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Thermodynamic model

Thermodynamic Model

The two temperature thermodynamic model is used to model the
thermodynamic nonequilibrium,

es(Ttr ,Tve) = et
s (Ttr ) + er

s (Ttr ) + ev
s (Tve) + eel

s (Tve) + e0
s

I Computationally efficient,

I Widely used,

I Integrated into the open source library Mutation++
[Scoggins and Magin, 2014].

The internal energies are calculated within the Mutation++ library using
the Rigid-Rotator Harmonic-Oscillator (RRHO) model.
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Thermodynamic model

Governing Equations

The two temperature thermodynamic model has been implemented using
the equations,

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
= W

where,

Q =



ρ1

...
ρNs

ρu
ρv
ρeve

ρE


, F =



ρ1u
...

ρNs u
ρu2 + p
ρvu
ρeve u

(ρE + p)u


, G =



ρ1v
...

ρNs v
ρuv

ρv2 + p
ρeve v

(ρE + p)v


, W =



ẇ1

...
ẇNs

0
0

Qve

0


.
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ẇNs

0
0

Qve

0


.

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part II 4



Two-temperature solver Two-temperature mapped mesh solver DNS with a hybrid method Summary

Thermodynamic model

Source Terms

The net species production rates,

ẇs = Ms

Nr∑
r=1

(βsr − αsr )

kf ,r

Ns∏
i=1

(
ρi

Mi

)αir

− kb,r

Ns∏
i=1

(
ρi

Mi

)βir

 ,

kf ,r (Tc ) = Af ,r T
ηf ,r
c exp [−θr/Tc ] ,

and the energy transfer rate (neutral mixture),

Qve =
∑

s

QT−V
s + QC−V

s + QC−el
s ,

QT−V
s = ρs

ev
s (Ttr )− ev

s

τT−V
v,s

,

QC−V
s = c1ẇs ev

s , QC−el
s = c1ẇs eel

s ,

are both calculated using the Mutation++ library.
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Thermodynamic model

Numerical Integration

Finite volume method with two flux schemes implemented,

I Van Leer’s flux vector splitting method [van Leer, 1982],

I The AUSM scheme [Liou and Steffen Jr, 1993].

Second order in space and time,

I The MUSCL-Hancock scheme is used for the fluxes.

I Strang splitting is used to integrate the source term.
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Cartesian results

Double Wedge

Simulation of a double wedge in a high enthalpy flow of air
[Pezzella et al., 2015].

T∞ p∞ U∞ M∞ L1 θ1 L2 θ2

710K 0.78 kPa 3812m/s 7.14 50.8mm 30◦ 25.4mm 55◦

Table: Double wedge geometry and experimental conditions.

I Five species mixture of air.

I Initial 200× 200 cell mesh, with 3 levels of refinement.

I Embedded boundary used to define geometry.

I Van Leer flux scheme.

I Physical time of 242µs.
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Cartesian results

Double Wedge

The temperature and mass fraction of atomic oxygen.

t = 242µsecs.
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Cartesian results

Double Wedge

The mesh was refined using pressure and density gradients.

t = 242µsecs.
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Cartesian results

Double Wedge

Dynamic load balancing distributes the cells across the processors.

t = 242µsecs.
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Cartesian results

Double Wedge

The AMR enables the flow features to be captured in detail.

The schlieren image is taken from [Pezzella et al., 2015].
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Mapped mesh treatment

Mapped Solution Update

Within the AMROC-Clawpack framework, the solution is stored in
physical (x , y) space and the fluxes are mapped from computational
(ξ, η) space.

Using dimensional splitting the solution update is given by:

Q∗i,j = Qn
i,j −

∆t

∆ξ

[(
F̂− F̂v

)
i+1,j
−
(
F̂− F̂v

)
i,j

]
∆η∆ξ

Vi,j
,

Qn+1
i,j = Q∗i,j −

∆t

∆η

[(
Ĝ− Ĝv

)
i,j+1
−
(
Ĝ− Ĝv

)
i,j

]
∆η∆ξ

Vi,j
.

where Vi,j is the volume of cell i , j in physical space. F̂, F̂v , Ĝ, Ĝv are
the physical fluxes per computational unit length.
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Ĝ− Ĝv
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Mapped mesh treatment

Mapped Mesh Computation

In the mapped mesh computations, the flux is transformed to align with
the cell face,

F̂ = T−1Fn(T Ql ,T Qr ) ,

where T is the transformation matrix,

T =



1 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 n̂x n̂y 0 0
0 0 0 −n̂y n̂x 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.
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Mapped mesh treatment

Mapped Inviscid Fluxes

The inviscid fluxes per computational unit length are found by:

I Rotating the momentum components to be normal to the face,

I Calculating the flux with the rotated solution vectors,

I Rotating the solution vector back,

I Scaling the flux using the ratio of the computational face to the
mapped face

In the ξ directional sweep, this gives

Fi−1/2,j = T−1
i−1/2,jFn(Ti−1/2,jQi−1,j ,Ti−1/2,jQi,j ) .

where T is the rotation matrix used to rotate the momentum
components, and Fn is the normal flux through the face.
The scaling is given by:

F̂i,j =
|ni−1/2,j |

∆η
Fi−1/2,j ,
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i−1/2,jFn(Ti−1/2,jQi−1,j ,Ti−1/2,jQi,j ) .

where T is the rotation matrix used to rotate the momentum
components, and Fn is the normal flux through the face.
The scaling is given by:

F̂i,j =
|ni−1/2,j |

∆η
Fi−1/2,j ,
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Mapped mesh treatment

Mapped Viscous Fluxes

The physical viscous flux per computational unit length in the ξ
directional sweep is given by,

F̂v
i−1/2,j =

|ni−1/2,j |
∆η

[
(Fv n̂x )i−1/2,j + (Gv n̂y )i−1/2,j

]
,

To calculate the derivatives needed for Fv and Gv , one must use

∂φ

∂x
=

(
∂φ

∂ξ

)(
∂ξ

∂x

)
+

(
∂φ

∂η

)(
∂η

∂x

)
,

and,
∂φ

∂y
=

(
∂φ

∂ξ

)(
∂ξ

∂y

)
+

(
∂φ

∂η

)(
∂η

∂y

)
.
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Mapped mesh treatment

Boundary Conditions

For wall boundary conditions the ghost cell values are set by first
transforming the domain variables,

Q̂ = TwQdom. .

Then setting the ghost cell variables using interpolation,

Q̂ρu
gc =

− dgw

dgd
Q̂ρu

1− dgw

dgd

,

and

Q̂ρv
gc = Q̂ρv slip, Q̂ρv

gc =
− dgw

dgd
Q̂ρv

1− dgw

dgd

no− slip,

Then rotating the ghost cell values using the inverse transformation,

Qgc = T−1
w Q̂gc .
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Mapped mesh treatment

CFL condition

The time step must be adjusted to account for the changes in mesh size.

The Courant-Friedrichs-Lewy (CFL) condition can be written as
[Moukalled et al., 2015],∑

f

[
λv

f |n|f
df

+ λc
f |n|f

]
− Vc

∆t
≤ 0 ,

where λv
f and λc

f are the viscous and convective spectral radii,
respectively, and df is the distance between the cell centres either side of
the face.
Rearranging the above equation gives,

∆t

Vc

∑
f

[
λv

f

df
+ λc

f

]
|n|f ≤ 1 .
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Mapped mesh treatment

CFL Condition

With dimensional splitting, the CFL condition must be evaluated in each
dimension separately, giving,

max

([
λv

i−1/2,j

di−1/2,j

+ λc
i−1/2,j

]
|n|i−1/2,j +

[
λv

i+1/2,j

di+1/2,j

+ λc
i+1/2,j

]
|n|i+1/2,j ,[

λv
i,j−1/2

di,j−1/2

+ λc
i,j−1/2

]
|n|i,j−1/2 +

[
λv

i,j+1/2

di,j+1/2

+ λc
i,j+1/2

]
|n|i,j+1/2

)
∆t

Vc
≤ 1 .
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Non-cartesian results and comparison

Hypersonic Sphere

Simulations of a half inch sphere
travelling at hypersonic speeds in air
[Lobb, 1964].

Mach number range between 8.4
and 16.1, with p∞ = 1333Pa and
T∞ = 293K.

The shock standoff distance was
measured at each condition.

The shock standoff distance is used
to validate the non-equilibrium
model.

Validation of the axi-symmetric
source term.

Waxi = − 1

y



ρ1v
...

ρNv
ρuv
ρv2

(ρE + p)v


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Non-cartesian results and comparison

Hypersonic Sphere

Computed shock standoff distances compared with experimental data.
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Non-cartesian results and comparison

Hypersonic Sphere
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Non-cartesian results and comparison

Mapped Mesh Computation

Experiments of a cylinder in hypersonic flow [Hornung, 1972] were
simulated with the mapping and initial conditions given by,

x = ξ cos(η), y = −ξ sin(η).

Radius YN2
YN T∞ p∞ U∞ M∞

0.0127m 0.927 0.073 1833K 2.91 kPa 5590m/s 6.14

Table: Cylinder geometry and freestream conditions

The implementation was verified by comparing a mapped computation
with a embedded boundary computation.
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Non-cartesian results and comparison

Mapped Mesh Computation

t = 100µsec

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part II 23



Two-temperature solver Two-temperature mapped mesh solver DNS with a hybrid method Summary

Non-cartesian results and comparison

Mapped Mesh Computation

t = 100µsec

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part II 23



Two-temperature solver Two-temperature mapped mesh solver DNS with a hybrid method Summary

Non-cartesian results and comparison

Mapped Mesh Computation

t = 100µsec

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part II 23



Two-temperature solver Two-temperature mapped mesh solver DNS with a hybrid method Summary

Non-cartesian results and comparison

Mapped Mesh Computation

t = 100µsec

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part II 23



Two-temperature solver Two-temperature mapped mesh solver DNS with a hybrid method Summary

Non-cartesian results and comparison

Mapped Mesh Computation

t = 100µsec

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part II 23



Two-temperature solver Two-temperature mapped mesh solver DNS with a hybrid method Summary

Non-cartesian results and comparison

Mapped Mesh Computation

t = 100µsec

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part II 23



Two-temperature solver Two-temperature mapped mesh solver DNS with a hybrid method Summary

Non-cartesian results and comparison

Mapped Mesh Computation

t = 100µsec

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part II 23



Two-temperature solver Two-temperature mapped mesh solver DNS with a hybrid method Summary

Non-cartesian results and comparison

Mapped Mesh Computation

t = 100µsec

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part II 23



Two-temperature solver Two-temperature mapped mesh solver DNS with a hybrid method Summary

Non-cartesian results and comparison

Mapped Mesh Computation
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Non-cartesian results and comparison

Viscous Computations

Preliminary results have been obtained for computations including the
viscous flux vectors,

∂Q

∂t
+
∂ (F− Fv )

∂x
+
∂ (G− Gv )

∂y
= W

where,

Fv =



−Jx,1

...
−Jx,Ns

τx,x

τy,x

κve
∂Tve
∂x
−

Ns∑
s=1

Jx,s eve

κtr
∂Ttr
∂x

+ κve
∂Tve
∂x

+ uτx,x + vτy,x −
Ns∑

s=1
Jx,s hs


.

and a similar expression is obtained for Gv .

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part II 25



Two-temperature solver Two-temperature mapped mesh solver DNS with a hybrid method Summary

Non-cartesian results and comparison

Viscous Computations

Preliminary results have been obtained for computations including the
viscous flux vectors,

∂Q

∂t
+
∂ (F− Fv )

∂x
+
∂ (G− Gv )

∂y
= W

where,

Fv =



−Jx,1

...
−Jx,Ns

τx,x

τy,x

κve
∂Tve
∂x
−

Ns∑
s=1

Jx,s eve

κtr
∂Ttr
∂x

+ κve
∂Tve
∂x

+ uτx,x + vτy,x −
Ns∑

s=1
Jx,s hs


.

and a similar expression is obtained for Gv .

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part II 25



Two-temperature solver Two-temperature mapped mesh solver DNS with a hybrid method Summary

Non-cartesian results and comparison

Viscous Computations

The species diffusion uses a modified version of Fick’s diffusion law
[Sutton and Gnoffo, 1998],

Jx,s = −ρDs
∂Ys

∂x
− Ys

Ns∑
r=1

(−ρDr
∂Yr

∂x
) .

The viscous stress tensor, τi,j is given by,

τi,j = µ

(
∂ui

∂xj
+
∂uj

∂xi

)
− δi,j

2

3
µ∇ · u ,

where δi,j is the Kronecker delta.

The diffusion coefficients, the viscosity and the thermal conductivities are
all calculated within the Mutation++ library.
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Viscous Computations

t = 60µsecs.
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Non-cartesian results and comparison

Flat Plate Comparison

To test the implementation of the viscous fluxes a comparison between
the mapped AMROC solver and the SU2 solver was completed.

A hyperbolic tangent mapping to stretch the grid away from the wall,
with an initial spacing of 1e-5m.
A Mach 3 flow over a 0.3m flat plate was simulated using both an
isothermal and adiabatic wall using the same mesh in each solver.
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Non-cartesian results and comparison

Flat Plate Comparison

A comparison between the two boundary layers at 0.2m is shown below,
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Figure: A comparison of the velocity boundary layers over an adiabatic flat
plate, where M∞ = 3.0.
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Figure: A comparison of the thermal boundary layers over an adiabatic flat
plate, where M∞ = 3.0.
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Figure: A comparison of the velocity boundary layers over an isothermal flat
plate, where M∞ = 3.0.
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Non-cartesian results and comparison

Cylinder Heat Flux Computation

The mapped mesh solver has been validated by simulating a cylinder in a
nonequilibrium, high enthalpy flow.

The inflow conditions and results were taken from [Degrez et al., 2009].

T∞ ρ∞ U∞ YN2
YN YO2

YO YNO

694K 3.26 g/m3 4776m/s 0.7356 0.0 0.1340 0.07955 0.0509

Table: Freestream conditions for the HEG cylinder simulation.

A cylinder mesh was generated with hyperbolic tangent stretching away
from the wall using a 1e-6 initial spacing.

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part II 30



Two-temperature solver Two-temperature mapped mesh solver DNS with a hybrid method Summary

Non-cartesian results and comparison

Cylinder Heat Flux Computation

The mapped mesh solver has been validated by simulating a cylinder in a
nonequilibrium, high enthalpy flow.
The inflow conditions and results were taken from [Degrez et al., 2009].

T∞ ρ∞ U∞ YN2
YN YO2

YO YNO

694K 3.26 g/m3 4776m/s 0.7356 0.0 0.1340 0.07955 0.0509

Table: Freestream conditions for the HEG cylinder simulation.

A cylinder mesh was generated with hyperbolic tangent stretching away
from the wall using a 1e-6 initial spacing.

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part II 30



Two-temperature solver Two-temperature mapped mesh solver DNS with a hybrid method Summary

Non-cartesian results and comparison

Cylinder Heat Flux Computation

The mapped mesh solver has been validated by simulating a cylinder in a
nonequilibrium, high enthalpy flow.
The inflow conditions and results were taken from [Degrez et al., 2009].

T∞ ρ∞ U∞ YN2
YN YO2

YO YNO

694K 3.26 g/m3 4776m/s 0.7356 0.0 0.1340 0.07955 0.0509

Table: Freestream conditions for the HEG cylinder simulation.

A cylinder mesh was generated with hyperbolic tangent stretching away
from the wall using a 1e-6 initial spacing.

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part II 30



Two-temperature solver Two-temperature mapped mesh solver DNS with a hybrid method Summary

Non-cartesian results and comparison

Cylinder Heat Flux Computation

The mapped mesh solver has been validated by simulating a cylinder in a
nonequilibrium, high enthalpy flow.
The inflow conditions and results were taken from [Degrez et al., 2009].

T∞ ρ∞ U∞ YN2
YN YO2

YO YNO

694K 3.26 g/m3 4776m/s 0.7356 0.0 0.1340 0.07955 0.0509

Table: Freestream conditions for the HEG cylinder simulation.

A cylinder mesh was generated with hyperbolic tangent stretching away
from the wall using a 1e-6 initial spacing.

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part II 30



Two-temperature solver Two-temperature mapped mesh solver DNS with a hybrid method Summary

Non-cartesian results and comparison

Cylinder Heat Flux Comparison

The simulated results show good agreement with the experimental
results:
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Figure: A comparison of the experimental and simulated surface pressures in
the HEG cylinder experiment.
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Figure: A comparison of the experimental and simulated surface heat fluxes in
the HEG cylinder experiment.
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Higher-order hybrid methods

Hybrid method

Convective numerical flux is defined as

Fn
inv =

{
Fn

inv−WENO , in C
Fn

inv−CD , in C,

I For LES: 3rd order WENO method, 2nd order TCD [Hill and Pullin, 2004]

I For DNS: Symmetric 6th order WENO, 6th-order CD scheme
J. Ziegler, RD, J. Shepherd, D. Pullin, J. Comput. Phys. 230(20):7598-7630, 2011.

Use WENO scheme to only capture shock waves but resolve interface between species.

Shock detection based on using two criteria together:

1. Lax-Liu entropy condition |uR ± aR | < |u∗ ± a∗| < |uL ± aL| tested with a
threshold to eliminate weak acoustic waves. Used intermediate states at cell
interfaces:

u∗ =

√
ρLuL +

√
ρR uR√

ρL +
√
ρR

, a∗ =

√
(γ∗ − 1)(h∗ −

1

2
u2
∗), . . .

2. Limiter-inspired discontinuity test based on mapped normalized pressure gradient
θj

φ(θj ) =
2θj

(1 + θj )
2

with θj =
|pj+1 − pj |
|pj+1 + pj |

, φ(θj ) > αMap
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Higher-order hybrid methods

Results for shear layer in Mach reflection pattern
WENO/CD - 6 levels WENO/CD - 7 levels WENO/CD - 8 levels

∆xmin = 3.91 · 10−6 m ∆xmin = 1.95 · 10−6 m ∆xmin = 9.77 · 10−7 m

MUSCL - 7 levels MUSCL - 7 levels - Euler
Usage of WENO for
WENO/CD - 8 levels

∆xmin = 1.05 · 10−6 m ∆xmin = 1.05 · 10−6 m

I WENO/CD/RK3 gives results comparable to 4x finer resolved optimal 2nd-order
scheme, but CPU times with SAMR 2-3x larger

I Gain in CPU time from higher-order scheme roughly one order
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Higher-order hybrid methods

Detonation ignition by hot jet in 2d

(a) Detailed structure, (b) WENO usage

(a) Navier-Stokes, (b) Euler

X. Cai, RD, J. Liang, Y. Mahmoudi, Proc. Combust. Institute 36(2): 2725–2733, 2017
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Conclusions

Conclusions – Hypersonics

I We have developed a first 2D prototype of two-temperature model
solver that is suitable for very high temperatures, i.e., high enthalpy
re-entry flows

I The Cartesian version is fully integrated into SAMR
AMROC-Clawpack; structured non-Cartesian version runs also
within AMROC-Clawpack but only on non-adaptive meshes so far

I SAMR framework can remain basically unchanged; however mapping
needs to be considered in prolongation and restriction, flux
correction, visualization (work in progress)

I For moving geometries, the goal is a Chimera-type approach that
constructs non-Cartesian boundary layer meshes near the body and
uses SAMR in the far field

I Incorporation of the methodology into the hybrid WENO/CD scheme
for high enthalpy DNS in 3D is proposed within the next two years
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