Lecture 4a Using the SAMR approach for elliptic and parabolic problems

Course Block-structured Adaptive Mesh Refinement Methods for Conservation Laws Theory, Implementation and Application

Ralf Deiterding

Computer Science and Mathematics Division Oak Ridge National Laboratory P.O. Box 2008 MS6367, Oak Ridge, TN 37831, USA

E-mail: deiterdingr@ornl.gov

Outline

Adaptive geometric multigrid methods

Linear iterative methods for Poisson-type problems Multi-level algorithms Multigrid algorithms on SAMR data structures Example

Outline

Adaptive geometric multigrid methods

Linear iterative methods for Poisson-type problems Multi-level algorithms Multigrid algorithms on SAMR data structures Example

Comments on parabolic problems

$$\begin{array}{rcl} \Delta q(\mathbf{x}) & = & \psi(\mathbf{x}) \,, & \mathbf{x} \in \Omega \subset \mathbb{R}^d, & q \in \mathrm{C}^2(\Omega), & \psi \in \mathrm{C}^0(\Omega) \\ q & = & \psi^{\mathsf{\Gamma}}(\mathbf{x}) \,, & \mathbf{x} \in \partial \Omega \end{array}$$

$$\begin{array}{rcl} \Delta q(\mathbf{x}) & = & \psi(\mathbf{x}) \,, & \mathbf{x} \in \Omega \subset \mathbb{R}^d, & q \in \mathrm{C}^2(\Omega), & \psi \in \mathrm{C}^0(\Omega) \\ q & = & \psi^{\Gamma}(\mathbf{x}) \,, & \mathbf{x} \in \partial \Omega \end{array}$$

Discrete Poisson equation in 2D:

$$\frac{Q_{j+1,k} - 2Q_{jk} + Q_{j-1,k}}{\Delta x_1^2} + \frac{Q_{j,k+1} - 2Q_{jk} + Q_{j,k-1}}{\Delta x_2^2} = \psi_{jk}$$

$$\begin{array}{rcl} \Delta q(\mathbf{x}) & = & \psi(\mathbf{x}) \,, & \mathbf{x} \in \Omega \subset \mathbb{R}^d, & q \in \mathrm{C}^2(\Omega), & \psi \in \mathrm{C}^0(\Omega) \\ q & = & \psi^{\Gamma}(\mathbf{x}) \,, & \mathbf{x} \in \partial \Omega \end{array}$$

Discrete Poisson equation in 2D:

$$\frac{Q_{j+1,k} - 2Q_{jk} + Q_{j-1,k}}{\Delta x_1^2} + \frac{Q_{j,k+1} - 2Q_{jk} + Q_{j,k-1}}{\Delta x_2^2} = \psi_{jk}$$

Operator

$$\mathcal{A}(Q_{\Delta x_1,\Delta x_2}) = \left[egin{array}{ccc} rac{1}{\Delta x_2^2} & -\left(rac{2}{\Delta x_1^2} + rac{2}{\Delta x_2^2}
ight) & rac{1}{\Delta x_2^2} \ rac{1}{\Delta x_2^2} & \end{array}
ight] Q(x_{1,j},x_{2,k}) = \psi_{jk}$$

$$\begin{array}{rcl} \Delta q(\mathbf{x}) & = & \psi(\mathbf{x}) \,, & \mathbf{x} \in \Omega \subset \mathbb{R}^d, & q \in \mathrm{C}^2(\Omega), & \psi \in \mathrm{C}^0(\Omega) \\ q & = & \psi^{\Gamma}(\mathbf{x}) \,, & \mathbf{x} \in \partial \Omega \end{array}$$

Discrete Poisson equation in 2D:

$$\frac{Q_{j+1,k} - 2Q_{jk} + Q_{j-1,k}}{\Delta x_1^2} + \frac{Q_{j,k+1} - 2Q_{jk} + Q_{j,k-1}}{\Delta x_2^2} = \psi_{jk}$$

Operator

$$\mathcal{A}(Q_{\Delta x_1,\Delta x_2}) = \begin{bmatrix} \frac{1}{\Delta x_1^2} & -\left(\frac{\frac{1}{\Delta x_2^2}}{\frac{1}{\Delta x_2^2}} + \frac{2}{\Delta x_2^2}\right) & \frac{1}{\Delta x_2^2} \end{bmatrix} Q(x_{1,j},x_{2,k}) = \psi_{jk}$$

$$Q_{jk} = rac{1}{\sigma} \left[(Q_{j+1,k} + Q_{j-1,k}) \Delta x_2^2 + (Q_{j,k+1} + Q_{j,k-1}) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk} \right]$$

with $\sigma = rac{2\Delta x_1^2 + 2\Delta x_2^2}{\Delta x_2^2 \Delta x_2^2}$

Linear iterative methods for Poisson-type problems Iterative methods

Jacobi iteration

$$Q_{jk}^{m+1} = \frac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^m) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^m) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk} \right]$$

Jacobi iteration

$$Q_{jk}^{m+1} = rac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^m) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^m) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk}
ight]$$

Lexicographical Gauss-Seidel iteration (use updated values when they become available)

$$Q_{jk}^{m+1} = \frac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^{m+1}) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^{m+1}) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk} \right]$$

Jacobi iteration

$$Q_{jk}^{m+1} = rac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^m) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^m) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk}
ight]$$

Lexicographical Gauss-Seidel iteration (use updated values when they become available)

$$Q_{jk}^{m+1} = \frac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^{m+1}) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^{m+1}) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk} \right]$$

Efficient parallelization / patch-wise application not possible!

Jacobi iteration

$$Q_{jk}^{m+1} = rac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^m) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^m) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk}
ight]$$

Lexicographical Gauss-Seidel iteration (use updated values when they become available)

$$Q_{jk}^{m+1} = \frac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^{m+1}) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^{m+1}) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk} \right]$$

Efficient parallelization / patch-wise application not possible!

Checker-board or Red-Black Gauss Seidel iteration

1.
$$Q_{jk}^{m+1} = \frac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^m) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^m) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk} \right]$$

for $j+k \mod 2 = 0$

2.
$$Q_{jk}^{m+1} = \frac{1}{\sigma} \left[(Q_{j+1,k}^{m+1} + Q_{j-1,k}^{m+1}) \Delta x_2^2 + (Q_{j,k+1}^{m+1} + Q_{j,k-1}^{m+1}) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk} \right]$$

for $j+k \mod 2 = 1$

Jacobi iteration

$$Q_{jk}^{m+1} = rac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^m) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^m) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk}
ight]$$

Lexicographical Gauss-Seidel iteration (use updated values when they become available)

$$Q_{jk}^{m+1} = \frac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^{m+1}) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^{m+1}) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk} \right]$$

Efficient parallelization / patch-wise application not possible!

Checker-board or Red-Black Gauss Seidel iteration

1.
$$Q_{jk}^{m+1} = \frac{1}{\sigma} \left[(Q_{j+1,k}^m + Q_{j-1,k}^m) \Delta x_2^2 + (Q_{j,k+1}^m + Q_{j,k-1}^m) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk} \right]$$

for $j + k \mod 2 = 0$

2.
$$Q_{jk}^{m+1} = \frac{1}{\sigma} \left[(Q_{j+1,k}^{m+1} + Q_{j-1,k}^{m+1}) \Delta x_2^2 + (Q_{j,k+1}^{m+1} + Q_{j,k-1}^{m+1}) \Delta x_1^2 - \Delta x_1^2 \Delta x_2^2 \psi_{jk} \right]$$

for $j+k \mod 2 = 1$

Gauss-Seidel methods require $\sim 1/2$ of iterations than Jacobi method, however, iteration count still proportional to number of unknowns [Hackbusch, 1994]

 ν iterations with iterative linear solver

$$Q^{m+
u} = \mathcal{S}(Q^m, \psi, \nu)$$

 ν iterations with iterative linear solver

$$Q^{m+
u} = \mathcal{S}(Q^m, \psi, \nu)$$

Defect after *m* iterations

$$d^m = \psi - \mathcal{A}(Q^m)$$

 ν iterations with iterative linear solver

$$Q^{m+\nu} = \mathcal{S}(Q^m, \psi, \nu)$$

Defect after *m* iterations

$$d^m = \psi - \mathcal{A}(Q^m)$$

Defect after $m + \nu$ iterations

$$d^{m+\nu} = \psi - A(Q^{m+\nu}) = \psi - A(Q^m + v_{\nu}^m) = d^m - A(v_{\nu}^m)$$

with correction

$$v_{\nu}^{m} = \mathcal{S}(\vec{0}, d^{m}, \nu)$$

 ν iterations with iterative linear solver

$$Q^{m+
u} = \mathcal{S}(Q^m, \psi, \nu)$$

Defect after *m* iterations

$$d^m = \psi - \mathcal{A}(Q^m)$$

Defect after $m + \nu$ iterations

$$d^{m+
u} = \psi - \mathcal{A}(Q^{m+
u}) = \psi - \mathcal{A}(Q^m + v_{\nu}^m) = d^m - \mathcal{A}(v_{\nu}^m)$$

with correction

$$v_{\nu}^{m} = \mathcal{S}(\vec{0}, d^{m}, \nu)$$

Neglecting the sub-iterations in the smoother we write

$$Q^{n+1} = Q^n + v = Q^n + \mathcal{S}(d^n)$$

 ν iterations with iterative linear solver

$$Q^{m+
u} = \mathcal{S}(Q^m, \psi,
u)$$

Defect after *m* iterations

$$d^m = \psi - \mathcal{A}(Q^m)$$

Defect after $m + \nu$ iterations

$$d^{m+\nu} = \psi - \mathcal{A}(Q^{m+\nu}) = \psi - \mathcal{A}(Q^m + v_{\nu}^m) = d^m - \mathcal{A}(v_{\nu}^m)$$

with correction

$$v_{\nu}^{m} = \mathcal{S}(\vec{0}, d^{m}, \nu)$$

Neglecting the sub-iterations in the smoother we write

$$Q^{n+1} = Q^n + v = Q^n + \mathcal{S}(d^n)$$

Observation: Oscillations are damped faster on coarser grid.

0

u iterations with iterative linear solver

$$Q^{m+
u} = \mathcal{S}(Q^m, \psi, \nu)$$

Defect after *m* iterations

$$d^m = \psi - \mathcal{A}(Q^m)$$

Defect after $m + \nu$ iterations

$$d^{m+\nu} = \psi - \mathcal{A}(Q^{m+\nu}) = \psi - \mathcal{A}(Q^m + v_{\nu}^m) = d^m - \mathcal{A}(v_{\nu}^m)$$

with correction

$$v_{\nu}^{m} = \mathcal{S}(\vec{0}, d^{m}, \nu)$$

Neglecting the sub-iterations in the smoother we write

$$Q^{n+1} = Q^n + v = Q^n + \mathcal{S}(d^n)$$

Observation: Oscillations are damped faster on coarser grid.

Coarse grid correction:

$$Q^{n+1} = Q^n + v = Q^n + \mathcal{PSR}(d^n)$$

where ${\cal R}$ is suitable restriction operator and ${\cal P}$ a suitable prolongation operator

Relaxation on current grid:

$$egin{aligned} ar{\mathcal{Q}} &= \mathcal{S}(\mathcal{Q}^n, \psi,
u) \ \\ Q^{n+1} &= ar{\mathcal{Q}} + \mathcal{P} \mathcal{S}(ec{0}, \cdot, \mu) \mathcal{R}(\psi - \mathcal{A}(ar{\mathcal{Q}})) \end{aligned}$$

Relaxation on current grid:

$$ar{Q} = \mathcal{S}(Q^n, \psi,
u)$$

$$Q^{n+1} = ar{Q} + \mathcal{P}\mathcal{S}(\vec{0}, \cdot, \mu)\mathcal{R}(\psi - \mathcal{A}(ar{Q}))$$

Algorithm:

$$egin{aligned} ar{Q} &:= \mathcal{S}(Q^n, \psi,
u) \ d &:= \psi - \mathcal{A}(ar{Q}) \end{aligned} \ d_c &:= \mathcal{R}(d) \ v_c &:= \mathcal{S}(0, d_c, \mu) \ v &:= \mathcal{P}(v_c) \ Q^{n+1} &:= ar{Q} + v \end{aligned}$$

Relaxation on current grid:

$$ar{Q} = \mathcal{S}(Q^n, \psi, \nu)$$
 $Q^{n+1} = ar{Q} + \mathcal{P}\mathcal{S}(ar{0}, \cdot, \mu)\mathcal{R}(\psi - \mathcal{A}(ar{Q}))$

Algorithm: with smoothing:

$$\begin{split} \bar{Q} &:= \mathcal{S}(Q^n, \psi, \nu) & d := \psi - \mathcal{A}(Q) \\ d &:= \psi - \mathcal{A}(\bar{Q}) & v := \mathcal{S}(0, d, \nu) \\ & r := d - \mathcal{A}(v) \\ d_c &:= \mathcal{R}(d) & d_c := \mathcal{R}(r) \\ v_c &:= \mathcal{S}(0, d_c, \mu) & v_c := \mathcal{S}(0, d_c, \mu) \\ v &:= \mathcal{P}(v_c) & v := v + \mathcal{P}(v_c) \\ Q^{n+1} &:= \bar{Q} + v & Q^{n+1} := Q + v \end{split}$$

Relaxation on current grid:

$$ar{Q} = \mathcal{S}(Q^n, \psi,
u)$$
 $Q^{n+1} = ar{Q} + \mathcal{P}\mathcal{S}(ar{0}, \cdot, \mu)\mathcal{R}(\psi - \mathcal{A}(ar{Q}))$

Algorithm:

with smoothing:

with pre- and post-iteration:

$$\begin{split} \bar{Q} &:= \mathcal{S}(Q^n, \psi, \nu) & d := \psi - \mathcal{A}(Q) \\ d &:= \psi - \mathcal{A}(\bar{Q}) & v := \mathcal{S}(0, d, \nu) \\ & r := d - \mathcal{A}(v) & r := d - \mathcal{A}(v) \\ d_c &:= \mathcal{R}(d) & d_c := \mathcal{R}(r) & d_c := \mathcal{R}(r) \\ v_c &:= \mathcal{S}(0, d_c, \mu) & v_c := \mathcal{S}(0, d_c, \mu) & v_c := \mathcal{S}(0, d_c, \mu) \\ v &:= \mathcal{P}(v_c) & v := v + \mathcal{P}(v_c) & v := v + \mathcal{P}(v_c) \\ Q^{n+1} &:= \bar{Q} + v & Q^{n+1} := Q + v + r \end{split}$$

[Hackbusch, 1985]

Multi-level methods and cycles

 $\begin{aligned} & \text{V-cycle} \\ & \gamma = 1 \\ & \text{2-grid} \end{aligned}$

Multi-level methods and cycles

W-cycle $\gamma=2$

Multi-level methods and cycles

[Hackbusch, 1985] [Wesseling, 1992] ...

1D Example: Cell j,
$$\psi - \nabla \cdot \nabla q = 0$$

$$d_{j}^{I} = \psi_{j} - \frac{1}{\Delta x_{I}} \left(\frac{1}{\Delta x_{I}} (Q_{j+1}^{I} - Q_{j}^{I}) - \frac{1}{\Delta x_{I}} (Q_{j}^{I} - Q_{j-1}^{I}) \right)$$

1D Example: Cell i, $\psi - \nabla \cdot \nabla q = 0$

$$d_j' = \psi_j - \frac{1}{\Delta x_l} \left(\frac{1}{\Delta x_l} (Q_{j+1}' - Q_j') - \frac{1}{\Delta x_l} (Q_j' - Q_{j-1}') \right) = \psi_j - \frac{1}{\Delta x_l} \left(H_{j+\frac{1}{2}}' - H_{j-\frac{1}{2}}' \right)$$

H is approximation to derivative of Q^{I} .

1D Example: Cell j, $\psi - \nabla \cdot \nabla q = 0$

$$d_j^{\prime} = \psi_j - \frac{1}{\Delta x_l} \left(\frac{1}{\Delta x_l} (Q_{j+1}^{\prime} - Q_j^{\prime}) - \frac{1}{\Delta x_l} (Q_j^{\prime} - Q_{j-1}^{\prime}) \right) = \psi_j - \frac{1}{\Delta x_l} \left(H_{j+\frac{1}{2}}^{\prime} - H_{j-\frac{1}{2}}^{\prime} \right)$$

H is approximation to derivative of Q^{I} .

Consider 2-level situation with $r_{l+1} = 2$:

1D Example: Cell j, $\psi - \nabla \cdot \nabla q = 0$

$$d_j^{\prime} = \psi_j - \frac{1}{\Delta x_l} \left(\frac{1}{\Delta x_l} (Q_{j+1}^{\prime} - Q_j^{\prime}) - \frac{1}{\Delta x_l} (Q_j^{\prime} - Q_{j-1}^{\prime}) \right) = \psi_j - \frac{1}{\Delta x_l} \left(H_{j+\frac{1}{2}}^{\prime} - H_{j-\frac{1}{2}}^{\prime} \right)$$

H is approximation to derivative of Q^{I} .

Consider 2-level situation with $r_{l+1} = 2$:

1D Example: Cell j, $\psi - \nabla \cdot \nabla q = 0$

$$d_j^{I} = \psi_j - \frac{1}{\Delta x_I} \left(\frac{1}{\Delta x_I} (Q_{j+1}^{I} - Q_j^{I}) - \frac{1}{\Delta x_I} (Q_j^{I} - Q_{j-1}^{I}) \right) = \psi_j - \frac{1}{\Delta x_I} \left(H_{j+\frac{1}{2}}^{I} - H_{j-\frac{1}{2}}^{I} \right)$$

H is approximation to *derivative* of Q^{I} . Consider 2-level situation with $r_{I+1} = 2$:

1D Example: Cell j, $\psi - \nabla \cdot \nabla q = 0$

$$d_{j}^{l} = \psi_{j} - \frac{1}{\Delta x_{l}} \left(\frac{1}{\Delta x_{l}} (Q_{j+1}^{l} - Q_{j}^{l}) - \frac{1}{\Delta x_{l}} (Q_{j}^{l} - Q_{j-1}^{l}) \right) = \psi_{j} - \frac{1}{\Delta x_{l}} \left(H_{j+\frac{1}{2}}^{l} - H_{j-\frac{1}{2}}^{l} \right)$$

H is approximation to *derivative* of Q^{I} .

Consider 2-level situation with $r_{l+1} = 2$:

No specific modification necessary for 1D vertex-based stencils, cf. [Bastian, 1996]

Set
$$H_{w+\frac{1}{2}}^{l+1} = H_{\mathcal{I}}$$
.

Set
$$H_{w+\frac{1}{2}}^{l+1} = H_{\mathcal{I}}$$
. Inserting Q gives

$$\frac{Q_{w+1}^{l+1} - Q_w^{l+1}}{\Delta x_{l+1}} = \frac{Q_j^l - Q_w^{l+1}}{\frac{3}{2} \Delta x_{l+1}}$$

Set
$$H_{w+\frac{1}{2}}^{l+1} = H_{\mathcal{I}}$$
. Inserting Q gives

$$rac{Q_{w+1}^{l+1}-Q_w^{l+1}}{\Delta x_{l+1}} = rac{Q_j^l-Q_w^{l+1}}{rac{3}{2}\Delta x_{l+1}}$$

from which we readily derive

$$Q_{w+1}^{l+1} = \frac{2}{3}Q_j^l + \frac{1}{3}Q_w^{l+1}$$

for the boundary cell on l+1.

Set $H_{w+\frac{1}{2}}^{l+1} = H_{\mathcal{I}}$. Inserting Q gives

$$\frac{Q_{w+1}^{l+1} - Q_w^{l+1}}{\Delta x_{l+1}} = \frac{Q_j^l - Q_w^{l+1}}{\frac{3}{2} \Delta x_{l+1}}$$

from which we readily derive

$$Q_{w+1}^{l+1} = \frac{2}{3}Q_j^l + \frac{1}{3}Q_w^{l+1}$$

for the boundary cell on l+1. We use the flux correction procedure to enforce $H_{w+\frac{1}{2}}^{l+1} \equiv H_{j-\frac{1}{2}}^{l}$ and thereby $H_{j-\frac{1}{2}}^{l} \equiv H_{\mathcal{I}}$.

Set $H_{w+\frac{1}{2}}^{l+1} = H_{\mathcal{I}}$. Inserting Q gives

$$\frac{Q_{w+1}^{l+1} - Q_w^{l+1}}{\Delta x_{l+1}} = \frac{Q_j^l - Q_w^{l+1}}{\frac{3}{2} \Delta x_{l+1}}$$

from which we readily derive

$$Q_{w+1}^{l+1} = \frac{2}{3}Q_j^l + \frac{1}{3}Q_w^{l+1}$$

for the boundary cell on I+1. We use the flux correction procedure to enforce $H^{I+1}_{w+\frac{1}{2}}\equiv H^I_{j-\frac{1}{2}}$ and thereby $H^I_{j-\frac{1}{2}}\equiv H_{\mathcal{I}}$.

Correction pass [Martin, 1998]

1.
$$\delta H_{j-\frac{1}{2}}^{l+1} := -H_{j-\frac{1}{2}}^{l}$$

Set $H_{w+\frac{1}{2}}^{l+1} = H_{\mathcal{I}}$. Inserting Q gives

$$\frac{Q_{w+1}^{l+1} - Q_w^{l+1}}{\Delta x_{l+1}} = \frac{Q_j^l - Q_w^{l+1}}{\frac{3}{2} \Delta x_{l+1}}$$

from which we readily derive

$$Q_{w+1}^{l+1} = \frac{2}{3}Q_j^l + \frac{1}{3}Q_w^{l+1}$$

for the boundary cell on I+1. We use the flux correction procedure to enforce $H^{l+1}_{w+\frac{1}{2}}\equiv H^l_{j-\frac{1}{2}}$ and thereby $H^l_{j-\frac{1}{2}}\equiv H_{\mathcal{I}}$.

Correction pass [Martin, 1998]

1.
$$\delta H_{j-\frac{1}{2}}^{l+1} := -H_{j-\frac{1}{2}}^{l}$$

2.
$$\delta H_{j-\frac{1}{2}}^{l+1} := \delta H_{j-\frac{1}{2}}^{l+1} + H_{w+\frac{1}{2}}^{l+1} = -H_{j-\frac{1}{2}}^{l} + (Q_{j}^{l} - Q_{w}^{l+1}) / \frac{3}{2} \Delta x_{l+1}$$

Set $H_{w+\frac{1}{2}}^{l+1} = H_{\mathcal{I}}$. Inserting Q gives

$$\frac{Q_{w+1}^{l+1} - Q_w^{l+1}}{\Delta x_{l+1}} = \frac{Q_j^l - Q_w^{l+1}}{\frac{3}{2} \Delta x_{l+1}}$$

from which we readily derive

$$Q_{w+1}^{l+1} = \frac{2}{3}Q_j^l + \frac{1}{3}Q_w^{l+1}$$

for the boundary cell on I+1. We use the flux correction procedure to enforce $H^{I+1}_{w+\frac{1}{2}}\equiv H^I_{j-\frac{1}{2}}$ and thereby $H^I_{j-\frac{1}{2}}\equiv H_{\mathcal{I}}$.

Correction pass [Martin, 1998]

1.
$$\delta H_{j-\frac{1}{2}}^{l+1} := -H_{j-\frac{1}{2}}^{l}$$

2.
$$\delta H_{j-\frac{1}{2}}^{l+1} := \delta H_{j-\frac{1}{2}}^{l+1} + H_{w+\frac{1}{2}}^{l+1} = -H_{j-\frac{1}{2}}^{l} + (Q_{j}^{l} - Q_{w}^{l+1}) / \frac{3}{2} \Delta x_{l+1}$$

3.
$$\check{d}'_j := d'_j + \frac{1}{\Delta x_i} \delta H_{j-\frac{1}{2}}^{l+1}$$

Stencil modification at coarse-fine boundaries in 1D II

Set $H_{w+\frac{1}{2}}^{l+1} = H_{\mathcal{I}}$. Inserting Q gives

$$\frac{Q_{w+1}^{l+1} - Q_w^{l+1}}{\Delta x_{l+1}} = \frac{Q_j^l - Q_w^{l+1}}{\frac{3}{2} \Delta x_{l+1}}$$

from which we readily derive

$$Q_{w+1}^{l+1} = \frac{2}{3}Q_j^l + \frac{1}{3}Q_w^{l+1}$$

for the boundary cell on I+1. We use the flux correction procedure to enforce $H_{w+\frac{1}{2}}^{l+1} \equiv H_{j-\frac{1}{2}}^{l}$ and thereby $H_{j-\frac{1}{2}}^{l} \equiv H_{\mathcal{I}}$.

Correction pass [Martin, 1998]

1.
$$\delta H_{j-\frac{1}{2}}^{l+1} := -H_{j-\frac{1}{2}}^{l}$$

$$2. \ \delta H_{j-\frac{1}{2}}^{l+1} := \delta H_{j-\frac{1}{2}}^{l+1} + H_{w+\frac{1}{2}}^{l+1} = -H_{j-\frac{1}{2}}^{l} + (Q_{j}^{l} - Q_{w}^{l+1})/\frac{3}{2}\Delta x_{l+1}$$

3.
$$\check{d}'_j := d'_j + \frac{1}{\Delta x_i} \delta H_{j-\frac{1}{2}}^{l+1}$$

vields

$$\check{d}_j^l = \psi_j - rac{1}{\Delta x_l} \left(rac{1}{\Delta x_l} (Q_{j+1}^l - Q_j^l) - rac{2}{3\Delta x_{l+1}} (Q_j^l - Q_w^{l+1})
ight)$$

$$Q_{v,w-1}^{l+1} = +$$

$$Q_{v,w-1}^{l+1} = +$$

$$Q_{v,w-1}^{l+1} = + \left(rac{3}{4}Q_{jk}^l + rac{1}{4}Q_{j+1,k}^l
ight)$$

$$Q_{v,w-1}^{l+1} = \frac{1}{3} Q_{vw}^{l+1} + \frac{2}{3} \left(\frac{3}{4} Q_{jk}^{l} + \frac{1}{4} Q_{j+1,k}^{l} \right)$$

Stencil modification at coarse-fine boundaries: 2D

$$Q_{v,w-1}^{l+1} = \frac{1}{3} Q_{vw}^{l+1} + \frac{2}{3} \left(\frac{3}{4} Q_{jk}^{l} + \frac{1}{4} Q_{j+1,k}^{l} \right)$$

In general:

$$Q_{v,w-1}^{l+1} = \left(1 - \frac{2}{r_{l+1} + 1}\right) Q_{vw}^{l+1} + \frac{2}{r_{l+1} + 1} \left((1 - f)Q_{jk}^{l} + fQ_{j+1,k}^{l}\right)$$

with

$$f = \frac{x_{1,l+1}^{\nu} - x_{1,l}^{j}}{\Delta x_{1,l}}$$

Stencil operators

- Stencil operators
 - ▶ Application of defect $d^l = \psi^l \mathcal{A}(Q^l)$ on each grid $G_{l,m}$ of level l

- Stencil operators
 - ▶ Application of defect $d^l = \psi^l \mathcal{A}(Q^l)$ on each grid $G_{l,m}$ of level l
 - ▶ Computation of correction $v' = S(0, d', \nu)$ on each grid of level I

- Stencil operators
 - ▶ Application of defect $d^l = \psi^l \mathcal{A}(Q^l)$ on each grid $G_{l,m}$ of level l
 - ▶ Computation of correction $v' = S(0, d', \nu)$ on each grid of level I
- Boundary (ghost cell) operators

- Stencil operators
 - ▶ Application of defect $d^l = \psi^l \mathcal{A}(Q^l)$ on each grid $G_{l,m}$ of level l
 - ▶ Computation of correction $v' = S(0, d', \nu)$ on each grid of level I
- Boundary (ghost cell) operators
 - Synchronization of Q^I and v^I on \tilde{S}_I^1

- Stencil operators
 - ▶ Application of defect $d^l = \psi^l \mathcal{A}(Q^l)$ on each grid $G_{l,m}$ of level l
 - ▶ Computation of correction $v' = S(0, d', \nu)$ on each grid of level I
- Boundary (ghost cell) operators
 - Synchronization of Q' and v' on \tilde{S}_l^1
 - Specification of Dirichlet boundary conditions for a finite volume discretization for Q^l ≡ w and v^l ≡ w on P

 _l

 _l

- Stencil operators
 - ▶ Application of defect $d^l = \psi^l \mathcal{A}(Q^l)$ on each grid $G_{l,m}$ of level l
 - ▶ Computation of correction $v' = S(0, d', \nu)$ on each grid of level I
- Boundary (ghost cell) operators
 - Synchronization of Q' and v' on \tilde{S}_{l}^{1}
 - Specification of Dirichlet boundary conditions for a finite volume discretization for Q^I ≡ w and v^I ≡ w on P

 _I
 - Specification of $v' \equiv 0$ on \tilde{l}_{l}^{1}

- Stencil operators
 - ▶ Application of defect $d^l = \psi^l \mathcal{A}(Q^l)$ on each grid $G_{l,m}$ of level l
 - ▶ Computation of correction $v' = S(0, d', \nu)$ on each grid of level I
- Boundary (ghost cell) operators
 - Synchronization of Q' and v' on \tilde{S}_{l}^{1}
 - Specification of Dirichlet boundary conditions for a finite volume discretization for $Q^l \equiv w$ and $v^l \equiv w$ on \tilde{P}_l^1
 - Specification of $v' \equiv 0$ on \tilde{I}_{l}^{1}
 - Specification of $Q_l = \frac{(r_l-1)Q^{l+1}+2Q^k}{r_l+1}$ on \tilde{I}_l^1

- Stencil operators
 - ▶ Application of defect $d^l = \psi^l \mathcal{A}(Q^l)$ on each grid $G_{l,m}$ of level l
 - ▶ Computation of correction $v' = S(0, d', \nu)$ on each grid of level I
- Boundary (ghost cell) operators
 - Synchronization of Q^I and v^I on \tilde{S}^1_I
 - Specification of Dirichlet boundary conditions for a finite volume discretization for $Q^l \equiv w$ and $v^l \equiv w$ on \tilde{P}^1_l

lacktriangle Coarse-fine boundary flux accumulation and application of δH^{l+1} on defect d^l

- Stencil operators
 - ▶ Application of defect $d' = \psi' A(Q')$ on each grid $G_{l,m}$ of level I
 - ▶ Computation of correction $v' = S(0, d', \nu)$ on each grid of level I
- Boundary (ghost cell) operators
 - Synchronization of Q' and v' on \tilde{S}_{l}^{1}
 - Specification of Dirichlet boundary conditions for a finite volume discretization for $Q^l \equiv w$ and $v^l \equiv w$ on \tilde{P}_l^1

- Coarse-fine boundary flux accumulation and application of δH^{l+1} on defect d^l
- Standard prolongation and restriction on grids between adjacent levels

- Stencil operators
 - ▶ Application of defect $d^l = \psi^l \mathcal{A}(Q^l)$ on each grid $G_{l,m}$ of level l
 - ▶ Computation of correction $v' = S(0, d', \nu)$ on each grid of level I
- Boundary (ghost cell) operators
 - Synchronization of Q' and v' on \tilde{S}_{l}^{1}
 - Specification of Dirichlet boundary conditions for a finite volume discretization for $Q^l \equiv w$ and $v^l \equiv w$ on \tilde{P}_l^1

- lacktriangle Coarse-fine boundary flux accumulation and application of δH^{l+1} on defect d^l
- Standard prolongation and restriction on grids between adjacent levels
- Adaptation criteria

- Stencil operators
 - ▶ Application of defect $d' = \psi' A(Q')$ on each grid $G_{l,m}$ of level I
 - ▶ Computation of correction $v' = S(0, d', \nu)$ on each grid of level I
- Boundary (ghost cell) operators
 - Synchronization of Q' and v' on \tilde{S}_{l}^{1}
 - Specification of Dirichlet boundary conditions for a finite volume discretization for $Q^l \equiv w$ and $v^l \equiv w$ on \tilde{P}^1_l

- Coarse-fine boundary flux accumulation and application of δH^{l+1} on defect d^l
- > Standard prolongation and restriction on grids between adjacent levels
- Adaptation criteria
 - E.g., standard restriction to project solution on 2x coarsended grid, then use local error estimation

- Stencil operators
 - ▶ Application of defect $d' = \psi' A(Q')$ on each grid $G_{l,m}$ of level I
 - ▶ Computation of correction $v' = S(0, d', \nu)$ on each grid of level I
- Boundary (ghost cell) operators
 - Synchronization of Q^I and v^I on \tilde{S}_I^1
 - Specification of Dirichlet boundary conditions for a finite volume discretization for $Q^I \equiv w$ and $v^I \equiv w$ on \tilde{P}^1_I
 - Specification of $v' \equiv 0$ on \tilde{I}_{l}^{1}
 - Specification of $Q_l = \frac{(r_l-1)Q^{l+1}+2Q^k}{r_l+1}$ on \tilde{I}_l^1

- Coarse-fine boundary flux accumulation and application of δH^{l+1} on defect d^l
- Standard prolongation and restriction on grids between adjacent levels
- Adaptation criteria
 - E.g., standard restriction to project solution on 2x coarsended grid, then use local error estimation
- Looping instead of time steps and check of convergence

Additive geometric multigrid algorithm

AdvanceLevelMG(/) - Correction Scheme

```
Set ghost cells of Q^I
Calculate defect d^{\prime} from Q^{\prime}, \psi^{\prime}
                                                                   d' := \psi' - \mathcal{A}(Q')
If (1 < I_{max})
     Calculate updated defect r^{l+1} from v^{l+1}, d^{l+1}
                                                                         r^{l+1} := d^{l+1} - \mathcal{A}(v^{l+1})
     Restrict d^{l+1} onto d^{l}
                                                                         d' := \mathcal{R}_{l}^{l+1}(r^{l+1})
                                                                   v' := S(0, d', \nu_1)
Do \nu_1 smoothing steps to get correction v'
If (I > I_{min})
     Do \gamma > 1 times
           AdvanceLevelMG(I-1)
     Set ghost cells of v^{l-1}
     Prolongate and add v^{l-1} to v^{l}
                                                                          v' := v' + \mathcal{P}_{i}^{i-1}(v^{i-1})
     If (\nu_2 > 0)
           Set ghost cells of v'
           Update defect d' according to v'
                                                                             d' := d' - \mathcal{A}(v')
                                                                             r' := \mathcal{S}(v', d', \nu_2)
           Do \nu_2 post-smoothing steps to get r'
           Add addional correction r' to v'
                                                                            v' := v' + r'
                                                                    Q' := Q' + v'
Add correction v' to Q'
```

Additive Geometric Multiplicative Multigrid Algorithm

```
\begin{aligned} & \text{Start - Start iteration on level } I_{max} \\ & \text{For } I = I_{max} \text{ Downto } I_{min} + 1 \text{ Do} \\ & \text{ Restrict } Q^I \text{ onto } Q^{I-1} \\ & \text{Regrid(0)} \\ & \text{ AdvanceLevelMG}(I_{max}) \end{aligned} See also: [Trottenberg et al., 2001], [Canu and Ritzdorf, 1994] & \text{Vertex-based: [Brandt, 1977], [Briggs et al., 2001]} \end{aligned}
```

Example

On
$$\Omega = [0,10] \times [0,10]$$
 use hat function

$$\psi = \left\{ egin{array}{ll} -A_n \cos \left(rac{\pi r}{2R_n}
ight) \;, & r < R_n \ 0 & ext{elsewhere} \end{array}
ight.$$

with
$$r = \sqrt{(x_1 - X_n)^2 + (x_2 - Y_n)^2}$$
 to define three sources with

n	A_n	R_n	X_n	Y_n
1	0.3	0.3	6.5	8.0
2	0.2	0.3	2.0	7.0
3	-0.1	0.4	7.0	3.0

Example

On
$$\Omega = [0,10] \times [0,10]$$
 use hat function

$$\psi = \begin{cases} -A_n \cos\left(\frac{\pi r}{2R_n}\right), & r < R_n \\ 0 & \text{elsewhere} \end{cases}$$

with
$$r = \sqrt{(x_1 - X_n)^2 + (x_2 - Y_n)^2}$$
 to define three sources with

n	An	R _n	X _n	Y_n
1	0.3	0.3	6.5	8.0
2	0.2	0.3	2.0	7.0
3	-0.1	0.4	7.0	3.0

Example

On
$$\Omega = [0,10] \times [0,10]$$
 use hat function

$$\psi = \left\{ \begin{array}{ll} -A_n \cos \left(\frac{\pi r}{2R_n}\right) \;, & r < R_n \\ 0 & \text{elsewhere} \end{array} \right.$$

with
$$r = \sqrt{(x_1 - X_n)^2 + (x_2 - Y_n)^2}$$
 to define three sources with

n	A_n	R _n	X_n	Y_n
1	0.3	0.3	6.5	8.0
2	0.2	0.3	2.0	7.0
3	-0.1	0.4	7.0	3.0

	128×128	1024×1024	1024×1024
I _{max}	3	0	0
I _{min}	-4	-7	-4
ν_1	5	5	5
ν_2	5	5	5
V-Cycles	15	16	341
Time [sec]	9.4	27.7	563

Stop at $\|d^I\|_{max} < 10^{-7}$ for $I \ge 0$, $\gamma = 1$, $r_I = 2$

Some comments on parabolic problems

- Consequences of time step refinement
- Level-wise elliptic solves vs. global solve
- If time step refinement is used an elliptic flux correction is unavoidable.
- ▶ The correction is explained in Bell, J. (2004). Block-structured adaptive mesh refinement. Lecture 2. Available at https://ccse.lbl.gov/people/jbb/shortcourse/lecture2.pdf.

References I

- [Bastian, 1996] Bastian, P. (1996). Parallele adaptive Mehrgitterverfahren. Teubner Skripten zur Numerik. B. G. Teubner, Stuttgart.
- [Brandt, 1977] Brandt, A. (1977). Multi-level adaptive solutions to boundary-value problems. *Mathematics of Computations*, 31(183):333–390.
- [Briggs et al., 2001] Briggs, W. L., Henson, V. E., and McCormick, S. F. (2001). A Multigrid Tutorial. Society for Industrial and Applied Mathematics, 2nd edition.
- [Canu and Ritzdorf, 1994] Canu, J. and Ritzdorf, H. (1994). Adaptive, block-structured multigrid on local memory machines. In Hackbuch, W. and Wittum, G., editors, Adaptive Methods-Algorithms, Theory and Applications, pages 84–98, Braunschweig/Wiesbaden. Proceedings of the Ninth GAMM-Seminar, Vieweg & Sohn.
- [Hackbusch, 1985] Hackbusch, W. (1985). Multi-Grid Methods and Applications. Springer Verlag, Berlin, Heidelberg.
- [Hackbusch, 1994] Hackbusch, W. (1994). Iterative solution of large sparse systems of equations. Springer Verlag, New York.

[Martin, 1998] Martin, D. F. (1998). A cell-centered adaptive projection method for the incompressible Euler equations. PhD thesis, University of California at Berkeley.

[Trottenberg et al., 2001] Trottenberg, U., Oosterlee, C., and Schüller, A. (2001). Multigrid. Academic Press, San Antonio.

[Wesseling, 1992] Wesseling, P. (1992). An introduction to multigrid methods. Wiley, Chichester.