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Detonation structures

Planar ZND Structure

Steady situation under Galilean transforma-
tion:
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tios 2 : 1 : 7 at T0 = 298 K and p0 =
6.67 kPa, dCJ ≈ 1627 m/s.

tig ≈ 3.55µs, u′
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≈ 395.5 m/s, lig ≈
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Cf. vtf/amroc/clawpack/applications/euler chem/1d/ModelDetonation
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Detonation structures

Detonation cell structure in 2D - Regular instability

Incident
shock

Mach stem

Triple point

Head of
reaction
zone
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Transverse
wave

Trajectory

C

E: Reflected shock. F: Slip line. G: Diffusive extension of slip line.
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Detonation structures

Transverse detonation structure - irregular instability
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Detonation structures

Simulation of regular structures

I CJ detonation for H2 : O2 : Ar
(2:1:7) at T0 = 298 K and
p0 = 10 kPa, cell width 1.6 cm

I Perturb 1d ZND solution with
unreacted high-pressure pocket
behind front

I Triple point trajectories by
tracking max |ω| on auxiliary mesh
shifted through grid with CJ

velocity. ω =
∂v

∂x
−
∂u

∂y

I SAMR simulation with 4
additional levels (2,2,2,4),
67.6 Pts/lig

I Configuration similar to Oran et
al., J. Combustion and Flame
113, 1998.

vtf/amroc/clawpack/applications/euler chem/2d/StrehlowH2O2/StatDet
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Detonation structures

Detonation diffraction

I CJ detonation for
H2 : O2 : Ar/2 : 1 : 7 at
T0 = 298 K and p0 = 10 kPa.
Cell width λc = 1.6 cm

I Adaption criteria (similar as

before):

1. Scaled gradients of ρ and
p

2. Error estimation in Yi by
Richardson extrapolation

I 25 Pts/lig . 5 refinement levels
(2,2,2,4).

I Adaptive computations use up to
∼ 2.2 M instead of ∼ 150 M cells
(uniform grid)

I ∼ 3850 h CPU (∼ 80 h real time)
on 48 nodes Athlon 1.4GHz

E. Schultz. Detonation diffraction through an abrupt area expan-
sion. PhD thesis, California Institute of Technology, Pasadena,
California, April 2000.

Detonation simulation 7
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Detonation structures

Detonation diffraction - adaptation

Final distribution to 48 nodes and density distribution on four refinement levels

vtf/amroc/clawpack/applications/euler chem/2d/Diffraction

Detonation simulation 8
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Detonation structures

Triple point analysis

Double Mach reflection structure shortly before the next collision

p/p0 ρ/ρ0 T [K] u[m/s] M
A 1.00 1.00 298 1775 5.078
B 31.45 4.17 2248 447 0.477
C 31.69 5.32 1775 965 1.153
D 19.17 3.84 1487 1178 1.533
E 35.61 5.72 1856 901 1.053
F 40.61 6.09 1987 777 0.880

Detonation simulation 9
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Detonation structures

Shock polar analysis of triple points in detonations

I Neglect reaction, but consider cpi (T )

I Data extracted point-wise from simulation

I Primary triple point T travels exactly at tip of Mach
stem → use oblique shock relations between A and B

ρAuA sin(φB ) = ρB uB sin(φB − θB ) ,

pA + ρAu2
A sin2(φB ) = pB + ρB u2

B sin2(φB − θB )

to evaluate inflow velocity as uA =
1

sinφB

s
ρB (pB − pA)

ρA(ρB − ρA)

I Measure inflow angle φB between Mach stem and triple point trajectory

I Velocity a of T ′ relative to T cannot be derived that easily: Oblique shock
relations across C and D hold true both in frame of reference for T and T ′

ρC uC ,n = ρD uD,n

pC + ρC u2
C ,n = pD + ρD u2

D,n

uC ,t = uD,t

hC +
1

2
u2

C ,n = hD +
1

2
u2

D,n

→ an = 0, at arbitrary

Estimate at =
LR

tinit

Detonation simulation 10
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Detonation structures

Detonation propagation through pipe bends

I 2D Simulation of CJ detonation
for H2 : O2 : Ar/2 : 1 : 7 at
T0 = 298 K and p0 = 10 kPa.
Tube width of 5 detonation cells

I AMR base grid 1200× 992. 4
additional refinement levels
(2,2,2,4). 67.6 Pts/lig

I Adaptive computations use up to
7.1 · 106 cells (4.8 · 106 on highest
level) instead of 1.22 · 109 cells
(uniform grid)

I ∼ 70, 000 h CPU on 128 CPUs
Pentium-4 2.2GHz

Detonation simulation 11
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Detonation structures

Triple point tracks

ϕ = 15o (left, top), ϕ = 30o (left, bottom), and ϕ = 60o (right)

vtf/amroc/clawpack/applications/euler chem/2d/PipeBend

Detonation simulation 12
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Detonation structures

Triple point structures – ϕ = 15o

I Triple point re-initiation after
bend with change from
transitional to Double Mach
reflection

Detonation simulation 13
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Detonation structures

Triple point structures – ϕ = 30o

I Triple point quenching and
failure as single Mach
reflection

Detonation simulation 14
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Detonation structures

Transition criteria

Solve system of oblique shock rela-
tions numerically and determine transi-
tion boundaries [Ben-Dor, 2007].

I Regular reflection (RR): MT
B < 1

I Single Mach reflection (SMR):
MT

C < 1 and MT
B > 1

I Transitional Mach reflection:
MT ′

C < 1 and MT
C > 1

I Double Mach reflection: MT ′
C > 1

and MT
C > 1

I Here: Nonreactive H2 : O2 : Ar
mixture at initially 298 K and
10 kPa
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Detonation structures

Triple point structures, ϕ = 15
Strong DMR structure in diffraction region behind bend,
S = 1.062

p/pA r/rA T [K] v [m/s] M
A 1.00 1.00 298 1835 5.249
B 33.77 4.33 2326 447 0.469
C 33.12 5.80 1701 1111 1.355
D 16.06 3.67 1304 1363 1.889
E 66.90 9.10 2191 758 0.818
F 57.94 7.64 2259 668 0.710
G 35.28 3.41 3235 699
H 38.98 3.41 3589 593
I 23.66 2.37 3149 969
J 13.58 1.67 2570 1347

TMR structure in compression region shortly behind
bend, S = 0.338

p/pA r/rA T [K] v [m/s] M
A 1.00 1.00 298 1908 5.459
B 34.14 4.21 2418 647 0.666
C 35.49 4.95 2135 929 1.015
D 26.53 4.09 1934 1085 1.243
E 34.91 4.88 2134 938 1.025
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Detonation structures

Triple point structures

TMR structure in marginal region near limit of deton-
ability, ϕ = 30, S = 0.338

p/pA r/rA T [K] v [m/s] M
A 1.00 1.00 298 1424 4.073
B 18.97 3.83 1475 502 0.656
C 18.73 4.30 1297 726 1.009
D 14.00 3.58 1167 848 1.240
E 19.08 4.20 1352 744 1.014

Re-ignition with strong DMR and transverse detonation,
ϕ = 45, S = 1.377

p/pA r/rA T [K] v [m/s] M
A 1.00 1.00 298 1812 5.186
B 32.58 4.27 2272 456 0.483
C 33.23 6.21 1594 1156 1.454
D 13.98 3.58 1162 1446 2.119
E 31.54 6.30 1492 1208 1.569
F 16.13 4.14 1161 1393 2.042
G 41.63 7.45 1665 1034 1.274
H 30.57 6.31 1443 1180 1.557
I 14.11 3.85 1092 1431 2.161
J 77.31 9.08 2610 756
K 78.85 8.59 2812 521
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Detonation structures

Detonation cell structure in 3D

I Simulation of only one quadrant

I 44.8 Pts/lig for H2 : O2 : Ar CJ detonation

I SAMR base grid 400x24x24, 2 additional
refinement levels (2, 4)

I Simulation uses ∼ 18 M cells instead of
∼ 118 M (unigrid)

I ∼ 51, 000 h CPU on 128 CPU Compaq Alpha.
H: 37.6 %, S: 25.1 %

Schlieren and isosurface of YOH

Schlieren on refinement levels

Distribution to 128 processors

Detonation simulation 18
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Detonation structures

Detonation cell structure in 3D - II

Schlieren plots of density, mirrored for visual-
ization

MM MM

MI MIII II

MI MI

MI

MI

MI

MI

II

II

II

II

M M M MMI MI

L1'L1' L2'

L 1'L1' L2'

L1'L1' L2'

L1 L2L2

L1 L 2L2

Schematic front view of the periodic triple
point line structure right plot at the same time.

Schlieren plots of YOH
vtf/amroc/clawpack/applications/euler chem/3d/StrehlowH2O2/StatDet

vtf/amroc/clawpack/applications/euler chem/3d/StatDetPeriodic

Detonation simulation 19

file:code/amroc/doc/html/apps/clawpack_2applications_2euler__chem_23d_2StrehlowH2O2_2StatDet_2src_2Problem_8h_source.html
file:code/amroc/doc/html/apps/clawpack_2applications_2euler__chem_23d_2StrehlowH2O2_2StatDetPeriodic_2src_2Problem_8h_source.html
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Detonation structures

Temporal Development of Detonation Velocity

Point-wise reinitiation along L1 (left) and L1’ (right)
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Combustion induced by projectiles

Axisymmetric Navier-Stokes equations with chemical reaction
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Combustion induced by projectiles

Chemistry and transport properties

Arrhenius-kinetics:

ω̇i =
MX

j=1

(νr
ji − ν

f
ji )

»
k f

j

KY
n=1

“ ρn

Wn

”νf
jn − k r

j

KY
n=1

“ ρn

Wn

”νr
jn

–
i = 1, . . . ,K

I Parsing of mechanisms and evaluation of ω̇i with Chemkin-II

I cpi (T ) and hi (T ) tabulated, linear interpolation between values

Mixture viscosity µ = µ(T ,Yi ) with Wilke formula

µ =
KX

i=1

Yiµi

Wi
PK

m=1 YmΦim/Wm

with Φim =
1
√

8

„
1 +

Wi

Wm

«− 1
2

 
1 +

„
µi

µm

« 1
2
„

Wm

Wj

« 1
4

!2

Mixture thermal conductivity k = k(T ,Yi ) following Mathur

k =
1

2

 
W

KX
i=1

Yi ki

Wi
+

1

W
PK

i=1 Yi/(Wi ki )

!
Mixture diffusion coefficients Di = Di (T , p,Yi ) from binary diffusion Dmi (T , p) as

Di =
1− Yi

W
P

m 6=i Ym/(WmDmi )

I Evaluation with Chemkin-II Transport library
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Finite volume scheme

Splitting method

∂tq + ∂x (f − fv ) + ∂y (g − gv ) =
α

y
(c− g + gv ) + s

Dimensional splitting for PDE

X (∆t) : ∂tq + ∂x (f(q)− fv (q)) = 0 , IC: Q(tm)
∆t
=⇒ Q̃1/2

Y(∆t) : ∂tq + ∂y (g(q)− gv (q)) = 0 , IC: Q̃1/2 ∆t
=⇒ Q̃

Treat right-hand side as source term

C(∆t) : ∂tq = α
y (c(q)− g(q) + gv (q)) , IC: Q̃

∆t
=⇒ Q̄

Chemical source term

S(∆t) : ∂tq = s(q) , IC: Q̄
∆t
=⇒ Q(tm + ∆t)

Formally 1st-order algorithm

Q(tm + ∆t) = S(∆t)C(∆t)Y(∆t)X (∆t)(Q(tm))

but all sub-operators 2nd-order accurate or higher.

Detonation simulation 23
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Finite volume scheme

Finite volume discretization

Time discretization tn = n∆t, discrete volumes Ijk =

[xj − 1
2

∆x , xj + 1
2

∆x[×[yk − 1
2

∆y , yk + 1
2

∆y [× =: [xj−1/2, xj+1/2[×[yk−1/2, yk+1/2[

Approximation Qjk (t) ≈ 1
|Ijk |

R
Ijk

q(x, t) dx and numerical fluxes

F
`
Qjk (t),Qj+1,k (t)

´
≈ f(q(xj+1/2, yk , t)),

Fv
`
Qjk (t),Qj+1,k (t)

´
≈ fv (q(xj+1/2, yk , t),∇q(xj+1/2, yk , t))

yield (for simplicity)

Qn+1
jk = Qn

kj−
∆t

∆x

h
F
“
Qn

jk ,Q
n
j+1,k

”
− F

“
Qn

j−1,k ,Q
n
jk

”i
+

∆t

∆x

h
Fv

“
Qn

jk ,Q
n
j+1,k

”
− Fv

“
Qn

j−1,k ,Q
n
jk

”i
(∗)

I Riemann solver to approximate F
“
Qn

jk ,Q
n
j+1,k

”
I 1st-order finite differences for Fv

“
Qn

jk ,Q
n
j+1,k

”
yield 2nd-order accurate central

differences in (∗)
Stability condition used:

max
i,j,k


∆t

∆x
(|ujk | + cjk ) +

8

3

µjk ∆t

ρjk ∆x2
,

∆t

∆x
(|ujk | + cjk ) +

2kj ∆t

cv,jkρj ∆x2
,

∆t

∆x
(|ujk | + cjk ) + Di,jk

∆t

∆x2

ff
≤ 1
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Finite volume scheme

Finite volume discretization – cont.

Symmetry source term C(∆t): Use

Qn+1
jk = Qn

jk +∆t

„
α

y
(c(Qn

jk )− g(Qn
jk ) +

1

2

`
Gv

`
Qn

jk ,Q
n
j,k+1

´
+ Gv

`
Qn

j,k−1,Q
n
jk

´´«
within explicit 2nd-order accurate Runge-Kutta method

I Gives 2nd-order central difference approximation of Gv

I Transport properties µ, k, Di are stored in vector of state Q and
kept constant throughout entire time step

Chemical source term S(·):

I 4th-order accurate semi-implicit ODE-solver subcycles within each
cell

I ρ, e, u, v remain unchanged!

∂t ρi = Wi ω̇i (ρ1, . . . , ρK ,T ) i = 1, . . . ,K
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Finite volume scheme

Lehr’s ballistic range experiments

I Spherical-nosed projectile of radius 1.5 mm travels with constant velocity
through stoichiometric H2 : O2 : N2 mixture (molar ratios 2:1:3.76) at
42.663 kPa and T = 293 K [Lehr, 1972]

I Mechanism by [Jachimowski, 1988]: 19 equilibrium reactions, 9 species.
Chapman Jouguet velocity ∼ 1957 m/s.

I Axisymmetric Navier-Stokes and Eulers simulations on AMR base mesh of
400× 200 cells, physical domain size 6 cm× 3 cm

I 4-level computations with refinement factors 2,2,4 to final time
t = 170µs. Refinement downstream removed.

I Main configurations

I Velocity vI = 1931 m/s (M = 4.79), ∼ 40 Pts/lig
I Velocity vI = 1806 m/s (M = 4.48), ∼ 60 Pts/lig

I Various previous studies with not entirely consistent results. E.g.
[Yungster and Radhakrishnan, 1996], [Axdahl et al., 2011]

I Stagnation point location and pressure tracked in every time step

I All computations were on 32 cores requiring ∼ 1500 h CPU each

vtf/amroc/clawpack/applications/euler chem/2d/SphereLehr

vtf/amroc/clawpack/applications/euler chem/2d/SphereLehrNav
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Finite volume scheme

Viscous case – M = 4.79

I 5619 iterations with CFL=0.9 to t = 170µs

I Oscillation frequency in last 20µs: ∼ 722 kHz (viscous), ∼ 737 kHz (inviscid)

I Experimental value: ∼ 720 kHz

Schlieren plot of density
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Finite volume scheme

Viscous case – M = 4.79 – mesh adaptation
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Finite volume scheme

Comparison of temperature field

Viscous
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Finite volume scheme

Comparison of temperature field

Inviscid
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Finite volume scheme

Viscous case – M = 4.48

I 5432 iterations with CFL=0.9 to t = 170µs

I Oscillation frequency in last 20µs: ∼ 417 kHz

I Experimental value: ∼ 425 kHz

Schlieren plot of density
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Finite volume scheme

Oscillation mechanism

Schlieren of density Temperature Mass fraction OH Pressure

I Oscillation created by accelerated reaction due to slip line from previous triple
point

Detonation simulation 31
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Finite volume scheme

Inviscid case – M = 4.48

I 4048 iterations with CFL=0.9 to t = 170µs

I Oscillation frequency in last 20µs: ∼ 395 kHz

I Experimental value: ∼ 425 kHz

Schlieren plot of density
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Finite volume scheme

Perturbed oscillation mechanism

Schlieren of density Temperature Mass fraction OH Pressure

I Small perturbations can quickly create numerous triple points
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Hybrid methods

Hybrid method

Convective numerical flux is defined as

Fn
inv =

(
Fn

inv−WENO , in C
Fn

inv−CD , in C,

I For LES: 3rd order WENO method, 2nd order TCD [Hill and Pullin, 2004]

I For DNS: Symmetric 6th order WENO, 6th-order CD scheme
[Ziegler et al., 2011]

Use WENO scheme to only capture shock waves but resolve interface between species.

Shock detection based on using two criteria together:

1. Lax-Liu entropy condition |uR ± aR | < |u∗ ± a∗| < |uL ± aL| tested with a
threshold to eliminate weak acoustic waves. Used intermediate states at cell
interfaces:

u∗ =

√
ρLuL +

√
ρR uR√

ρL +
√
ρR

, a∗ =

r
(γ∗ − 1)(h∗ −

1

2
u2
∗), . . .

2. Limiter-inspired discontinuity test based on mapped normalized pressure gradient
θj

φ(θj ) =
2θj

(1 + θj )
2

with θj =
|pj+1 − pj |
|pj+1 + pj |

, φ(θj ) > αMap

Detonation simulation 34



Detonation simulation Combustion with viscous terms Higher order schemes References

Hybrid methods

Hybrid method

Convective numerical flux is defined as

Fn
inv =

(
Fn

inv−WENO , in C
Fn

inv−CD , in C,

I For LES: 3rd order WENO method, 2nd order TCD [Hill and Pullin, 2004]

I For DNS: Symmetric 6th order WENO, 6th-order CD scheme
[Ziegler et al., 2011]

Use WENO scheme to only capture shock waves but resolve interface between species.

Shock detection based on using two criteria together:

1. Lax-Liu entropy condition |uR ± aR | < |u∗ ± a∗| < |uL ± aL| tested with a
threshold to eliminate weak acoustic waves. Used intermediate states at cell
interfaces:

u∗ =

√
ρLuL +

√
ρR uR√

ρL +
√
ρR

, a∗ =

r
(γ∗ − 1)(h∗ −

1

2
u2
∗), . . .

2. Limiter-inspired discontinuity test based on mapped normalized pressure gradient
θj

φ(θj ) =
2θj

(1 + θj )
2

with θj =
|pj+1 − pj |
|pj+1 + pj |

, φ(θj ) > αMap

Detonation simulation 34



Detonation simulation Combustion with viscous terms Higher order schemes References

Hybrid methods

Hybrid method

Convective numerical flux is defined as

Fn
inv =

(
Fn

inv−WENO , in C
Fn

inv−CD , in C,

I For LES: 3rd order WENO method, 2nd order TCD [Hill and Pullin, 2004]

I For DNS: Symmetric 6th order WENO, 6th-order CD scheme
[Ziegler et al., 2011]

Use WENO scheme to only capture shock waves but resolve interface between species.

Shock detection based on using two criteria together:

1. Lax-Liu entropy condition |uR ± aR | < |u∗ ± a∗| < |uL ± aL| tested with a
threshold to eliminate weak acoustic waves. Used intermediate states at cell
interfaces:

u∗ =

√
ρLuL +

√
ρR uR√

ρL +
√
ρR

, a∗ =

r
(γ∗ − 1)(h∗ −

1

2
u2
∗), . . .

2. Limiter-inspired discontinuity test based on mapped normalized pressure gradient
θj

φ(θj ) =
2θj

(1 + θj )
2

with θj =
|pj+1 − pj |
|pj+1 + pj |

, φ(θj ) > αMap

Detonation simulation 34



Detonation simulation Combustion with viscous terms Higher order schemes References

Hybrid methods

Hybrid method

Convective numerical flux is defined as

Fn
inv =

(
Fn

inv−WENO , in C
Fn

inv−CD , in C,

I For LES: 3rd order WENO method, 2nd order TCD [Hill and Pullin, 2004]

I For DNS: Symmetric 6th order WENO, 6th-order CD scheme
[Ziegler et al., 2011]

Use WENO scheme to only capture shock waves but resolve interface between species.

Shock detection based on using two criteria together:

1. Lax-Liu entropy condition |uR ± aR | < |u∗ ± a∗| < |uL ± aL| tested with a
threshold to eliminate weak acoustic waves. Used intermediate states at cell
interfaces:

u∗ =

√
ρLuL +

√
ρR uR√

ρL +
√
ρR

, a∗ =

r
(γ∗ − 1)(h∗ −

1

2
u2
∗), . . .

2. Limiter-inspired discontinuity test based on mapped normalized pressure gradient
θj

φ(θj ) =
2θj

(1 + θj )
2

with θj =
|pj+1 − pj |
|pj+1 + pj |

, φ(θj ) > αMap

Detonation simulation 34



Detonation simulation Combustion with viscous terms Higher order schemes References

Hybrid methods

Hybrid method

Convective numerical flux is defined as

Fn
inv =

(
Fn

inv−WENO , in C
Fn

inv−CD , in C,

I For LES: 3rd order WENO method, 2nd order TCD [Hill and Pullin, 2004]

I For DNS: Symmetric 6th order WENO, 6th-order CD scheme
[Ziegler et al., 2011]

Use WENO scheme to only capture shock waves but resolve interface between species.

Shock detection based on using two criteria together:

1. Lax-Liu entropy condition |uR ± aR | < |u∗ ± a∗| < |uL ± aL| tested with a
threshold to eliminate weak acoustic waves. Used intermediate states at cell
interfaces:

u∗ =

√
ρLuL +

√
ρR uR√

ρL +
√
ρR

, a∗ =

r
(γ∗ − 1)(h∗ −

1

2
u2
∗), . . .

2. Limiter-inspired discontinuity test based on mapped normalized pressure gradient
θj

φ(θj ) =
2θj

(1 + θj )
2

with θj =
|pj+1 − pj |
|pj+1 + pj |

, φ(θj ) > αMap

Detonation simulation 34



Detonation simulation Combustion with viscous terms Higher order schemes References

Hybrid methods

Hybrid method

Convective numerical flux is defined as

Fn
inv =

(
Fn

inv−WENO , in C
Fn

inv−CD , in C,

I For LES: 3rd order WENO method, 2nd order TCD [Hill and Pullin, 2004]

I For DNS: Symmetric 6th order WENO, 6th-order CD scheme
[Ziegler et al., 2011]

Use WENO scheme to only capture shock waves but resolve interface between species.

Shock detection based on using two criteria together:

1. Lax-Liu entropy condition |uR ± aR | < |u∗ ± a∗| < |uL ± aL| tested with a
threshold to eliminate weak acoustic waves. Used intermediate states at cell
interfaces:

u∗ =

√
ρLuL +

√
ρR uR√

ρL +
√
ρR

, a∗ =

r
(γ∗ − 1)(h∗ −

1

2
u2
∗), . . .

2. Limiter-inspired discontinuity test based on mapped normalized pressure gradient
θj

φ(θj ) =
2θj

(1 + θj )
2

with θj =
|pj+1 − pj |
|pj+1 + pj |

, φ(θj ) > αMap

Detonation simulation 34



Detonation simulation Combustion with viscous terms Higher order schemes References

Hybrid methods

SAMR flux correction for Runge-Kutta method

Recall Runge-Kutta temporal update

Q̃υj = αυQm
j + βυ Q̃υ−1

j + γυ
∆t

∆xn
∆Fn(Q̃υ−1)

rewrite scheme as

Qm+1 = Qm −
ΥX
υ=1

ϕυ
∆t

∆xn
∆Fn(Q̃υ−1) with ϕυ = γυ

ΥY
ν=υ+1

βν

Flux correction to be used

1. δF1,l+1

i− 1
2
,j

:= −ϕ1F
1,l

i− 1
2
,j

(Q̃0) , δF1,l+1

i− 1
2
,j

:= δF1,l+1

i− 1
2
,j
−

ΥX
υ=2

ϕυF1,l

i− 1
2
,j

(Q̃υ−1)

2. δF1,l+1

i− 1
2
,j

:= δF1,l+1

i− 1
2
,j

+
1

r2
l+1

rl+1−1X
ι=0

ΥX
υ=1

ϕυF1,l+1

v+ 1
2
,w+ι

“
Q̃υ−1(t + κ∆tl+1)

”
Storage-efficient SSPRK(3,3):

υ αυ βυ γυ ϕυ
1 1 0 1 1

6
2 3

4
1
4

1
4

1
6

3 1
2

2
3

2
3

2
3

[Pantano et al., 2007]
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Hybrid methods
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Hybrid methods

DNS of shear layer in detonation triple point
I Calorically perfect two-species model with γ = 1.29499 and h0 = 54, 000 J/mol and one-step

Arrhenius reaction with parameters Ea = 30, 000 J/mol, A = 6 · 105 s−1, W = 0.029 kg/mol
−→ 1d ZND theory predicts dCJ = 1587.8 m/s

I For dynamic viscosity, heat conductivity, and mass diffusion simple Sutherland models are used

I Distance L(t) = dCJ sin(θ)t is used to define a Reynolds number as Re =
ρ0a0L(t)
µ0

I Viscous shear layer thickness, thermal heat conduction layer thickness, and mass diffusion layer

thickness grow as δvisc ≈
r
µ

ρ
t, δcond ≈

s
kref

ρcv
t, δmass,i ≈

s
Di

ρ
t

I Only shock thickness not resolved −→ “pseudo-DNS”

I Computations with WENO/CD/RK3 use SAMR base mesh 320× 160 and up to 8 levels refined
by factor 2, domain: 40 mm× 20 mm
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Hybrid methods

Computational results for shear layer
WENO/CD - 6 levels WENO/CD - 7 levels WENO/CD - 8 levels

∆xmin = 3.91 · 10−6 m ∆xmin = 1.95 · 10−6 m ∆xmin = 9.77 · 10−7 m

MUSCL - 7 levels MUSCL - 7 levels - Euler
Usage of WENO for
WENO/CD - 8 levels

∆xmin = 1.05 · 10−6 m ∆xmin = 1.05 · 10−6 m

I WENO/CD/RK3 gives results comparable to 4x finer resolved optimal 2nd-order
scheme, but CPU times with SAMR 2-3x larger

I Gain in CPU time from higher-order scheme roughly one order
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Large-eddy simulation

Favre-averaged Navier-Stokes equations
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ρ̄ũk ũn + δknp̄ − τ̃kn + σkn

´
= 0

∂ρ̄Ē
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ũn(ρ̄Ē + p̄) + q̃n − τ̃nj ũj + σe
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∂ũk

∂xn

´
−

2

3
µ̃
∂ũj
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Large-eddy simulation

Numerical solution approach

I Subgrid terms σkn, σe
n , σi

n are computed by Pullin’s stretched-vortex model

I Cutoff ∆c is set to local SAMR resolution ∆xl

I It remains to solve the Navier-Stokes equations in the hyperbolic regime

I 3rd order WENO method (hybridized with a tuned centered
difference stencil) for convection

I 2nd order conservative centered differences for diffusion

Example: Cylindrical Richtmyer-Meshkov instability

I Sinusoidal interface between two gases hit by
shock wave

I Objective is correctly predict turbulent mixing

I Embedded boundary method used to regularize
apex

I AMR base grid 95× 95× 64 cells, r1,2,3 = 2

I ∼ 70, 000 h CPU on 32 AMD 2.5GHZ-quad-core
nodes

Detonation simulation 39
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Large-eddy simulation

Planar Richtmyer-Meshkov instability

I Perturbed Air-SF6 interface shocked and
re-shocked by Mach 1.5 shock

I Containment of turbulence in refined
zones

I 96 CPUs IBM SP2-Power3

I WENO-TCD scheme with LES model

I AMR base grid 172× 56× 56, r1,2 = 2,
10 M cells in average instead of 3 M
(uniform)

Task 2ms (%) 5ms (%) 10ms (%)
Integration 45.3 65.9 52.0

Boundary setting 44.3 28.6 41.9
Flux correction 7.2 3.4 4.1
Interpolation 0.9 0.4 0.3

Reorganization 1.6 1.2 1.2
Misc. 0.6 0.5 0.5

Max. imbalance 1.25 1.23 1.30

vtf/amroc/weno/applications/euler/3d/RM AirSF6

Detonation simulation 40
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