor defines minimal
coarseness relative to level-0 grid

I Partition-Calc

1. Compute entire workload and new work for each processor
2. Go sequentially through SFC-ordered list of partitioning units and

assign units to processors, refine partition if necessary and possible

I Ensure scalability of Partition-Init by creating SFC-units strictly local

I Currently still use of MPI allgather() to create globally identical input for
Partition-Calc (can be a bottleneck for weak scalability)

The AMROC software system 11



Available SAMR software AMROC Massively parallel SAMR References

Parallelized construction of space-filling curve

Computation of space filling curve

I Partition-Init

1. Compute aggregated workload for
new grid hierarchy and project result
onto level 0

2. Construct recursively SFC-units until
work in each unit is homogeneous,
GuCFactor defines minimal
coarseness relative to level-0 grid

I Partition-Calc

1. Compute entire workload and new work for each processor
2. Go sequentially through SFC-ordered list of partitioning units and

assign units to processors, refine partition if necessary and possible

I Ensure scalability of Partition-Init by creating SFC-units strictly local

I Currently still use of MPI allgather() to create globally identical input for
Partition-Calc (can be a bottleneck for weak scalability)

The AMROC software system 11



Available SAMR software AMROC Massively parallel SAMR References

Parallelized construction of space-filling curve

Computation of space filling curve

I Partition-Init

1. Compute aggregated workload for
new grid hierarchy and project result
onto level 0

2. Construct recursively SFC-units until
work in each unit is homogeneous,
GuCFactor defines minimal
coarseness relative to level-0 grid

I Partition-Calc

1. Compute entire workload and new work for each processor
2. Go sequentially through SFC-ordered list of partitioning units and

assign units to processors, refine partition if necessary and possible

I Ensure scalability of Partition-Init by creating SFC-units strictly local

I Currently still use of MPI allgather() to create globally identical input for
Partition-Calc (can be a bottleneck for weak scalability)

The AMROC software system 11



Available SAMR software AMROC Massively parallel SAMR References

Parallelized construction of space-filling curve

Computation of space filling curve

I Partition-Init

1. Compute aggregated workload for
new grid hierarchy and project result
onto level 0

2. Construct recursively SFC-units until
work in each unit is homogeneous,
GuCFactor defines minimal
coarseness relative to level-0 grid

I Partition-Calc

1. Compute entire workload and new work for each processor

2. Go sequentially through SFC-ordered list of partitioning units and
assign units to processors, refine partition if necessary and possible

I Ensure scalability of Partition-Init by creating SFC-units strictly local

I Currently still use of MPI allgather() to create globally identical input for
Partition-Calc (can be a bottleneck for weak scalability)

The AMROC software system 11



Available SAMR software AMROC Massively parallel SAMR References

Parallelized construction of space-filling curve

Computation of space filling curve

I Partition-Init

1. Compute aggregated workload for
new grid hierarchy and project result
onto level 0

2. Construct recursively SFC-units until
work in each unit is homogeneous,
GuCFactor defines minimal
coarseness relative to level-0 grid

I Partition-Calc

1. Compute entire workload and new work for each processor
2. Go sequentially through SFC-ordered list of partitioning units and

assign units to processors, refine partition if necessary and possible

I Ensure scalability of Partition-Init by creating SFC-units strictly local

I Currently still use of MPI allgather() to create globally identical input for
Partition-Calc (can be a bottleneck for weak scalability)

The AMROC software system 11



Available SAMR software AMROC Massively parallel SAMR References

Parallelized construction of space-filling curve

Computation of space filling curve

I Partition-Init

1. Compute aggregated workload for
new grid hierarchy and project result
onto level 0

2. Construct recursively SFC-units until
work in each unit is homogeneous,
GuCFactor defines minimal
coarseness relative to level-0 grid

I Partition-Calc

1. Compute entire workload and new work for each processor
2. Go sequentially through SFC-ordered list of partitioning units and

assign units to processors, refine partition if necessary and possible

I Ensure scalability of Partition-Init by creating SFC-units strictly local

I Currently still use of MPI allgather() to create globally identical input for
Partition-Calc (can be a bottleneck for weak scalability)

The AMROC software system 11



Available SAMR software AMROC Massively parallel SAMR References

Parallelized construction of space-filling curve

Computation of space filling curve

I Partition-Init

1. Compute aggregated workload for
new grid hierarchy and project result
onto level 0

2. Construct recursively SFC-units until
work in each unit is homogeneous,
GuCFactor defines minimal
coarseness relative to level-0 grid

I Partition-Calc

1. Compute entire workload and new work for each processor
2. Go sequentially through SFC-ordered list of partitioning units and

assign units to processors, refine partition if necessary and possible

I Ensure scalability of Partition-Init by creating SFC-units strictly local

I Currently still use of MPI allgather() to create globally identical input for
Partition-Calc (can be a bottleneck for weak scalability)

The AMROC software system 11



Available SAMR software AMROC Massively parallel SAMR References

Parallelized construction of space-filling curve

Computation of space filling curve

I Partition-Init

1. Compute aggregated workload for
new grid hierarchy and project result
onto level 0

2. Construct recursively SFC-units until
work in each unit is homogeneous,
GuCFactor defines minimal
coarseness relative to level-0 grid

I Partition-Calc

1. Compute entire workload and new work for each processor
2. Go sequentially through SFC-ordered list of partitioning units and

assign units to processors, refine partition if necessary and possible

I Ensure scalability of Partition-Init by creating SFC-units strictly local

I Currently still use of MPI allgather() to create globally identical input for
Partition-Calc (can be a bottleneck for weak scalability)

The AMROC software system 11



Available SAMR software AMROC Massively parallel SAMR References

Partitioning example

I Cylinders of spheres in supersonic flow

I Predict force on secondary body

I Right: 200x160 base mesh, 3 Levels, factors 2,2,2, 8 CPUs

[Laurence et al., 2007]

The AMROC software system 12



Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

First performance assessment

I Test run on 2.2 GHz AMD Opteron
quad-core cluster connected with
Infiniband

I Cartesian test configuration

I Spherical blast wave, Euler equations,
3rd order WENO scheme, 3-step
Runge-Kutta update

I AMR base grid 643, r1,2 = 2, 89 time
steps on coarsest level

I With embedded boundary method: 96
time steps on coarsest level

I Redistribute in parallel every 2nd base
level step

I Uniform grid 2563 = 16.8 · 106 cells

Level Grids Cells
0 115 262,144
1 373 1,589,808
2 2282 5,907,064

Grid and cells used on 16 CPUs

The AMROC software system 13



Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

Cost of SAMR and ghost-fluid method

I Flux correction is
negligible

I Clustering is negligible
(already local
approach). For the
complexities of a
scalable global
clustering algorithm see
[Gunney et al., 2007]

I Costs for GFM constant
around ∼ 36%

I Main costs: Regrid(l)

operation and ghost cell
synchronization

CPUs 16 32 64
Time per step 32.44s 18.63s 11.87s

Uniform 59.65s 29.70s 15.15s
Integration 73.46% 64.69% 50.44%

Flux Correction 1.30% 1.49% 2.03%
Boundary Setting 13.72% 16.60% 20.44%

Regridding 10.43% 15.68% 24.25%
Clustering 0.34% 0.32% 0.26%

Output 0.29% 0.53% 0.92%
Misc. 0.46% 0.44% 0.47%

CPUs 16 32 64
Time per step 43.97s 25.24s 16.21s

Uniform 69.09s 35.94s 18.24s
Integration 59.09% 49.93% 40.20%

Flux Correction 0.82% 0.80% 1.14%
Boundary Setting 19.22% 25.58% 28.98%

Regridding 7.21% 9.15% 13.46%
Clustering 0.25% 0.23% 0.21%

GFM Find Cells 2.04% 1.73% 1.38%
GFM Interpolation 6.01% 10.39% 7.92%

GFM Overhead 0.54% 0.47% 0.37%
GFM Calculate 0.70% 0.60% 0.48%

Output 0.23% 0.52% 0.74%
Misc. 0.68% 0.62% 0.58%

The AMROC software system 14



Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

Cost of SAMR and ghost-fluid method

I Flux correction is
negligible

I Clustering is negligible
(already local
approach). For the
complexities of a
scalable global
clustering algorithm see
[Gunney et al., 2007]

I Costs for GFM constant
around ∼ 36%

I Main costs: Regrid(l)

operation and ghost cell
synchronization

CPUs 16 32 64
Time per step 32.44s 18.63s 11.87s

Uniform 59.65s 29.70s 15.15s
Integration 73.46% 64.69% 50.44%

Flux Correction 1.30% 1.49% 2.03%
Boundary Setting 13.72% 16.60% 20.44%

Regridding 10.43% 15.68% 24.25%
Clustering 0.34% 0.32% 0.26%

Output 0.29% 0.53% 0.92%
Misc. 0.46% 0.44% 0.47%

CPUs 16 32 64
Time per step 43.97s 25.24s 16.21s

Uniform 69.09s 35.94s 18.24s
Integration 59.09% 49.93% 40.20%

Flux Correction 0.82% 0.80% 1.14%
Boundary Setting 19.22% 25.58% 28.98%

Regridding 7.21% 9.15% 13.46%
Clustering 0.25% 0.23% 0.21%

GFM Find Cells 2.04% 1.73% 1.38%
GFM Interpolation 6.01% 10.39% 7.92%

GFM Overhead 0.54% 0.47% 0.37%
GFM Calculate 0.70% 0.60% 0.48%

Output 0.23% 0.52% 0.74%
Misc. 0.68% 0.62% 0.58%

The AMROC software system 14



Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

AMROC scalability tests

Basic test configuration

I Spherical blast wave, Euler
equations, 3D wave
propagation method

I AMR base grid 323 with
r1,2 = 2, 4. 5 time steps on
coarsest level

I Uniform grid
2563 = 16.8 · 106 cells, 19
time steps

I Flux correction deactivated

I No volume I/O operations

I Tests run IBM BG/P
(mode VN)

Weak scalability test

I Reproduction of configuration each 64
CPUs

I On 1024 CPUs: 128× 64× 64 base
grid, > 33, 500 Grids, ∼ 61 · 106 cells,
uniform 1024× 512× 512 = 268 · 106

cells
Level Grids Cells

0 606 32,768
1 575 135,312
2 910 3,639,040

Strong scalability test

I 64× 32× 32 base grid, uniform
512× 256× 256 = 33.6 · 106 cells

Level Grids Cells
0 1709 65,536
1 1735 271,048
2 2210 7,190,208

The AMROC software system 15



Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

AMROC scalability tests

Basic test configuration

I Spherical blast wave, Euler
equations, 3D wave
propagation method

I AMR base grid 323 with
r1,2 = 2, 4. 5 time steps on
coarsest level

I Uniform grid
2563 = 16.8 · 106 cells, 19
time steps

I Flux correction deactivated

I No volume I/O operations

I Tests run IBM BG/P
(mode VN)

Weak scalability test

I Reproduction of configuration each 64
CPUs

I On 1024 CPUs: 128× 64× 64 base
grid, > 33, 500 Grids, ∼ 61 · 106 cells,
uniform 1024× 512× 512 = 268 · 106

cells
Level Grids Cells

0 606 32,768
1 575 135,312
2 910 3,639,040

Strong scalability test

I 64× 32× 32 base grid, uniform
512× 256× 256 = 33.6 · 106 cells

Level Grids Cells
0 1709 65,536
1 1735 271,048
2 2210 7,190,208

The AMROC software system 15



Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

Weak scalability test

64 128 256 512 1024
0

5

10

15

20

25

30

35

40

CPUs

se
c

Time per higest level step

SAMR

Uniform

64 12
8

25
6

51
2

10
24

0

2

4

6

8

10

12

14

se
c

Breakdown of time per step with SAMR

Integration Syncing Partition Recompose Misc

I Costs for Syncing basically constant

I Partitioning, Recompose, Misc (origin not clear) increase

I 1024 required usage of -DUAL option due to usage of global lists data
structures in Partition-Calc and Recompose

The AMROC software system 16



Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

Weak scalability test

64 128 256 512 1024
0

5

10

15

20

25

30

35

40

CPUs

se
c

Time per higest level step

SAMR

Uniform

64 12
8

25
6

51
2

10
24

0

2

4

6

8

10

12

14

se
c

Breakdown of time per step with SAMR

Integration Syncing Partition Recompose Misc

I Costs for Syncing basically constant

I Partitioning, Recompose, Misc (origin not clear) increase

I 1024 required usage of -DUAL option due to usage of global lists data
structures in Partition-Calc and Recompose

The AMROC software system 16



Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

Weak scalability test

64 128 256 512 1024
0

5

10

15

20

25

30

35

40

CPUs

se
c

Time per higest level step

SAMR

Uniform

64 12
8

25
6

51
2

10
24

0

2

4

6

8

10

12

14

se
c

Breakdown of time per step with SAMR

Integration Syncing Partition Recompose Misc

I Costs for Syncing basically constant

I Partitioning, Recompose, Misc (origin not clear) increase

I 1024 required usage of -DUAL option due to usage of global lists data
structures in Partition-Calc and Recompose

The AMROC software system 16



Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

Strong scalability test

16 32 64 128 256 512 1024

101

102

CPUs

se
c

Time per higest level step

SAMR

Uniform

16 32 64 12
8

25
6

51
2

10
24

0

10

20

30

40

50

60

70

se
c

Breakdown of time per step with SAMR

Integration Syncing Partition Recompose Misc

I Uniform code has basically linear scalability (explicit method)

I SAMR visibly looses efficiency for > 512 CPU, or 15, 000 finite volume
cells per CPU

The AMROC software system 17



Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

Strong scalability test

16 32 64 128 256 512 1024

101

102

CPUs

se
c

Time per higest level step

SAMR

Uniform

16 32 64 12
8

25
6

51
2

10
24

0

10

20

30

40

50

60

70

se
c

Breakdown of time per step with SAMR

Integration Syncing Partition Recompose Misc

I Uniform code has basically linear scalability (explicit method)

I SAMR visibly looses efficiency for > 512 CPU, or 15, 000 finite volume
cells per CPU

The AMROC software system 17



Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

Strong scalability test - II

16 32 64 128 256 512 1024

10−1

100

101

102

CPUs

Scaling of main operations

Integration

Syncing

Partition

Recompose

Misc

16 32 64 12
8

25
6

51
2

10
24

0

20

40

60

80

100

%

Breakdown of time per step with SAMR

Integration Syncing Partition Recompose Misc

I Perfect scaling of Integration, reasonable scaling of Syncing

I Strong scalability of Partition needs to be addressed (eliminate global lists)

The AMROC software system 18



Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

Strong scalability test - II

16 32 64 128 256 512 1024

10−1

100

101

102

CPUs

Scaling of main operations

Integration

Syncing

Partition

Recompose

Misc

16 32 64 12
8

25
6

51
2

10
24

0

20

40

60

80

100

%

Breakdown of time per step with SAMR

Integration Syncing Partition Recompose Misc

I Perfect scaling of Integration, reasonable scaling of Syncing

I Strong scalability of Partition needs to be addressed (eliminate global lists)

The AMROC software system 18



Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

Strong scalability test - II

16 32 64 128 256 512 1024

10−1

100

101

102

CPUs

Scaling of main operations

Integration

Syncing

Partition

Recompose

Misc

16 32 64 12
8

25
6

51
2

10
24

0

20

40

60

80

100

%

Breakdown of time per step with SAMR

Integration Syncing Partition Recompose Misc

I Perfect scaling of Integration, reasonable scaling of Syncing

I Strong scalability of Partition needs to be addressed (eliminate global lists)

The AMROC software system 18



Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

Strong scalability test - Train side wind computation
I Computation is restarted from disk checkpoint at

t = 0.526408 s.

I Time for initial re-partitioning removed from
benchmark.

I 200 coarse level time steps computed.

I Regridding and re-partitioning every 2nd level-0 step.

I Computation starts with 51.8M cells (l3: 10.2M, l2:
15.3M, l1: 21.5M, l0= 4.8M) vs. 19.66 billion
(uniform).

I Portions for parallel communication quite
considerable (4 ghost cells still used).

48 96 192 288 384 576 768

101

102

CPUs

se
c

Time per coarse level step

SAMR

Ideal

Time in % spent in main operations
Cores 48 96 192 288 384 576 768
Time per step 132.43s 69.79s 37.47s 27.12s 21.91s 17.45s 15.15s
Par. Efficiency 100.0 94.88 88.36 81.40 75.56 63.24 54.63
LBM Update 5.91 5.61 5.38 4.92 4.50 3.73 3.19
Regridding 15.44 12.02 11.38 10.92 10.02 8.94 8.24
Partitioning 4.16 2.43 1.16 1.02 1.04 1.16 1.34
Interpolation 3.76 3.53 3.33 3.05 2.83 2.37 2.06
Sync Boundaries 54.71 59.35 59.73 56.95 54.54 52.01 51.19
Sync Fixup 9.10 10.41 12.25 16.62 20.77 26.17 28.87
Level set 0.78 0.93 1.21 1.37 1.45 1.48 1.47
Interp./Extrap. 3.87 3.81 3.76 3.49 3.26 2.75 2.39
Misc 2.27 1.91 1.79 1.67 1.58 1.38 1.25

The AMROC software system 19



Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

Strong scalability test - Train side wind computation
I Computation is restarted from disk checkpoint at

t = 0.526408 s.

I Time for initial re-partitioning removed from
benchmark.

I 200 coarse level time steps computed.

I Regridding and re-partitioning every 2nd level-0 step.

I Computation starts with 51.8M cells (l3: 10.2M, l2:
15.3M, l1: 21.5M, l0= 4.8M) vs. 19.66 billion
(uniform).

I Portions for parallel communication quite
considerable (4 ghost cells still used).

48 96 192 288 384 576 768

101

102

CPUs

se
c

Time per coarse level step

SAMR

Ideal

Time in % spent in main operations
Cores 48 96 192 288 384 576 768
Time per step 132.43s 69.79s 37.47s 27.12s 21.91s 17.45s 15.15s
Par. Efficiency 100.0 94.88 88.36 81.40 75.56 63.24 54.63
LBM Update 5.91 5.61 5.38 4.92 4.50 3.73 3.19
Regridding 15.44 12.02 11.38 10.92 10.02 8.94 8.24
Partitioning 4.16 2.43 1.16 1.02 1.04 1.16 1.34
Interpolation 3.76 3.53 3.33 3.05 2.83 2.37 2.06
Sync Boundaries 54.71 59.35 59.73 56.95 54.54 52.01 51.19
Sync Fixup 9.10 10.41 12.25 16.62 20.77 26.17 28.87
Level set 0.78 0.93 1.21 1.37 1.45 1.48 1.47
Interp./Extrap. 3.87 3.81 3.76 3.49 3.26 2.75 2.39
Misc 2.27 1.91 1.79 1.67 1.58 1.38 1.25

The AMROC software system 19



Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

Strong scalability test - Train side wind computation
I Computation is restarted from disk checkpoint at

t = 0.526408 s.

I Time for initial re-partitioning removed from
benchmark.

I 200 coarse level time steps computed.

I Regridding and re-partitioning every 2nd level-0 step.

I Computation starts with 51.8M cells (l3: 10.2M, l2:
15.3M, l1: 21.5M, l0= 4.8M) vs. 19.66 billion
(uniform).

I Portions for parallel communication quite
considerable (4 ghost cells still used).

48 96 192 288 384 576 768

101

102

CPUs

se
c

Time per coarse level step

SAMR

Ideal

Time in % spent in main operations
Cores 48 96 192 288 384 576 768
Time per step 132.43s 69.79s 37.47s 27.12s 21.91s 17.45s 15.15s
Par. Efficiency 100.0 94.88 88.36 81.40 75.56 63.24 54.63
LBM Update 5.91 5.61 5.38 4.92 4.50 3.73 3.19
Regridding 15.44 12.02 11.38 10.92 10.02 8.94 8.24
Partitioning 4.16 2.43 1.16 1.02 1.04 1.16 1.34
Interpolation 3.76 3.53 3.33 3.05 2.83 2.37 2.06
Sync Boundaries 54.71 59.35 59.73 56.95 54.54 52.01 51.19
Sync Fixup 9.10 10.41 12.25 16.62 20.77 26.17 28.87
Level set 0.78 0.93 1.21 1.37 1.45 1.48 1.47
Interp./Extrap. 3.87 3.81 3.76 3.49 3.26 2.75 2.39
Misc 2.27 1.91 1.79 1.67 1.58 1.38 1.25

The AMROC software system 19



Available SAMR software AMROC Massively parallel SAMR References

References

References I

[Berger and LeVeque, 1998] Berger, M. and LeVeque, R. (1998). Adaptive mesh
refinement using wave-propagation algorithms for hyperbolic systems. SIAM J.
Numer. Anal., 35(6):2298–2316.

[Brown et al., 1997] Brown, D. L., Henshaw, W. D., and Quinlan, D. J. (1997).
Overture: An object oriented framework for solving partial differential equations. In
Proc. ISCOPE 1997, appeared in Scientific Computing in Object-Oriented Parallel
Environments, number 1343 in Springer Lecture Notes in Computer Science.

[Deiterding et al., 2007] Deiterding, R., Cirak, F., Mauch, S. P., and Meiron, D. I.
(2007). A virtual test facility for simulating detonation- and shock-induced
deformation and fracture of thin flexible shells. Int. J. Multiscale Computational
Engineering, 5(1):47–63.

[Deiterding et al., 2006] Deiterding, R., Radovitzky, R., Mauch, S. P., Noels, L.,
Cummings, J. C., and Meiron, D. I. (2006). A virtual test facility for the efficient
simulation of solid materials under high energy shock-wave loading. Engineering
with Computers, 22(3-4):325–347.

The AMROC software system 20



Available SAMR software AMROC Massively parallel SAMR References

References

References II

[Gittings et al., 2008] Gittings, M., Weaver, R., Clover, M., Betlach, T., Byrne, N.,
Coker, R., Dendy, E., Hueckstaedt, R., New, K., Oakes, R., Rantal, D., and Stefan,
R. (2008). The RAGE radiation-hydrodynamics code. Comput. Sci. Disc., 1.
doi:10.1088/1749-4699/1/1/015005.

[Gunney et al., 2007] Gunney, B. T., Wissink, A. M., and Hysoma, D. A. (2007).
Parallel clustering algorithms for structured AMR. J. Parallel and Distributed
Computing, 66(11):1419–1430.

[Hornung et al., 2006] Hornung, R. D., Wissink, A. M., and Kohn, S. H. (2006).
Managing complex data and geometry in parallel structured AMR applications.
Engineering with Computers, 22:181–195.

[Laurence et al., 2007] Laurence, S. J., Deiterding, R., and Hornung, H. G. (2007).
Proximal bodies in hypersonic flows. J. Fluid Mech., 590:209–237.

[MacNeice et al., 2000] MacNeice, P., Olson, K. M., Mobarry, C., deFainchtein, R.,
and Packer, C. (2000). PARAMESH: A parallel adaptive mesh refinement
community toolkit. Computer Physics Communications, 126:330–354.

The AMROC software system 21



Available SAMR software AMROC Massively parallel SAMR References

References

References III

[Parashar and Browne, 1997] Parashar, M. and Browne, J. C. (1997). System
engineering for high performance computing software: The HDDA/DAGH
infrastructure for implementation of parallel structured adaptive mesh refinement.
In Structured Adaptive Mesh Refinement Grid Methods, IMA Volumes in
Mathematics and its Applications. Springer.

[Rendleman et al., 2000] Rendleman, C. A., Beckner, V. E., Lijewski, M., Crutchfield,
W., and Bell, J. B. (2000). Parallelization of structured, hierarchical adaptive mesh
refinement algorithms. Computing and Visualization in Science, 3:147–157.

The AMROC software system 22


	Available SAMR software
	Simplified block-based AMR
	General patch-based SAMR

	AMROC
	Overview
	Layered software structure

	Massively parallel SAMR
	Performance data from AMROC

	References
	


