
Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Lecture 4b
Design of SAMR Systems, Advanced

Parallelization, Usage

Course Block-structured Adaptive Mesh Refinement Methods for
Conservation Laws
Theory, Implementation and Application

Ralf Deiterding
Computer Science and Mathematics Division

Oak Ridge National Laboratory
P.O. Box 2008 MS6367, Oak Ridge, TN 37831, USA

E-mail: deiterdingr@ornl.gov

Design of SAMR Systems, Advanced Parallelization, Usage 1

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Outline

Available SAMR software
Simplified block-based AMR
General patch-based SAMR

AMROC
Overview
Layered software structure

Massively parallel SAMR
Performance data from AMROC
Scalability bottlenecks

Usage of AMROC
Short overview

Design of SAMR Systems, Advanced Parallelization, Usage 2

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Outline

Available SAMR software
Simplified block-based AMR
General patch-based SAMR

AMROC
Overview
Layered software structure

Massively parallel SAMR
Performance data from AMROC
Scalability bottlenecks

Usage of AMROC
Short overview

Design of SAMR Systems, Advanced Parallelization, Usage 2

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Outline

Available SAMR software
Simplified block-based AMR
General patch-based SAMR

AMROC
Overview
Layered software structure

Massively parallel SAMR
Performance data from AMROC
Scalability bottlenecks

Usage of AMROC
Short overview

Design of SAMR Systems, Advanced Parallelization, Usage 2

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Outline

Available SAMR software
Simplified block-based AMR
General patch-based SAMR

AMROC
Overview
Layered software structure

Massively parallel SAMR
Performance data from AMROC
Scalability bottlenecks

Usage of AMROC
Short overview

Design of SAMR Systems, Advanced Parallelization, Usage 2

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Simplified block-based AMR

Simplified structured designs

Distributed memory parallelization fully supported if not otherwise states.

I PARAMESH (Parallel Adaptive Mesh Refinement)

I Library based on uniform refinement blocks [MacNeice et al., 2000]
I Both multigrid and explicit algorithms considered
I http://sourceforge.net/projects/paramesh

I Flash code (AMR code for astrophysical thermonuclear flashes)

I Built on PARAMESH
I Solves the magneto-hydrodynamic equations with self-gravitation
I http://flash.uchicago.edu/website/home

I Uintah (AMR code for simulation of accidental fires and explosions)

I Only explicit algorithms considered
I FSI coupling Material Point Method and ICE Method (Implicit,

Continuous fluid, Eulerian)
I http://www.uintah.utah.edu

I DAGH/Grace [Parashar and Browne, 1997]

I Just C++ data structures but no methods
I All grids are aligned to bases mesh coarsened by factor 2
I http://userweb.cs.utexas.edu/users/dagh

Design of SAMR Systems, Advanced Parallelization, Usage 3

http://sourceforge.net/projects/paramesh
http://flash.uchicago.edu/website/home
http://www.uintah.utah.edu
http://userweb.cs.utexas.edu/users/dagh

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Simplified block-based AMR

Simplified structured designs

Distributed memory parallelization fully supported if not otherwise states.

I PARAMESH (Parallel Adaptive Mesh Refinement)
I Library based on uniform refinement blocks [MacNeice et al., 2000]
I Both multigrid and explicit algorithms considered
I http://sourceforge.net/projects/paramesh

I Flash code (AMR code for astrophysical thermonuclear flashes)

I Built on PARAMESH
I Solves the magneto-hydrodynamic equations with self-gravitation
I http://flash.uchicago.edu/website/home

I Uintah (AMR code for simulation of accidental fires and explosions)

I Only explicit algorithms considered
I FSI coupling Material Point Method and ICE Method (Implicit,

Continuous fluid, Eulerian)
I http://www.uintah.utah.edu

I DAGH/Grace [Parashar and Browne, 1997]

I Just C++ data structures but no methods
I All grids are aligned to bases mesh coarsened by factor 2
I http://userweb.cs.utexas.edu/users/dagh

Design of SAMR Systems, Advanced Parallelization, Usage 3

http://sourceforge.net/projects/paramesh
http://flash.uchicago.edu/website/home
http://www.uintah.utah.edu
http://userweb.cs.utexas.edu/users/dagh

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Simplified block-based AMR

Simplified structured designs

Distributed memory parallelization fully supported if not otherwise states.

I PARAMESH (Parallel Adaptive Mesh Refinement)
I Library based on uniform refinement blocks [MacNeice et al., 2000]
I Both multigrid and explicit algorithms considered
I http://sourceforge.net/projects/paramesh

I Flash code (AMR code for astrophysical thermonuclear flashes)
I Built on PARAMESH
I Solves the magneto-hydrodynamic equations with self-gravitation
I http://flash.uchicago.edu/website/home

I Uintah (AMR code for simulation of accidental fires and explosions)

I Only explicit algorithms considered
I FSI coupling Material Point Method and ICE Method (Implicit,

Continuous fluid, Eulerian)
I http://www.uintah.utah.edu

I DAGH/Grace [Parashar and Browne, 1997]

I Just C++ data structures but no methods
I All grids are aligned to bases mesh coarsened by factor 2
I http://userweb.cs.utexas.edu/users/dagh

Design of SAMR Systems, Advanced Parallelization, Usage 3

http://sourceforge.net/projects/paramesh
http://flash.uchicago.edu/website/home
http://www.uintah.utah.edu
http://userweb.cs.utexas.edu/users/dagh

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Simplified block-based AMR

Simplified structured designs

Distributed memory parallelization fully supported if not otherwise states.

I PARAMESH (Parallel Adaptive Mesh Refinement)
I Library based on uniform refinement blocks [MacNeice et al., 2000]
I Both multigrid and explicit algorithms considered
I http://sourceforge.net/projects/paramesh

I Flash code (AMR code for astrophysical thermonuclear flashes)
I Built on PARAMESH
I Solves the magneto-hydrodynamic equations with self-gravitation
I http://flash.uchicago.edu/website/home

I Uintah (AMR code for simulation of accidental fires and explosions)
I Only explicit algorithms considered
I FSI coupling Material Point Method and ICE Method (Implicit,

Continuous fluid, Eulerian)
I http://www.uintah.utah.edu

I DAGH/Grace [Parashar and Browne, 1997]

I Just C++ data structures but no methods
I All grids are aligned to bases mesh coarsened by factor 2
I http://userweb.cs.utexas.edu/users/dagh

Design of SAMR Systems, Advanced Parallelization, Usage 3

http://sourceforge.net/projects/paramesh
http://flash.uchicago.edu/website/home
http://www.uintah.utah.edu
http://userweb.cs.utexas.edu/users/dagh

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Simplified block-based AMR

Simplified structured designs

Distributed memory parallelization fully supported if not otherwise states.

I PARAMESH (Parallel Adaptive Mesh Refinement)
I Library based on uniform refinement blocks [MacNeice et al., 2000]
I Both multigrid and explicit algorithms considered
I http://sourceforge.net/projects/paramesh

I Flash code (AMR code for astrophysical thermonuclear flashes)
I Built on PARAMESH
I Solves the magneto-hydrodynamic equations with self-gravitation
I http://flash.uchicago.edu/website/home

I Uintah (AMR code for simulation of accidental fires and explosions)
I Only explicit algorithms considered
I FSI coupling Material Point Method and ICE Method (Implicit,

Continuous fluid, Eulerian)
I http://www.uintah.utah.edu

I DAGH/Grace [Parashar and Browne, 1997]
I Just C++ data structures but no methods
I All grids are aligned to bases mesh coarsened by factor 2
I http://userweb.cs.utexas.edu/users/dagh

Design of SAMR Systems, Advanced Parallelization, Usage 3

http://sourceforge.net/projects/paramesh
http://flash.uchicago.edu/website/home
http://www.uintah.utah.edu
http://userweb.cs.utexas.edu/users/dagh

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

General patch-based SAMR

Systems that support general SAMR

I SAMRAI - Structured Adaptive Mesh Refinement Application
Infrastructure

I Very mature SAMR system [Hornung et al., 2006]
I Explicit algorithms directly supported, implicit methods through

interface to Hypre package
I Mapped geometry and some embedded boundary support
I https://computation.llnl.gov/casc/SAMRAI

I BoxLib, AmrLib, MGLib, HGProj

I Berkley-Lab-AMR collection of C++ classes by J. Bell et al., 50, 000
LOC [Rendleman et al., 2000]

I Both multigrid and explicit algorithms supported
I https://ccse.lbl.gov/Software (no codes available)

I Chombo

I Redesign and extension of BoxLib by P. Colella et al.
I Both multigrid and explicit algorithms demonstrated
I Some embedded boundary support
I https://seesar.lbl.gov/anag/chombo

Design of SAMR Systems, Advanced Parallelization, Usage 4

https://computation.llnl.gov/casc/SAMRAI
https://ccse.lbl.gov/Software
https://seesar.lbl.gov/anag/chombo

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

General patch-based SAMR

Systems that support general SAMR

I SAMRAI - Structured Adaptive Mesh Refinement Application
Infrastructure

I Very mature SAMR system [Hornung et al., 2006]
I Explicit algorithms directly supported, implicit methods through

interface to Hypre package
I Mapped geometry and some embedded boundary support
I https://computation.llnl.gov/casc/SAMRAI

I BoxLib, AmrLib, MGLib, HGProj

I Berkley-Lab-AMR collection of C++ classes by J. Bell et al., 50, 000
LOC [Rendleman et al., 2000]

I Both multigrid and explicit algorithms supported
I https://ccse.lbl.gov/Software (no codes available)

I Chombo

I Redesign and extension of BoxLib by P. Colella et al.
I Both multigrid and explicit algorithms demonstrated
I Some embedded boundary support
I https://seesar.lbl.gov/anag/chombo

Design of SAMR Systems, Advanced Parallelization, Usage 4

https://computation.llnl.gov/casc/SAMRAI
https://ccse.lbl.gov/Software
https://seesar.lbl.gov/anag/chombo

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

General patch-based SAMR

Systems that support general SAMR

I SAMRAI - Structured Adaptive Mesh Refinement Application
Infrastructure

I Very mature SAMR system [Hornung et al., 2006]
I Explicit algorithms directly supported, implicit methods through

interface to Hypre package
I Mapped geometry and some embedded boundary support
I https://computation.llnl.gov/casc/SAMRAI

I BoxLib, AmrLib, MGLib, HGProj

I Berkley-Lab-AMR collection of C++ classes by J. Bell et al., 50, 000
LOC [Rendleman et al., 2000]

I Both multigrid and explicit algorithms supported
I https://ccse.lbl.gov/Software (no codes available)

I Chombo

I Redesign and extension of BoxLib by P. Colella et al.
I Both multigrid and explicit algorithms demonstrated
I Some embedded boundary support
I https://seesar.lbl.gov/anag/chombo

Design of SAMR Systems, Advanced Parallelization, Usage 4

https://computation.llnl.gov/casc/SAMRAI
https://ccse.lbl.gov/Software
https://seesar.lbl.gov/anag/chombo

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

General patch-based SAMR

Systems that support general SAMR

I SAMRAI - Structured Adaptive Mesh Refinement Application
Infrastructure

I Very mature SAMR system [Hornung et al., 2006]
I Explicit algorithms directly supported, implicit methods through

interface to Hypre package
I Mapped geometry and some embedded boundary support
I https://computation.llnl.gov/casc/SAMRAI

I BoxLib, AmrLib, MGLib, HGProj

I Berkley-Lab-AMR collection of C++ classes by J. Bell et al., 50, 000
LOC [Rendleman et al., 2000]

I Both multigrid and explicit algorithms supported
I https://ccse.lbl.gov/Software (no codes available)

I Chombo

I Redesign and extension of BoxLib by P. Colella et al.
I Both multigrid and explicit algorithms demonstrated
I Some embedded boundary support
I https://seesar.lbl.gov/anag/chombo

Design of SAMR Systems, Advanced Parallelization, Usage 4

https://computation.llnl.gov/casc/SAMRAI
https://ccse.lbl.gov/Software
https://seesar.lbl.gov/anag/chombo

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

General patch-based SAMR

Further SAMR software

I Overture (Object-oriented tools for solving PDEs in complex geometries)

I Overlapping meshes for complex geometries by W. Henshaw et al.
[Brown et al., 1997]

I Explicit and implicit algorithms supported
I https://computation.llnl.gov/casc/Overture

I AMRClaw within Clawpack [Berger and LeVeque, 1998]

I Serial 2D Fortran 77 code for the explicit Wave Propagation method
with own memory management

I http://www.clawpack.org

I Amrita by J. Quirk

I Only 2D explicit finite volume methods supported
I Embedded boundary algorithm
I http://www.amrita-cfd.org

I Cell-based Cartesian AMR: RAGE

I Embedded boundary method
I Explicit and implicit algorithms
I [Gittings et al., 2008]

Design of SAMR Systems, Advanced Parallelization, Usage 5

https://computation.llnl.gov/casc/Overture
http://www.clawpack.org
http://www.amrita-cfd.org
http://dx.doi.org/10.1088/1749-4699/1/1/015005

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

General patch-based SAMR

Further SAMR software

I Overture (Object-oriented tools for solving PDEs in complex geometries)

I Overlapping meshes for complex geometries by W. Henshaw et al.
[Brown et al., 1997]

I Explicit and implicit algorithms supported
I https://computation.llnl.gov/casc/Overture

I AMRClaw within Clawpack [Berger and LeVeque, 1998]

I Serial 2D Fortran 77 code for the explicit Wave Propagation method
with own memory management

I http://www.clawpack.org

I Amrita by J. Quirk

I Only 2D explicit finite volume methods supported
I Embedded boundary algorithm
I http://www.amrita-cfd.org

I Cell-based Cartesian AMR: RAGE

I Embedded boundary method
I Explicit and implicit algorithms
I [Gittings et al., 2008]

Design of SAMR Systems, Advanced Parallelization, Usage 5

https://computation.llnl.gov/casc/Overture
http://www.clawpack.org
http://www.amrita-cfd.org
http://dx.doi.org/10.1088/1749-4699/1/1/015005

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

General patch-based SAMR

Further SAMR software

I Overture (Object-oriented tools for solving PDEs in complex geometries)

I Overlapping meshes for complex geometries by W. Henshaw et al.
[Brown et al., 1997]

I Explicit and implicit algorithms supported
I https://computation.llnl.gov/casc/Overture

I AMRClaw within Clawpack [Berger and LeVeque, 1998]

I Serial 2D Fortran 77 code for the explicit Wave Propagation method
with own memory management

I http://www.clawpack.org

I Amrita by J. Quirk

I Only 2D explicit finite volume methods supported
I Embedded boundary algorithm
I http://www.amrita-cfd.org

I Cell-based Cartesian AMR: RAGE

I Embedded boundary method
I Explicit and implicit algorithms
I [Gittings et al., 2008]

Design of SAMR Systems, Advanced Parallelization, Usage 5

https://computation.llnl.gov/casc/Overture
http://www.clawpack.org
http://www.amrita-cfd.org
http://dx.doi.org/10.1088/1749-4699/1/1/015005

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

General patch-based SAMR

Further SAMR software

I Overture (Object-oriented tools for solving PDEs in complex geometries)

I Overlapping meshes for complex geometries by W. Henshaw et al.
[Brown et al., 1997]

I Explicit and implicit algorithms supported
I https://computation.llnl.gov/casc/Overture

I AMRClaw within Clawpack [Berger and LeVeque, 1998]

I Serial 2D Fortran 77 code for the explicit Wave Propagation method
with own memory management

I http://www.clawpack.org

I Amrita by J. Quirk

I Only 2D explicit finite volume methods supported
I Embedded boundary algorithm
I http://www.amrita-cfd.org

I Cell-based Cartesian AMR: RAGE

I Embedded boundary method
I Explicit and implicit algorithms
I [Gittings et al., 2008]

Design of SAMR Systems, Advanced Parallelization, Usage 5

https://computation.llnl.gov/casc/Overture
http://www.clawpack.org
http://www.amrita-cfd.org
http://dx.doi.org/10.1088/1749-4699/1/1/015005

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

General patch-based SAMR

Further SAMR software

I Overture (Object-oriented tools for solving PDEs in complex geometries)

I Overlapping meshes for complex geometries by W. Henshaw et al.
[Brown et al., 1997]

I Explicit and implicit algorithms supported
I https://computation.llnl.gov/casc/Overture

I AMRClaw within Clawpack [Berger and LeVeque, 1998]

I Serial 2D Fortran 77 code for the explicit Wave Propagation method
with own memory management

I http://www.clawpack.org

I Amrita by J. Quirk

I Only 2D explicit finite volume methods supported
I Embedded boundary algorithm
I http://www.amrita-cfd.org

I Cell-based Cartesian AMR: RAGE

I Embedded boundary method
I Explicit and implicit algorithms
I [Gittings et al., 2008]

Design of SAMR Systems, Advanced Parallelization, Usage 5

https://computation.llnl.gov/casc/Overture
http://www.clawpack.org
http://www.amrita-cfd.org
http://dx.doi.org/10.1088/1749-4699/1/1/015005

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Overview

AMROC

I “Adaptive Mesh Refinement in
Object-oriented C++”

I ∼ 46, 000 LOC for C++ SAMR
kernel, ∼ 140, 000 total C++, C,
Fortran-77

I uses parallel hierarchical data
structures that have evolved from
DAGH

I Right: point explosion in box, 4 level,
Euler computation, 7 compute nodes

I V1.0: http://amroc.sourceforge.net

lmax Level 0 Level 1 Level 2 Level 3 Level 4
1 43/22500 145/38696AMROC’s
2 42/22500 110/48708 283/83688DAGH
3 36/22500 78/54796 245/109476 582/165784grids/cells
4 41/22500 88/56404 233/123756 476/220540 1017/294828
1 238/22500 125/41312Original
2 494/22500 435/48832 190/105216DAGH
3 695/22500 650/55088 462/133696 185/297984grids/cells
4 875/22500 822/57296 677/149952 428/349184 196/897024
Comparison of number of cells and grids in DAGH and AMROC

Design of SAMR Systems, Advanced Parallelization, Usage 6

http://amroc.sourceforge.net

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Overview

AMROC

I “Adaptive Mesh Refinement in
Object-oriented C++”

I ∼ 46, 000 LOC for C++ SAMR
kernel, ∼ 140, 000 total C++, C,
Fortran-77

I uses parallel hierarchical data
structures that have evolved from
DAGH

I Right: point explosion in box, 4 level,
Euler computation, 7 compute nodes

I V1.0: http://amroc.sourceforge.net

lmax Level 0 Level 1 Level 2 Level 3 Level 4
1 43/22500 145/38696AMROC’s
2 42/22500 110/48708 283/83688DAGH
3 36/22500 78/54796 245/109476 582/165784grids/cells
4 41/22500 88/56404 233/123756 476/220540 1017/294828
1 238/22500 125/41312Original
2 494/22500 435/48832 190/105216DAGH
3 695/22500 650/55088 462/133696 185/297984grids/cells
4 875/22500 822/57296 677/149952 428/349184 196/897024
Comparison of number of cells and grids in DAGH and AMROC

Design of SAMR Systems, Advanced Parallelization, Usage 6

http://amroc.sourceforge.net

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Overview

AMROC

I “Adaptive Mesh Refinement in
Object-oriented C++”

I ∼ 46, 000 LOC for C++ SAMR
kernel, ∼ 140, 000 total C++, C,
Fortran-77

I uses parallel hierarchical data
structures that have evolved from
DAGH

I Right: point explosion in box, 4 level,
Euler computation, 7 compute nodes

I V1.0: http://amroc.sourceforge.net

lmax Level 0 Level 1 Level 2 Level 3 Level 4
1 43/22500 145/38696AMROC’s
2 42/22500 110/48708 283/83688DAGH
3 36/22500 78/54796 245/109476 582/165784grids/cells
4 41/22500 88/56404 233/123756 476/220540 1017/294828
1 238/22500 125/41312Original
2 494/22500 435/48832 190/105216DAGH
3 695/22500 650/55088 462/133696 185/297984grids/cells
4 875/22500 822/57296 677/149952 428/349184 196/897024
Comparison of number of cells and grids in DAGH and AMROC

Design of SAMR Systems, Advanced Parallelization, Usage 6

http://amroc.sourceforge.net

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Overview

The Virtual Test Facility

I Implements all described algorithms beside multigrid methods

I AMROC V2.0 plus solid mechanics solvers

I Implements explicit SAMR with different finite volume solvers

I Embedded boundary method, FSI coupling

I ∼ 430, 000 lines of code total in C++, C, Fortran-77, Fortran-90

I autoconf / automake environment with support for typical parallel
high-performance system

I http://www.cacr.caltech.edu/asc

I [Deiterding et al., 2006][Deiterding et al., 2007]

Design of SAMR Systems, Advanced Parallelization, Usage 7

http://www.cacr.caltech.edu/asc

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Layered software structure

UML design of AMROC

I Classical framework approach with
generic main program in C++

I Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

I Predefined, scheme-specific classes
(with F77 interfaces) provided for
standard simulations

I Standard simulations require only
linking to F77 functions for initial and
boundary conditions, source terms.
No C++ knowledge required

I Interface mimics Clawpack

I Expert usage (algorithm modification,
advanced output, etc.) in C++

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1

Design of SAMR Systems, Advanced Parallelization, Usage 8

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Layered software structure

UML design of AMROC

I Classical framework approach with
generic main program in C++

I Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

I Predefined, scheme-specific classes
(with F77 interfaces) provided for
standard simulations

I Standard simulations require only
linking to F77 functions for initial and
boundary conditions, source terms.
No C++ knowledge required

I Interface mimics Clawpack

I Expert usage (algorithm modification,
advanced output, etc.) in C++

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1

Design of SAMR Systems, Advanced Parallelization, Usage 8

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Layered software structure

UML design of AMROC

I Classical framework approach with
generic main program in C++

I Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

I Predefined, scheme-specific classes
(with F77 interfaces) provided for
standard simulations

I Standard simulations require only
linking to F77 functions for initial and
boundary conditions, source terms.
No C++ knowledge required

I Interface mimics Clawpack

I Expert usage (algorithm modification,
advanced output, etc.) in C++

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1

Design of SAMR Systems, Advanced Parallelization, Usage 8

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Layered software structure

UML design of AMROC

I Classical framework approach with
generic main program in C++

I Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

I Predefined, scheme-specific classes
(with F77 interfaces) provided for
standard simulations

I Standard simulations require only
linking to F77 functions for initial and
boundary conditions, source terms.
No C++ knowledge required

I Interface mimics Clawpack

I Expert usage (algorithm modification,
advanced output, etc.) in C++

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1

Design of SAMR Systems, Advanced Parallelization, Usage 8

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Layered software structure

UML design of AMROC

I Classical framework approach with
generic main program in C++

I Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

I Predefined, scheme-specific classes
(with F77 interfaces) provided for
standard simulations

I Standard simulations require only
linking to F77 functions for initial and
boundary conditions, source terms.
No C++ knowledge required

I Interface mimics Clawpack

I Expert usage (algorithm modification,
advanced output, etc.) in C++

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1

Design of SAMR Systems, Advanced Parallelization, Usage 8

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Layered software structure

UML design of AMROC

I Classical framework approach with
generic main program in C++

I Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

I Predefined, scheme-specific classes
(with F77 interfaces) provided for
standard simulations

I Standard simulations require only
linking to F77 functions for initial and
boundary conditions, source terms.
No C++ knowledge required

I Interface mimics Clawpack

I Expert usage (algorithm modification,
advanced output, etc.) in C++

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1

Design of SAMR Systems, Advanced Parallelization, Usage 8

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Layered software structure

Commonalities in software design

I Index coordinate system based on ∆xn,l
∼=

lmax∏
κ=l+1

rκ to uniquely

identify a cell witin the hierarchy

I Box<dim>, BoxList<dim> class that define rectangular regions Gm,l

by lowerleft, upperright, stepsize and specify topological
operations ∩, ∪, \

I Patch<dim,type> class that assigns data to a rectangular grid Gm,l

I A class, here GridFunction<dim,type>, that defines topogical
relations between lists of Patch objects to implement sychronization,
restriction, prolongation, re-distribution

I Hierarchical parallel data structures are typically C++, routines on
patches often Fortran

Design of SAMR Systems, Advanced Parallelization, Usage 9

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Layered software structure

Commonalities in software design

I Index coordinate system based on ∆xn,l
∼=

lmax∏
κ=l+1

rκ to uniquely

identify a cell witin the hierarchy

I Box<dim>, BoxList<dim> class that define rectangular regions Gm,l

by lowerleft, upperright, stepsize and specify topological
operations ∩, ∪, \

I Patch<dim,type> class that assigns data to a rectangular grid Gm,l

I A class, here GridFunction<dim,type>, that defines topogical
relations between lists of Patch objects to implement sychronization,
restriction, prolongation, re-distribution

I Hierarchical parallel data structures are typically C++, routines on
patches often Fortran

Design of SAMR Systems, Advanced Parallelization, Usage 9

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Layered software structure

Commonalities in software design

I Index coordinate system based on ∆xn,l
∼=

lmax∏
κ=l+1

rκ to uniquely

identify a cell witin the hierarchy

I Box<dim>, BoxList<dim> class that define rectangular regions Gm,l

by lowerleft, upperright, stepsize and specify topological
operations ∩, ∪, \

I Patch<dim,type> class that assigns data to a rectangular grid Gm,l

I A class, here GridFunction<dim,type>, that defines topogical
relations between lists of Patch objects to implement sychronization,
restriction, prolongation, re-distribution

I Hierarchical parallel data structures are typically C++, routines on
patches often Fortran

Design of SAMR Systems, Advanced Parallelization, Usage 9

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Layered software structure

Commonalities in software design

I Index coordinate system based on ∆xn,l
∼=

lmax∏
κ=l+1

rκ to uniquely

identify a cell witin the hierarchy

I Box<dim>, BoxList<dim> class that define rectangular regions Gm,l

by lowerleft, upperright, stepsize and specify topological
operations ∩, ∪, \

I Patch<dim,type> class that assigns data to a rectangular grid Gm,l

I A class, here GridFunction<dim,type>, that defines topogical
relations between lists of Patch objects to implement sychronization,
restriction, prolongation, re-distribution

I Hierarchical parallel data structures are typically C++, routines on
patches often Fortran

Design of SAMR Systems, Advanced Parallelization, Usage 9

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Layered software structure

Commonalities in software design

I Index coordinate system based on ∆xn,l
∼=

lmax∏
κ=l+1

rκ to uniquely

identify a cell witin the hierarchy

I Box<dim>, BoxList<dim> class that define rectangular regions Gm,l

by lowerleft, upperright, stepsize and specify topological
operations ∩, ∪, \

I Patch<dim,type> class that assigns data to a rectangular grid Gm,l

I A class, here GridFunction<dim,type>, that defines topogical
relations between lists of Patch objects to implement sychronization,
restriction, prolongation, re-distribution

I Hierarchical parallel data structures are typically C++, routines on
patches often Fortran

Design of SAMR Systems, Advanced Parallelization, Usage 9

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Layered software structure

Embedded boundary method / FSI coupling

I Multiple independent
EmbeddedBoundaryMethod objects
possible

I Specialization of GFM boundary
conditions, level set description in
scheme-specific F77 interface classes +calculate_in_patch()

Extra-/Interpolation

+apply_boundary_conditions()

EmbeddedBoundaryMethod

+set_patch()

LevelSetEvaluation

EBMHypSAMRSolver

HypSAMRSolver

0..*1

+set_cells_in_patch()

EmbeddedBoundaryConditions

1

1

GridFunction

1

+phi1

0..1
1

1

1

+fluid_step()

-advance_level()

-stable_fluid_timestep()

CoupledHypSAMRSolver

EBMHypSAMRSolver

+next_step()

CoupledSolver11

TimeStepControler

1

1

+solid_step()

-stable_solid_timestep()

CoupledSolidSolver

1 1

+send_interface_data()

+receive_interface_data()

InterSolverCommunication

1

1

1

1

EmbeddedMovingWalls+cpt()

-scan_convert()

ClosestPointTransform

+set_cells_in_patch()

EmbeddedBoundaryConditionsLevelSetEvaluation

1

1

1

1

+update_solid()

SolidSolver

I Coupling algorithm implemented in
further derived HypSAMRSolver class

I Level set evaluation always with CPT
algorithm

I Parallel communication through
efficient non-blocking communication
module

I Time step selection for both solvers
through CoupledSolver class

Design of SAMR Systems, Advanced Parallelization, Usage 10

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Layered software structure

Embedded boundary method / FSI coupling

I Multiple independent
EmbeddedBoundaryMethod objects
possible

I Specialization of GFM boundary
conditions, level set description in
scheme-specific F77 interface classes +calculate_in_patch()

Extra-/Interpolation

+apply_boundary_conditions()

EmbeddedBoundaryMethod

+set_patch()

LevelSetEvaluation

EBMHypSAMRSolver

HypSAMRSolver

0..*1

+set_cells_in_patch()

EmbeddedBoundaryConditions

1

1

GridFunction

1

+phi1

0..1
1

1

1

+fluid_step()

-advance_level()

-stable_fluid_timestep()

CoupledHypSAMRSolver

EBMHypSAMRSolver

+next_step()

CoupledSolver11

TimeStepControler

1

1

+solid_step()

-stable_solid_timestep()

CoupledSolidSolver

1 1

+send_interface_data()

+receive_interface_data()

InterSolverCommunication

1

1

1

1

EmbeddedMovingWalls+cpt()

-scan_convert()

ClosestPointTransform

+set_cells_in_patch()

EmbeddedBoundaryConditionsLevelSetEvaluation

1

1

1

1

+update_solid()

SolidSolver

I Coupling algorithm implemented in
further derived HypSAMRSolver class

I Level set evaluation always with CPT
algorithm

I Parallel communication through
efficient non-blocking communication
module

I Time step selection for both solvers
through CoupledSolver class

Design of SAMR Systems, Advanced Parallelization, Usage 10

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Performance data from AMROC

Performance assessment

I Test run on 2.2 GHz AMD Opteron
quad-core cluster connected with
Infiniband

I Cartesian test configuration

I Spherical blast wave, Euler equations,
3rd order WENO scheme, 3-step
Runge-Kutta update

I AMR base grid 643, r1,2 = 2, 89 time
steps on coarsest level

I With embedded boundary method: 96
time steps on coarsest level

I Redistribute in parallel every 2nd base
level step

I Uniform grid 2563 = 16.8 · 106 cells

Level Grids Cells
0 115 262,144
1 373 1,589,808
2 2282 5,907,064

Grid and cells used on 16 CPUs

Design of SAMR Systems, Advanced Parallelization, Usage 11

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Performance data from AMROC

Cost of SAMR (AMROC V2.0)

I Flux correction is
negligible

I Clustering is negligible
(already local
approach). For the
complexities of a
scalable global
clustering algorithm see
[Gunney et al., 2007]

I Costs for GFM constant
around ∼ 36%

I Main costs: Regrid(l)

operation and ghost cell
synchronization

CPUs 16 32 64
Time per step 32.44s 18.63s 11.87s

Uniform 59.65s 29.70s 15.15s
Integration 73.46% 64.69% 50.44%

Flux Correction 1.30% 1.49% 2.03%
Boundary Setting 13.72% 16.60% 20.44%

Regridding 10.43% 15.68% 24.25%
Clustering 0.34% 0.32% 0.26%

Output 0.29% 0.53% 0.92%
Misc. 0.46% 0.44% 0.47%

CPUs 16 32 64
Time per step 43.97s 25.24s 16.21s

Uniform 69.09s 35.94s 18.24s
Integration 59.09% 49.93% 40.20%

Flux Correction 0.82% 0.80% 1.14%
Boundary Setting 19.22% 25.58% 28.98%

Regridding 7.21% 9.15% 13.46%
Clustering 0.25% 0.23% 0.21%

GFM Find Cells 2.04% 1.73% 1.38%
GFM Interpolation 6.01% 10.39% 7.92%

GFM Overhead 0.54% 0.47% 0.37%
GFM Calculate 0.70% 0.60% 0.48%

Output 0.23% 0.52% 0.74%
Misc. 0.68% 0.62% 0.58%

Design of SAMR Systems, Advanced Parallelization, Usage 12

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Performance data from AMROC

Cost of SAMR (AMROC V2.0)

I Flux correction is
negligible

I Clustering is negligible
(already local
approach). For the
complexities of a
scalable global
clustering algorithm see
[Gunney et al., 2007]

I Costs for GFM constant
around ∼ 36%

I Main costs: Regrid(l)

operation and ghost cell
synchronization

CPUs 16 32 64
Time per step 32.44s 18.63s 11.87s

Uniform 59.65s 29.70s 15.15s
Integration 73.46% 64.69% 50.44%

Flux Correction 1.30% 1.49% 2.03%
Boundary Setting 13.72% 16.60% 20.44%

Regridding 10.43% 15.68% 24.25%
Clustering 0.34% 0.32% 0.26%

Output 0.29% 0.53% 0.92%
Misc. 0.46% 0.44% 0.47%

CPUs 16 32 64
Time per step 43.97s 25.24s 16.21s

Uniform 69.09s 35.94s 18.24s
Integration 59.09% 49.93% 40.20%

Flux Correction 0.82% 0.80% 1.14%
Boundary Setting 19.22% 25.58% 28.98%

Regridding 7.21% 9.15% 13.46%
Clustering 0.25% 0.23% 0.21%

GFM Find Cells 2.04% 1.73% 1.38%
GFM Interpolation 6.01% 10.39% 7.92%

GFM Overhead 0.54% 0.47% 0.37%
GFM Calculate 0.70% 0.60% 0.48%

Output 0.23% 0.52% 0.74%
Misc. 0.68% 0.62% 0.58%

Design of SAMR Systems, Advanced Parallelization, Usage 12

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Performance data from AMROC

Cost of SAMR (AMROC V2.0)

I Flux correction is
negligible

I Clustering is negligible
(already local
approach). For the
complexities of a
scalable global
clustering algorithm see
[Gunney et al., 2007]

I Costs for GFM constant
around ∼ 36%

I Main costs: Regrid(l)

operation and ghost cell
synchronization

CPUs 16 32 64
Time per step 32.44s 18.63s 11.87s

Uniform 59.65s 29.70s 15.15s
Integration 73.46% 64.69% 50.44%

Flux Correction 1.30% 1.49% 2.03%
Boundary Setting 13.72% 16.60% 20.44%

Regridding 10.43% 15.68% 24.25%
Clustering 0.34% 0.32% 0.26%

Output 0.29% 0.53% 0.92%
Misc. 0.46% 0.44% 0.47%

CPUs 16 32 64
Time per step 43.97s 25.24s 16.21s

Uniform 69.09s 35.94s 18.24s
Integration 59.09% 49.93% 40.20%

Flux Correction 0.82% 0.80% 1.14%
Boundary Setting 19.22% 25.58% 28.98%

Regridding 7.21% 9.15% 13.46%
Clustering 0.25% 0.23% 0.21%

GFM Find Cells 2.04% 1.73% 1.38%
GFM Interpolation 6.01% 10.39% 7.92%

GFM Overhead 0.54% 0.47% 0.37%
GFM Calculate 0.70% 0.60% 0.48%

Output 0.23% 0.52% 0.74%
Misc. 0.68% 0.62% 0.58%

Design of SAMR Systems, Advanced Parallelization, Usage 12

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Performance data from AMROC

Cost of SAMR (AMROC V2.0)

I Flux correction is
negligible

I Clustering is negligible
(already local
approach). For the
complexities of a
scalable global
clustering algorithm see
[Gunney et al., 2007]

I Costs for GFM constant
around ∼ 36%

I Main costs: Regrid(l)

operation and ghost cell
synchronization

CPUs 16 32 64
Time per step 32.44s 18.63s 11.87s

Uniform 59.65s 29.70s 15.15s
Integration 73.46% 64.69% 50.44%

Flux Correction 1.30% 1.49% 2.03%
Boundary Setting 13.72% 16.60% 20.44%

Regridding 10.43% 15.68% 24.25%
Clustering 0.34% 0.32% 0.26%

Output 0.29% 0.53% 0.92%
Misc. 0.46% 0.44% 0.47%

CPUs 16 32 64
Time per step 43.97s 25.24s 16.21s

Uniform 69.09s 35.94s 18.24s
Integration 59.09% 49.93% 40.20%

Flux Correction 0.82% 0.80% 1.14%
Boundary Setting 19.22% 25.58% 28.98%

Regridding 7.21% 9.15% 13.46%
Clustering 0.25% 0.23% 0.21%

GFM Find Cells 2.04% 1.73% 1.38%
GFM Interpolation 6.01% 10.39% 7.92%

GFM Overhead 0.54% 0.47% 0.37%
GFM Calculate 0.70% 0.60% 0.48%

Output 0.23% 0.52% 0.74%
Misc. 0.68% 0.62% 0.58%

Design of SAMR Systems, Advanced Parallelization, Usage 12

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Performance data from AMROC

AMROC scalability tests

Basic test configuration

I Spherical blast wave, Euler
equations, 3D wave
propagation method

I AMR base grid 323 with
r1,2 = 2, 4. 5 time steps on
coarsest level

I Uniform grid
2563 = 16.8 · 106 cells, 19
time steps

I Flux correction deactivated

I No volume I/O operations

I Tests run IBM BG/P
(mode VN)

Weak scalability test

I Reproduction of configuration each 64
CPUs

I On 1024 CPUs: 128× 64× 64 base
grid, > 33, 500 Grids, ∼ 61 · 106 cells,
uniform 1024× 512× 512 = 268 · 106

cells
Level Grids Cells

0 606 32,768
1 575 135,312
2 910 3,639,040

Strong scalability test

I 64× 32× 32 base grid, uniform
512× 256× 256 = 33.6 · 106 cells

Level Grids Cells
0 1709 65,536
1 1735 271,048
2 2210 7,190,208

Design of SAMR Systems, Advanced Parallelization, Usage 13

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Performance data from AMROC

AMROC scalability tests

Basic test configuration

I Spherical blast wave, Euler
equations, 3D wave
propagation method

I AMR base grid 323 with
r1,2 = 2, 4. 5 time steps on
coarsest level

I Uniform grid
2563 = 16.8 · 106 cells, 19
time steps

I Flux correction deactivated

I No volume I/O operations

I Tests run IBM BG/P
(mode VN)

Weak scalability test

I Reproduction of configuration each 64
CPUs

I On 1024 CPUs: 128× 64× 64 base
grid, > 33, 500 Grids, ∼ 61 · 106 cells,
uniform 1024× 512× 512 = 268 · 106

cells
Level Grids Cells

0 606 32,768
1 575 135,312
2 910 3,639,040

Strong scalability test

I 64× 32× 32 base grid, uniform
512× 256× 256 = 33.6 · 106 cells

Level Grids Cells
0 1709 65,536
1 1735 271,048
2 2210 7,190,208

Design of SAMR Systems, Advanced Parallelization, Usage 13

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Performance data from AMROC

Scalability tests AMROC V2.0

weak scalability test strong scalability test

I Syncing: Parallel communication portion of boundary setting

I Recompose: topological list operations, construction of boundary info,
redistribution of data blocks

I Partition-Init, Partition-Calc: construction of space filling curve

I Costs for Partition-Init and Recompose increase dramatically for large problem
size

Design of SAMR Systems, Advanced Parallelization, Usage 14

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Performance data from AMROC

Scalability tests AMROC V2.0

weak scalability test strong scalability test

I Syncing: Parallel communication portion of boundary setting

I Recompose: topological list operations, construction of boundary info,
redistribution of data blocks

I Partition-Init, Partition-Calc: construction of space filling curve

I Costs for Partition-Init and Recompose increase dramatically for large problem
size

Design of SAMR Systems, Advanced Parallelization, Usage 14

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

Topological list operations

Weak scalability problems are due to non-parallel sub-algorithms!

I Operations ∩, \ on two box lists have complexity O(NM)

I Costs of operations in Recompose(l), that use global box lists Gl ,
increase quadratically, cf. [Wissink et al., 2003]

I Solution

I Clip Gl with properly chosen quadratic bounding box around G p
l

before using ∩, \

I All topological operations in Recompose(l) involving global lists can be
reduced to local ones

I Present code V2.1β still uses MPI allgather() to communicate global
lists to all nodes

I Global view is particularly useful to evaluate new local portion of hierarchy
and for data redistribution

Design of SAMR Systems, Advanced Parallelization, Usage 15

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

Topological list operations

Weak scalability problems are due to non-parallel sub-algorithms!

I Operations ∩, \ on two box lists have complexity O(NM)

I Costs of operations in Recompose(l), that use global box lists Gl ,
increase quadratically, cf. [Wissink et al., 2003]

I Solution

I Clip Gl with properly chosen quadratic bounding box around G p
l

before using ∩, \

I All topological operations in Recompose(l) involving global lists can be
reduced to local ones

I Present code V2.1β still uses MPI allgather() to communicate global
lists to all nodes

I Global view is particularly useful to evaluate new local portion of hierarchy
and for data redistribution

Design of SAMR Systems, Advanced Parallelization, Usage 15

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

Topological list operations

Weak scalability problems are due to non-parallel sub-algorithms!

I Operations ∩, \ on two box lists have complexity O(NM)

I Costs of operations in Recompose(l), that use global box lists Gl ,
increase quadratically, cf. [Wissink et al., 2003]

I Solution

I Clip Gl with properly chosen quadratic bounding box around G p
l

before using ∩, \

I All topological operations in Recompose(l) involving global lists can be
reduced to local ones

I Present code V2.1β still uses MPI allgather() to communicate global
lists to all nodes

I Global view is particularly useful to evaluate new local portion of hierarchy
and for data redistribution

Design of SAMR Systems, Advanced Parallelization, Usage 15

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

Topological list operations

Weak scalability problems are due to non-parallel sub-algorithms!

I Operations ∩, \ on two box lists have complexity O(NM)

I Costs of operations in Recompose(l), that use global box lists Gl ,
increase quadratically, cf. [Wissink et al., 2003]

I Solution

I Clip Gl with properly chosen quadratic bounding box around G p
l

before using ∩, \
I All topological operations in Recompose(l) involving global lists can be

reduced to local ones

I Present code V2.1β still uses MPI allgather() to communicate global
lists to all nodes

I Global view is particularly useful to evaluate new local portion of hierarchy
and for data redistribution

Design of SAMR Systems, Advanced Parallelization, Usage 15

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

Topological list operations

Weak scalability problems are due to non-parallel sub-algorithms!

I Operations ∩, \ on two box lists have complexity O(NM)

I Costs of operations in Recompose(l), that use global box lists Gl ,
increase quadratically, cf. [Wissink et al., 2003]

I Solution

I Clip Gl with properly chosen quadratic bounding box around G p
l

before using ∩, \
I All topological operations in Recompose(l) involving global lists can be

reduced to local ones

I Present code V2.1β still uses MPI allgather() to communicate global
lists to all nodes

I Global view is particularly useful to evaluate new local portion of hierarchy
and for data redistribution

Design of SAMR Systems, Advanced Parallelization, Usage 15

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

Construction of space-filling curve

Computation of space filling curve

I Partition-Init

1. Compute aggregated workload for
new grid hierarchy Gl and project
result onto level 0

2. Construct recursively SFC-units until
work in each unit is homogeneous,
GuCFactor defines minimal
coarseness relative to level-0 grid

I Partition-Calc

1. Compute entire workload and new work for each processor
2. Go sequentially through SFC-ordered list of partitioning units and

assign units to processors, refine partition if necessary and possible

I Ensure scalability of Partition-Init by creating SFC-units strictly local

I Currently still use of MPI allgather() to create globally identical input for
Partition-Calc

Design of SAMR Systems, Advanced Parallelization, Usage 16

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

Construction of space-filling curve

Computation of space filling curve

I Partition-Init

1. Compute aggregated workload for
new grid hierarchy Gl and project
result onto level 0

2. Construct recursively SFC-units until
work in each unit is homogeneous,
GuCFactor defines minimal
coarseness relative to level-0 grid

I Partition-Calc

1. Compute entire workload and new work for each processor
2. Go sequentially through SFC-ordered list of partitioning units and

assign units to processors, refine partition if necessary and possible

I Ensure scalability of Partition-Init by creating SFC-units strictly local

I Currently still use of MPI allgather() to create globally identical input for
Partition-Calc

Design of SAMR Systems, Advanced Parallelization, Usage 16

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

Construction of space-filling curve

Computation of space filling curve

I Partition-Init

1. Compute aggregated workload for
new grid hierarchy Gl and project
result onto level 0

2. Construct recursively SFC-units until
work in each unit is homogeneous,
GuCFactor defines minimal
coarseness relative to level-0 grid

I Partition-Calc

1. Compute entire workload and new work for each processor
2. Go sequentially through SFC-ordered list of partitioning units and

assign units to processors, refine partition if necessary and possible

I Ensure scalability of Partition-Init by creating SFC-units strictly local

I Currently still use of MPI allgather() to create globally identical input for
Partition-Calc

Design of SAMR Systems, Advanced Parallelization, Usage 16

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

Construction of space-filling curve

Computation of space filling curve

I Partition-Init

1. Compute aggregated workload for
new grid hierarchy Gl and project
result onto level 0

2. Construct recursively SFC-units until
work in each unit is homogeneous,
GuCFactor defines minimal
coarseness relative to level-0 grid

I Partition-Calc

1. Compute entire workload and new work for each processor

2. Go sequentially through SFC-ordered list of partitioning units and
assign units to processors, refine partition if necessary and possible

I Ensure scalability of Partition-Init by creating SFC-units strictly local

I Currently still use of MPI allgather() to create globally identical input for
Partition-Calc

Design of SAMR Systems, Advanced Parallelization, Usage 16

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

Construction of space-filling curve

Computation of space filling curve

I Partition-Init

1. Compute aggregated workload for
new grid hierarchy Gl and project
result onto level 0

2. Construct recursively SFC-units until
work in each unit is homogeneous,
GuCFactor defines minimal
coarseness relative to level-0 grid

I Partition-Calc

1. Compute entire workload and new work for each processor
2. Go sequentially through SFC-ordered list of partitioning units and

assign units to processors, refine partition if necessary and possible

I Ensure scalability of Partition-Init by creating SFC-units strictly local

I Currently still use of MPI allgather() to create globally identical input for
Partition-Calc

Design of SAMR Systems, Advanced Parallelization, Usage 16

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

Construction of space-filling curve

Computation of space filling curve

I Partition-Init

1. Compute aggregated workload for
new grid hierarchy Gl and project
result onto level 0

2. Construct recursively SFC-units until
work in each unit is homogeneous,
GuCFactor defines minimal
coarseness relative to level-0 grid

I Partition-Calc

1. Compute entire workload and new work for each processor
2. Go sequentially through SFC-ordered list of partitioning units and

assign units to processors, refine partition if necessary and possible

I Ensure scalability of Partition-Init by creating SFC-units strictly local

I Currently still use of MPI allgather() to create globally identical input for
Partition-Calc

Design of SAMR Systems, Advanced Parallelization, Usage 16

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

Construction of space-filling curve

Computation of space filling curve

I Partition-Init

1. Compute aggregated workload for
new grid hierarchy Gl and project
result onto level 0

2. Construct recursively SFC-units until
work in each unit is homogeneous,
GuCFactor defines minimal
coarseness relative to level-0 grid

I Partition-Calc

1. Compute entire workload and new work for each processor
2. Go sequentially through SFC-ordered list of partitioning units and

assign units to processors, refine partition if necessary and possible

I Ensure scalability of Partition-Init by creating SFC-units strictly local

I Currently still use of MPI allgather() to create globally identical input for
Partition-Calc

Design of SAMR Systems, Advanced Parallelization, Usage 16

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

Construction of space-filling curve

Computation of space filling curve

I Partition-Init

1. Compute aggregated workload for
new grid hierarchy Gl and project
result onto level 0

2. Construct recursively SFC-units until
work in each unit is homogeneous,
GuCFactor defines minimal
coarseness relative to level-0 grid

I Partition-Calc

1. Compute entire workload and new work for each processor
2. Go sequentially through SFC-ordered list of partitioning units and

assign units to processors, refine partition if necessary and possible

I Ensure scalability of Partition-Init by creating SFC-units strictly local

I Currently still use of MPI allgather() to create globally identical input for
Partition-Calc

Design of SAMR Systems, Advanced Parallelization, Usage 16

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

Weak scalability test V2.1β

I Overall performance improvement for 1024 CPUs by ∼ 69 %

I Absolute costs for Syncing are almost constant

I 1024 required usage of -DUAL option due to usage of global lists data
structures in Partition-Calc and Recompose

Design of SAMR Systems, Advanced Parallelization, Usage 17

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

Strong scalability test V2.1β

I Overall performance improvement for 1024 CPUs by 43 %

I Improved partitioning algorithm allowed usage of GuCFactor=1 instead of
2 before and full parallel data redistribution in every Regrid(l) instead of
every 2nd level-0 step

Design of SAMR Systems, Advanced Parallelization, Usage 18

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

Strong scalability test V2.1β

I Overall performance improvement for 1024 CPUs by 43 %

I Improved partitioning algorithm allowed usage of GuCFactor=1 instead of
2 before and full parallel data redistribution in every Regrid(l) instead of
every 2nd level-0 step

Design of SAMR Systems, Advanced Parallelization, Usage 18

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

To-Do

Comments

I Scalability of V2.1β for finite volume methods is comparable to results
reported from Chombo and SAMRAI

I Significantly better scalability has so far only been reported for shallow
hierarchies [Greenough et al., 2005] and/or tailored parameters choices

Next step

I Eliminate aggregation of global box list data (that currently uses simply
MPI allgather())

I Partition-Calc: assignment of SFC-ordered sequence and refinement
could be executed sequentially on each node

I Global topology lists: assemble only those portions of global lists on
each node that are relevant for the subsequent operations. Use
Cartesian bounding box information to construct irregular
point-to-point communication pattern for list data between nodes

Future work

I Large-scale hierarchical I/O

I Hybrid parallelization (considering accelerators), cf. [Schive et al., 2010],
[Jourdon, 2005]

I . . .Design of SAMR Systems, Advanced Parallelization, Usage 19

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

To-Do

Comments

I Scalability of V2.1β for finite volume methods is comparable to results
reported from Chombo and SAMRAI

I Significantly better scalability has so far only been reported for shallow
hierarchies [Greenough et al., 2005] and/or tailored parameters choices

Next step

I Eliminate aggregation of global box list data (that currently uses simply
MPI allgather())

I Partition-Calc: assignment of SFC-ordered sequence and refinement
could be executed sequentially on each node

I Global topology lists: assemble only those portions of global lists on
each node that are relevant for the subsequent operations. Use
Cartesian bounding box information to construct irregular
point-to-point communication pattern for list data between nodes

Future work

I Large-scale hierarchical I/O

I Hybrid parallelization (considering accelerators), cf. [Schive et al., 2010],
[Jourdon, 2005]

I . . .Design of SAMR Systems, Advanced Parallelization, Usage 19

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

To-Do

Comments

I Scalability of V2.1β for finite volume methods is comparable to results
reported from Chombo and SAMRAI

I Significantly better scalability has so far only been reported for shallow
hierarchies [Greenough et al., 2005] and/or tailored parameters choices

Next step

I Eliminate aggregation of global box list data (that currently uses simply
MPI allgather())

I Partition-Calc: assignment of SFC-ordered sequence and refinement
could be executed sequentially on each node

I Global topology lists: assemble only those portions of global lists on
each node that are relevant for the subsequent operations. Use
Cartesian bounding box information to construct irregular
point-to-point communication pattern for list data between nodes

Future work

I Large-scale hierarchical I/O

I Hybrid parallelization (considering accelerators), cf. [Schive et al., 2010],
[Jourdon, 2005]

I . . .Design of SAMR Systems, Advanced Parallelization, Usage 19

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

To-Do

Comments

I Scalability of V2.1β for finite volume methods is comparable to results
reported from Chombo and SAMRAI

I Significantly better scalability has so far only been reported for shallow
hierarchies [Greenough et al., 2005] and/or tailored parameters choices

Next step

I Eliminate aggregation of global box list data (that currently uses simply
MPI allgather())

I Partition-Calc: assignment of SFC-ordered sequence and refinement
could be executed sequentially on each node

I Global topology lists: assemble only those portions of global lists on
each node that are relevant for the subsequent operations. Use
Cartesian bounding box information to construct irregular
point-to-point communication pattern for list data between nodes

Future work

I Large-scale hierarchical I/O

I Hybrid parallelization (considering accelerators), cf. [Schive et al., 2010],
[Jourdon, 2005]

I . . .Design of SAMR Systems, Advanced Parallelization, Usage 19

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

To-Do

Comments

I Scalability of V2.1β for finite volume methods is comparable to results
reported from Chombo and SAMRAI

I Significantly better scalability has so far only been reported for shallow
hierarchies [Greenough et al., 2005] and/or tailored parameters choices

Next step

I Eliminate aggregation of global box list data (that currently uses simply
MPI allgather())

I Partition-Calc: assignment of SFC-ordered sequence and refinement
could be executed sequentially on each node

I Global topology lists: assemble only those portions of global lists on
each node that are relevant for the subsequent operations. Use
Cartesian bounding box information to construct irregular
point-to-point communication pattern for list data between nodes

Future work

I Large-scale hierarchical I/O

I Hybrid parallelization (considering accelerators), cf. [Schive et al., 2010],
[Jourdon, 2005]

I . . .Design of SAMR Systems, Advanced Parallelization, Usage 19

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

To-Do

Comments

I Scalability of V2.1β for finite volume methods is comparable to results
reported from Chombo and SAMRAI

I Significantly better scalability has so far only been reported for shallow
hierarchies [Greenough et al., 2005] and/or tailored parameters choices

Next step

I Eliminate aggregation of global box list data (that currently uses simply
MPI allgather())

I Partition-Calc: assignment of SFC-ordered sequence and refinement
could be executed sequentially on each node

I Global topology lists: assemble only those portions of global lists on
each node that are relevant for the subsequent operations. Use
Cartesian bounding box information to construct irregular
point-to-point communication pattern for list data between nodes

Future work

I Large-scale hierarchical I/O

I Hybrid parallelization (considering accelerators), cf. [Schive et al., 2010],
[Jourdon, 2005]

I . . .Design of SAMR Systems, Advanced Parallelization, Usage 19

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Scalability bottlenecks

To-Do

Comments

I Scalability of V2.1β for finite volume methods is comparable to results
reported from Chombo and SAMRAI

I Significantly better scalability has so far only been reported for shallow
hierarchies [Greenough et al., 2005] and/or tailored parameters choices

Next step

I Eliminate aggregation of global box list data (that currently uses simply
MPI allgather())

I Partition-Calc: assignment of SFC-ordered sequence and refinement
could be executed sequentially on each node

I Global topology lists: assemble only those portions of global lists on
each node that are relevant for the subsequent operations. Use
Cartesian bounding box information to construct irregular
point-to-point communication pattern for list data between nodes

Future work

I Large-scale hierarchical I/O

I Hybrid parallelization (considering accelerators), cf. [Schive et al., 2010],
[Jourdon, 2005]

I . . .Design of SAMR Systems, Advanced Parallelization, Usage 19

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Short overview

Quick start with AMROC V2.0 I

Standard Linux development system assumed! See install vtf.pdf for
details.

1. Unpack hdf4 src.tgz into home directory: cd; tar -xvzf

hdf4 src.tgz

2. cd asc; ./build hdf4.sh

3. If last step successful libdf.a, libjpeg.a, libmfhdf.a, libsz.a,
libz.a are in $HOME/asc/hdf4/lib.

4. Unpack AMROC-Clawpack-1.0.tgz into $HOME/asc:
cd $HOME/asc; tar -xvzf AMROC-Clawpack-1.0.tgz

5. With mpicc, mpicxx commands

5.1 cd vtf

5.2 ./configure -C --enable-opt=yes --enable-mpi=yes

HDF4 DIR=$HOME/asc/hdf4

If autoconf, automake are available add
--enable-maintainer-mode to last line

5.3 cd gnu-opt-mpi

Design of SAMR Systems, Advanced Parallelization, Usage 20

http://www.csm.ornl.gov/~r2v/pub/AMR/install_vtf.tgz
http://www.csm.ornl.gov/~r2v/pub/AMR/hdf4_src.tgz
http://www.cacr.caltech.edu/asc/wiki/bin/view/Main/SoftwareDownload

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Short overview

Quick start with AMROC V2.0 II

5.4 make

5.5 source ../ac/paths.sh
5.6 Optional unit test

5.6.1 ../amroc/testrun.sh -m make -r 4 -s

5.6.2 ../amroc/testrun.sh -c

6. Without MPI

6.1 cd vtf

6.2 ./configure -C --enable-opt=yes --enable-mpi=no

HDF4 DIR=$HOME/asc/hdf4

If autoconf, automake are available add
--enable-maintainer-mode to last line

6.3 cd gnu-opt

6.4 make

6.5 source ../ac/paths.sh
6.6 Optional unit test

6.6.1 ../amroc/testrun.sh -m make -r 0 -s

6.6.2 ../amroc/testrun.sh -c

Design of SAMR Systems, Advanced Parallelization, Usage 21

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Short overview

Quick start with AMROC V2.0 III

7. Realistic example

7.1 Change to compilation directory gnu-opt/gnu-opt-mpi:
cd amroc/clawpack/applications/euler/2d/SphereLiftOff

7.2 make

7.3 Change to corresponding directory with solver.in: cd

vtf/amroc/clawpack/applications/euler/2d/SphereLiftOff

7.4 ./run.py or ./run.py 2 (if you have compiled with MPI on a
dual-core system)

7.5 gnuplot Density.gnu shows density evolution of lower boundary
7.6 Create binary VTK files for Paraview or VisIt: hdf2tab.sh "-f

display file visit.in"

7.7 Execute VisIt or Paraview and load the VTK files for visualization.

Design of SAMR Systems, Advanced Parallelization, Usage 22

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

Short overview

Quick start with AMROC V2.0 IV

8. FSI example (requires MPI)

8.1 cd

$HOME/asc/gnu-opt-mpi/vtf/fsi/beam-amroc/VibratingBeam

8.2 make

8.3 cd $HOME/asc/vtf/fsi/beam-amroc/VibratingBeam

8.4 ./run.py 4

Change LastNode entry in solver.in for different processor number.

8.5 hdf2tab.sh

8.6 Execute VisIt or Paraview and load the VTK files for visualization.

9. For further documentation see http://www.cacr.caltech.edu/asc

Design of SAMR Systems, Advanced Parallelization, Usage 23

http://www.cacr.caltech.edu/asc

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

References

References I

[Berger and LeVeque, 1998] Berger, M. and LeVeque, R. (1998). Adaptive mesh
refinement using wave-propagation algorithms for hyperbolic systems. SIAM J.
Numer. Anal., 35(6):2298–2316.

[Brown et al., 1997] Brown, D. L., Henshaw, W. D., and Quinlan, D. J. (1997).
Overture: An object oriented framework for solving partial differential equations. In
Proc. ISCOPE 1997, appeared in Scientific Computing in Object-Oriented Parallel
Environments, number 1343 in Springer Lecture Notes in Computer Science.

[Deiterding et al., 2007] Deiterding, R., Cirak, F., Mauch, S. P., and Meiron, D. I.
(2007). A virtual test facility for simulating detonation- and shock-induced
deformation and fracture of thin flexible shells. Int. J. Multiscale Computational
Engineering, 5(1):47–63.

[Deiterding et al., 2006] Deiterding, R., Radovitzky, R., Mauch, S. P., Noels, L.,
Cummings, J. C., and Meiron, D. I. (2006). A virtual test facility for the efficient
simulation of solid materials under high energy shock-wave loading. Engineering
with Computers, 22(3-4):325–347.

Design of SAMR Systems, Advanced Parallelization, Usage 24

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

References

References II

[Gittings et al., 2008] Gittings, M., Weaver, R., Clover, M., Betlach, T., Byrne, N.,
Coker, R., Dendy, E., Hueckstaedt, R., New, K., Oakes, R., Rantal, D., and Stefan,
R. (2008). The RAGE radiation-hydrodynamics code. Comput. Sci. Disc., 1.
doi:10.1088/1749-4699/1/1/015005.

[Greenough et al., 2005] Greenough, J. A., de Supinski, B. R., Yates, R. K.,
Rendleman, C. A., Skinner, D., Beckner, V., Lijewski, M., Bell, J., and Sexton,
J. C. (2005). Performance of a block structured, hierarchical adaptive mesh
refinement code on the 64k node IBM BlueGene/L computer. Technical Report
LBNL-57500, Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley.

[Gunney et al., 2007] Gunney, B. T., Wissink, A. M., and Hysoma, D. A. (2007).
Parallel clustering algorithms for structured AMR. J. Parallel and Distributed
Computing, 66(11):1419–1430.

[Hornung et al., 2006] Hornung, R. D., Wissink, A. M., and Kohn, S. H. (2006).
Managing complex data and geometry in parallel structured AMR applications.
Engineering with Computers, 22:181–195.

Design of SAMR Systems, Advanced Parallelization, Usage 25

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

References

References III

[Jourdon, 2005] Jourdon, H. (2005). HERA: A hydrodynamic AMR platform for
multi-physics simulation. In Plewa, T., Linde, T., and Weirs, V. G., editors,
Adaptive Mesh Refinement - Theory and Applications, volume 41 of Lecture Notes
in Computational Science and Engineering, pages 283–294. Springer.

[MacNeice et al., 2000] MacNeice, P., Olson, K. M., Mobarry, C., deFainchtein, R.,
and Packer, C. (2000). PARAMESH: A parallel adaptive mesh refinement
community toolkit. Computer Physics Communications, 126:330–354.

[Parashar and Browne, 1997] Parashar, M. and Browne, J. C. (1997). System
engineering for high performance computing software: The HDDA/DAGH
infrastructure for implementation of parallel structured adaptive mesh refinement.
In Structured Adaptive Mesh Refinement Grid Methods, IMA Volumes in
Mathematics and its Applications. Springer.

[Rendleman et al., 2000] Rendleman, C. A., Beckner, V. E., Lijewski, M., Crutchfield,
W., and Bell, J. B. (2000). Parallelization of structured, hierarchical adaptive mesh
refinement algorithms. Computing and Visualization in Science, 3:147–157.

Design of SAMR Systems, Advanced Parallelization, Usage 26

Available SAMR software AMROC Massively parallel SAMR Usage of AMROC References

References

References IV

[Schive et al., 2010] Schive, H.-Y., Tsai, Y.-C., and Chiueh, T. (2010). GAMER: a
GPU-accelerated adaptive mesh refinement code for astrophysics. Astrophysical J.
Supplement Series, 186:457–484.

[Wissink et al., 2003] Wissink, A., Hysom, D., and Hornung, R. (2003). Enhancing
scalability of parallel structured amr calculations. In Proc. 17th Int. Conf.
Supercomputing, pages 336–347.

Design of SAMR Systems, Advanced Parallelization, Usage 27

	Available SAMR software
	Simplified block-based AMR
	General patch-based SAMR

	AMROC
	Overview
	Layered software structure

	Massively parallel SAMR
	Performance data from AMROC
	Scalability bottlenecks

	Usage of AMROC
	Short overview

	References
	

