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Simplified block-based AMR

Simplified structured designs

Distributed memory parallelization fully supported if not otherwise states.

I PARAMESH (Parallel Adaptive Mesh Refinement)

I Library based on uniform refinement blocks [MacNeice et al., 2000]
I Both multigrid and explicit algorithms considered
I http://sourceforge.net/projects/paramesh

I Flash code (AMR code for astrophysical thermonuclear flashes)

I Built on PARAMESH
I Solves the magneto-hydrodynamic equations with self-gravitation
I http://www.flash.uchicago.edu/site/flashcode

I Uintah (AMR code for simulation of accidental fires and explosions)

I Only explicit algorithms considered
I FSI coupling Material Point Method and ICE Method (Implicit,

Continuous fluid, Eulerian)
I http://www.uintah.utah.edu

I DAGH/Grace [Parashar and Browne, 1997]

I Just C++ data structures but no methods
I All grids are aligned to bases mesh coarsened by factor 2
I http://userweb.cs.utexas.edu/users/dagh
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General patch-based SAMR

Systems that support general SAMR

I SAMRAI - Structured Adaptive Mesh Refinement Application
Infrastructure

I Very mature SAMR system [Hornung et al., 2006]
I Explicit algorithms directly supported, implicit methods through

interface to Hypre package
I Mapped geometry and some embedded boundary support
I https://computation-rnd.llnl.gov/SAMRAI/software.php

I BoxLib, AmrLib, MGLib, HGProj

I Berkley-Lab-AMR collection of C++ classes by J. Bell et al., 50, 000
LOC [Rendleman et al., 2000]

I Both multigrid and explicit algorithms supported
I https://ccse.lbl.gov/Downloads/index.html

I Chombo

I Redesign and extension of BoxLib by P. Colella et al.
I Both multigrid and explicit algorithms demonstrated
I Some embedded boundary support
I https://commons.lbl.gov/display/chombo
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General patch-based SAMR

Further SAMR software

I Overture (Object-oriented tools for solving PDEs in complex geometries)

I Overlapping meshes for complex geometries by W. Henshaw et al.
[Brown et al., 1997]

I Explicit and implicit algorithms supported
I http://www.overtureframework.org

I AMRClaw within Clawpack [Berger and LeVeque, 1998]

I Serial 2D Fortran 77 code for the explicit Wave Propagation method
with own memory management

I http://depts.washington.edu/clawpack

I Amrita by J. Quirk

I Only 2D explicit finite volume methods supported
I Embedded boundary algorithm
I http://www.amrita-cfd.org

I Cell-based Cartesian AMR: RAGE

I Embedded boundary method
I Explicit and implicit algorithms
I [Gittings et al., 2008]

The AMROC software system 5
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Overview

AMROC

I “Adaptive Mesh Refinement in
Object-oriented C++”

I ∼ 46, 000 LOC for C++ SAMR
kernel, ∼ 140, 000 total C++, C,
Fortran-77

I uses parallel hierarchical data
structures that have evolved from
DAGH

I Right: point explosion in box, 4 level,
Euler computation, 7 compute nodes

I V1.0: http://amroc.sourceforge.net

lmax Level 0 Level 1 Level 2 Level 3 Level 4
1 43/22500 145/38696AMROC’s
2 42/22500 110/48708 283/83688DAGH
3 36/22500 78/54796 245/109476 582/165784grids/cells
4 41/22500 88/56404 233/123756 476/220540 1017/294828
1 238/22500 125/41312Original
2 494/22500 435/48832 190/105216DAGH
3 695/22500 650/55088 462/133696 185/297984grids/cells
4 875/22500 822/57296 677/149952 428/349184 196/897024
Comparison of number of cells and grids in DAGH and AMROC
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Overview

The Virtual Test Facility

I Implements all described algorithms beside multigrid methods

I AMROC V2.0 plus solid mechanics solvers

I Implements explicit SAMR with different finite volume solvers

I Embedded boundary method, FSI coupling

I ∼ 430, 000 lines of code total in C++, C, Fortran-77, Fortran-90

I autoconf / automake environment with support for typical parallel
high-performance system

I http://www.cacr.caltech.edu/asc

I [Deiterding et al., 2006][Deiterding et al., 2007]

The AMROC software system 7
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Layered software structure

UML design of AMROC

I Classical framework approach with
generic main program in C++

I Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

I Predefined, scheme-specific classes
(with F77 interfaces) provided for
standard simulations

I Standard simulations require only
linking to F77 functions for initial and
boundary conditions, source terms.
No C++ knowledge required

I Interface mimics Clawpack

I Expert usage (algorithm modification,
advanced output, etc.) in C++

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1
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Available SAMR software AMROC Massively parallel SAMR References

Layered software structure

Commonalities in software design

I Index coordinate system based on ∆xn,l
∼=

lmax∏
κ=l+1

rκ to uniquely

identify a cell witin the hierarchy

I Box<dim>, BoxList<dim> class that define rectangular regions Gm,l

by lowerleft, upperright, stepsize and specify topological
operations ∩, ∪, \

I Patch<dim,type> class that assigns data to a rectangular grid Gm,l

I A class, here GridFunction<dim,type>, that defines topogical
relations between lists of Patch objects to implement sychronization,
restriction, prolongation, re-distribution

I Hierarchical parallel data structures are typically C++, routines on
patches often Fortran
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Available SAMR software AMROC Massively parallel SAMR References

Layered software structure

Embedded boundary method / FSI coupling

I Multiple independent
EmbeddedBoundaryMethod objects
possible

I Specialization of GFM boundary
conditions, level set description in
scheme-specific F77 interface classes +calculate_in_patch()

Extra-/Interpolation

+apply_boundary_conditions()

EmbeddedBoundaryMethod

+set_patch()

LevelSetEvaluation

EBMHypSAMRSolver

HypSAMRSolver

0..*1

+set_cells_in_patch()

EmbeddedBoundaryConditions

1

1

GridFunction

1

+phi1

0..1
1

1

1

+fluid_step()

-advance_level()

-stable_fluid_timestep()

CoupledHypSAMRSolver

EBMHypSAMRSolver

+next_step()

CoupledSolver11

TimeStepControler

1

1

+solid_step()

-stable_solid_timestep()

CoupledSolidSolver

1 1

+send_interface_data()

+receive_interface_data()

InterSolverCommunication

1

1

1

1

EmbeddedMovingWalls+cpt()

-scan_convert()

ClosestPointTransform

+set_cells_in_patch()

EmbeddedBoundaryConditionsLevelSetEvaluation

1

1

1

1

+update_solid()

SolidSolver

I Coupling algorithm implemented in
further derived HypSAMRSolver class

I Level set evaluation always with CPT
algorithm

I Parallel communication through
efficient non-blocking communication
module

I Time step selection for both solvers
through CoupledSolver class
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Available SAMR software AMROC Massively parallel SAMR References

Parallelized construction of space-filling curve

Computation of space filling curve

I Partition-Init

1. Compute aggregated workload for
new grid hierarchy and project result
onto level 0

2. Construct recursively SFC-units until
work in each unit is homogeneous,
GuCFactor defines minimal
coarseness relative to level-0 grid

I Partition-Calc

1. Compute entire workload and new work for each processor
2. Go sequentially through SFC-ordered list of partitioning units and

assign units to processors, refine partition if necessary and possible

I Ensure scalability of Partition-Init by creating SFC-units strictly local

I Currently still use of MPI allgather() to create globally identical input for
Partition-Calc (can be a bottleneck for weak scalability)
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Available SAMR software AMROC Massively parallel SAMR References

Partitioning example

I Cylinders of spheres in supersonic flow

I Predict force on secondary body

I Right: 200x160 base mesh, 3 Levels, factors 2,2,2, 8 CPUs

[Laurence et al., 2007]
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Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

First performance assessment

I Test run on 2.2 GHz AMD Opteron
quad-core cluster connected with
Infiniband

I Cartesian test configuration

I Spherical blast wave, Euler equations,
3rd order WENO scheme, 3-step
Runge-Kutta update

I AMR base grid 643, r1,2 = 2, 89 time
steps on coarsest level

I With embedded boundary method: 96
time steps on coarsest level

I Redistribute in parallel every 2nd base
level step

I Uniform grid 2563 = 16.8 · 106 cells

Level Grids Cells
0 115 262,144
1 373 1,589,808
2 2282 5,907,064

Grid and cells used on 16 CPUs
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Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

Cost of SAMR and ghost-fluid method

I Flux correction is
negligible

I Clustering is negligible
(already local
approach). For the
complexities of a
scalable global
clustering algorithm see
[Gunney et al., 2007]

I Costs for GFM constant
around ∼ 36%

I Main costs: Regrid(l)

operation and ghost cell
synchronization

CPUs 16 32 64
Time per step 32.44s 18.63s 11.87s

Uniform 59.65s 29.70s 15.15s
Integration 73.46% 64.69% 50.44%

Flux Correction 1.30% 1.49% 2.03%
Boundary Setting 13.72% 16.60% 20.44%

Regridding 10.43% 15.68% 24.25%
Clustering 0.34% 0.32% 0.26%

Output 0.29% 0.53% 0.92%
Misc. 0.46% 0.44% 0.47%

CPUs 16 32 64
Time per step 43.97s 25.24s 16.21s

Uniform 69.09s 35.94s 18.24s
Integration 59.09% 49.93% 40.20%

Flux Correction 0.82% 0.80% 1.14%
Boundary Setting 19.22% 25.58% 28.98%

Regridding 7.21% 9.15% 13.46%
Clustering 0.25% 0.23% 0.21%

GFM Find Cells 2.04% 1.73% 1.38%
GFM Interpolation 6.01% 10.39% 7.92%

GFM Overhead 0.54% 0.47% 0.37%
GFM Calculate 0.70% 0.60% 0.48%

Output 0.23% 0.52% 0.74%
Misc. 0.68% 0.62% 0.58%
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Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

AMROC scalability tests

Basic test configuration

I Spherical blast wave, Euler
equations, 3D wave
propagation method

I AMR base grid 323 with
r1,2 = 2, 4. 5 time steps on
coarsest level

I Uniform grid
2563 = 16.8 · 106 cells, 19
time steps

I Flux correction deactivated

I No volume I/O operations

I Tests run IBM BG/P
(mode VN)

Weak scalability test

I Reproduction of configuration each 64
CPUs

I On 1024 CPUs: 128× 64× 64 base
grid, > 33, 500 Grids, ∼ 61 · 106 cells,
uniform 1024× 512× 512 = 268 · 106

cells
Level Grids Cells

0 606 32,768
1 575 135,312
2 910 3,639,040

Strong scalability test

I 64× 32× 32 base grid, uniform
512× 256× 256 = 33.6 · 106 cells

Level Grids Cells
0 1709 65,536
1 1735 271,048
2 2210 7,190,208
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Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

Weak scalability test

64 128 256 512 1024
0

5

10

15

20

25

30

35

40

CPUs

se
c

Time per higest level step

SAMR

Uniform

64 12
8

25
6

51
2

10
24

0

2

4

6

8

10

12

14

se
c

Breakdown of time per step with SAMR

Integration Syncing Partition Recompose Misc

I Costs for Syncing basically constant

I Partitioning, Recompose, Misc (origin not clear) increase

I 1024 required usage of -DUAL option due to usage of global lists data
structures in Partition-Calc and Recompose
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Performance data from AMROC

Strong scalability test
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Breakdown of time per step with SAMR

Integration Syncing Partition Recompose Misc

I Uniform code has basically linear scalability (explicit method)

I SAMR visibly looses efficiency for > 512 CPU, or 15, 000 finite volume
cells per CPU
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Available SAMR software AMROC Massively parallel SAMR References

Performance data from AMROC

Strong scalability test - II

16 32 64 128 256 512 1024

10−1

100

101

102

CPUs

Scaling of main operations

Integration

Syncing

Partition

Recompose

Misc

16 32 64 12
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20

40

60

80

100

%

Breakdown of time per step with SAMR

Integration Syncing Partition Recompose Misc

I Perfect scaling of Integration, reasonable scaling of Syncing

I Strong scalability of Partition needs to be addressed (eliminate global lists)
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Performance data from AMROC

Strong scalability test - Train side wind computation
I Computation is restarted from disk checkpoint at

t = 0.526408 s.

I Time for initial re-partitioning removed from
benchmark.

I 200 coarse level time steps computed.

I Regridding and re-partitioning every 2nd level-0 step.

I Computation starts with 51.8M cells (l3: 10.2M, l2:
15.3M, l1: 21.5M, l0= 4.8M) vs. 19.66 billion
(uniform).

I Portions for parallel communication quite
considerable (4 ghost cells still used).

48 96 192 288 384 576 768

101

102

CPUs

se
c

Time per coarse level step

SAMR

Ideal

Time in % spent in main operations
Cores 48 96 192 288 384 576 768
Time per step 132.43s 69.79s 37.47s 27.12s 21.91s 17.45s 15.15s
Par. Efficiency 100.0 94.88 88.36 81.40 75.56 63.24 54.63
LBM Update 5.91 5.61 5.38 4.92 4.50 3.73 3.19
Regridding 15.44 12.02 11.38 10.92 10.02 8.94 8.24
Partitioning 4.16 2.43 1.16 1.02 1.04 1.16 1.34
Interpolation 3.76 3.53 3.33 3.05 2.83 2.37 2.06
Sync Boundaries 54.71 59.35 59.73 56.95 54.54 52.01 51.19
Sync Fixup 9.10 10.41 12.25 16.62 20.77 26.17 28.87
Level set 0.78 0.93 1.21 1.37 1.45 1.48 1.47
Interp./Extrap. 3.87 3.81 3.76 3.49 3.26 2.75 2.39
Misc 2.27 1.91 1.79 1.67 1.58 1.38 1.25
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