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Boundary aligned meshes

SAMR on boundary aligned meshes

Analytic or stored geometric mapping of the coordinates
(graphic from [Yamaleev and Carpenter, 2002])

I Topology remains unchanged and thereby entire
SAMR algorithm

I Patch solver and interpolation need to consider
geometry transformation

I Handles boundary layers well

Overlapping adaptive meshes
[Henshaw and Schwendeman, 2003],
[Meakin, 1995]

I Idea is to use a non-Cartesian
structured grids only near
boundary

I Very suitable for moving
objects with boundary layers

I Interpolation between meshes
is usually non-conservative
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Cartesian techniques

Cut-cell techniques

Accurate embedded boundary method

V n+1
j Qn+1

j =V n
j Qn

j −∆t
“
A

n+1/2
j+1/2 F(Q, j)

−A
n+1/2
j−1/2 F(Q, j − 1)

”
Methods that represent the boundary sharply:

I Cut-cell approach constructs appropriate finite
volumes

I Conservative by construction. Correct
boundary flux

I Key question: How to avoid small-cell time step restriction in explicit
metyhods?

I Cell merging: [Quirk, 1994a]

I Usually explicit geometry representation used [Aftosmis, 1997], but can
also be implicit, cf. [Nourgaliev et al., 2003], [Murman et al., 2003]
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Cartesian techniques

Embedded boundary techniques

Volume of fluid methods that resemble a cut-cell technique on purely Cartesian mesh

I Redistribution of boundary flux achieves conservation and bypasses time step
restriction: [Pember et al., 1999], [Berger and Helzel, 2002]

Methods that diffuse the boundary in one cell (good overview in
[Mittal and Iaccarino, 2005]):

I Related to the immersed boundary method by Peskin, cf. [Roma et al., 1999]

I Boundary prescription often by internal ghost cell values, cf.
[Tseng and Ferziger, 2003]

I Not conservative by construction but conservative correction possible

I Usually combined with implicit geometry representation

K. J. Richards et al., On the use of the immersed boundary method for engine modeling
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Cartesian techniques

Level-set method for boundary embedding

I Implicit boundary representation via distance
function ϕ, normal n = ∇ϕ/|∇ϕ|

I Complex boundary moving with local velocity
w, treat interface as moving rigid wall

I Construction of values in embedded boundary
cells by interpolation / extrapolation

Interpolate / constant value ex-
trapolate values at

x̃ = x + 2ϕn

Velocity in ghost cells

u′ = (2w · n− u · n)n + (u · t)t

= 2 ((w − u) · n) n + u

ρj−1 ρj ρj ρj−1

uj−1 uj 2w − uj 2w − uj−1

pj−1 pj pj pj−1

ut

ut

ut

w

uj

2w − uj
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Implicit geometry representation

Closest point transform algorithm

The signed distance ϕ to a surface I satisfies the eikonal equation [Sethian, 1999]

|∇ϕ| = 1 with ϕ
˛̨
I = 0

Solution smooth but non-diferentiable across characteristics.

Distance computation trivial for non-overlapping elementary shapes but difficult to do
efficiently for triangulated surface meshes:

I Geometric solution approach with plosest-point-transform algorithm
[Mauch, 2003]

b-rep

Surface mesh I Distance ϕ Normal to closest point

Complex hyperbolic applications 8
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Implicit geometry representation

The characteristic / scan conversion algorithm

1. Build the characteristic
polyhedrons for the surface mesh

2. For each face/edge/vertex

2.1 Scan convert the polyhedron.
2.2 Compute distance to that

primitive for the scan
converted points

3. Computational complexity.

I O(m) to build the b-rep and
the polyhedra.

I O(n) to scan convert the
polyhedra and compute the
distance, etc.

4. Problem reduction by evaluation
only within specified max. distance

[Mauch, 2003], see also
[Deiterding et al., 2006]

Characteristic polyhedra for faces, edges, and vertices

(a) (b)

(c) (d)

Slicing and scan conversion of apolygon

Complex hyperbolic applications 9
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Accuracy / verification

Accuracy test: stationary vortex

Construct non-trivial radially symmetric and stationary solution
by balancing hydrodynamic pressure and centripetal force per
volume element, i.e.

d

dr
p(r) = ρ(r)

U(r)2

r

For ρ0 ≡ 1 and the velocity field

U(r) = α ·

8<: 2r/R if 0 < r < R/2,
2(1− r/R) if R/2 ≤ r ≤ R,
0 if r > R,

U(r)

p(r)

one gets with boundary condition p(R) = p0 ≡ 2 the pressure distribution

p(r) = p0 + 2ρ0α
2 ·

8<: r2/R2 + 1− 2 log 2 if 0 < r < R/2,
r2/R2 + 3− 4r/R + 2 log(r/R) if R/2 ≤ r ≤ R,
0 if r > R.

Entire solution for Euler equations reads

ρ(x1, x2, t) = ρ0, u1(x1, x2, t) = −U(r) sinφ, u2(x1, x2, t) = U(r) cosφ, p(x1, x2, t) = p(r)

for all t ≥ 0 with r =
p

(x1 − x1,c )2 + (x2 − x2,c )2 and φ = arctan
x2 − x2,c

x1 − x1,c

Complex hyperbolic applications 10
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Accuracy / verification

Stationary vortex: results

Compute one full rotation, Roe solver, embedded slip wall boundary conditions
x1,c = 0.5, x2,c = 0.5, R = 0.4, tend = 1, ∆h = ∆x1 = ∆x2 = 1/N, α = Rπ

No embedded boundary

N
Wave Propagation Godunov Splitting

Error Order Error Order
20 0.0111235 0.0182218
40 0.0037996 1.55 0.0090662 1.01
80 0.0013388 1.50 0.0046392 0.97

160 0.0005005 1.42 0.0023142 1.00

Marginal shear flow along embedded boundary, α = Rπ, RG = R, UW = 0

N
Wave Propagation Godunov Splitting

Error Order Mass loss Error Order Mass loss
20 0.0120056 0.0079236 0.0144203 0.0020241
40 0.0035074 1.78 0.0011898 0.0073070 0.98 0.0001300
80 0.0014193 1.31 0.0001588 0.0038401 0.93 -0.0001036

160 0.0005032 1.50 5.046e-05 0.0018988 1.02 -2.783e-06

Major shear flow along embedded boundary, α = Rπ, RG = R/2, UW = 0

N
Wave Propagation Godunov Splitting

Error Order Mass loss Error Order Mass loss
20 0.0423925 0.0423925 0.0271446 0.0271446
40 0.0358735 0.24 0.0358735 0.0242260 0.16 0.0242260
80 0.0212340 0.76 0.0212340 0.0128638 0.91 0.0128638

160 0.0121089 0.81 0.0121089 0.0070906 0.86 0.0070906

Complex hyperbolic applications 11
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Accuracy / verification

Verification: shock reflection

I Reflection of a Mach 2.38 shock in nitrogen at 43o wedge

I 2nd order MUSCL scheme with Roe solver, 2nd order multidimensional
wave propagation method

Cartesian base grid 360 × 160 cells on domain of
36 mm × 16 mm with up to 3 refinement levels
with rl = 2, 4, 4 and ∆x1,2 = 3.125µm, 38 h CPU

GFM base grid 390 × 330 cells on domain of
26 mm × 22 mm with up to 3 refinement levels
with rl = 2, 4, 4 and ∆xe,1,2 = 2.849µm, 200 h
CPU

Complex hyperbolic applications 12
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GFM base grid 390 × 330 cells on domain of
26 mm × 22 mm with up to 3 refinement levels
with rl = 2, 4, 4 and ∆xe,1,2 = 2.849µm, 200 h
CPU
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Accuracy / verification

Shock reflection: solution for Navier-Stokes equations

I No-slip boundary conditions enforced

I Conservative 2nd order centered differences to approximate stress tensor and
heat flow

∆x = 50 mm ∆x = 25 mm ∆x = 12.5 mm, SAMR

∆xe = 45.6 mm ∆xe = 22.8 mm ∆xe = 11.4 mm, SAMR
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Outline

Complex geometry
Boundary aligned meshes
Cartesian techniques
Implicit geometry representation
Accuracy / verification

Combustion
Equations and FV schemes
Shock-induced combustion examples

Fluid-structure interaction
Coupling to a solid mechanics solver
Rigid body motion
Thin elastic structures
Deforming thin structures

Turbulence
Large-eddy simulation
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Equations and FV schemes

Governing equations for premixed combustion

Euler equations with reaction terms

∂ρi

∂t
+

∂

∂xn

`
ρi un

´
= ω̇i , i = 1, . . . ,K

∂

∂t

`
ρuk

´
+

∂

∂xn

`
ρuk un + δknp

´
= 0 , k = 1, . . . , d

∂

∂t

`
ρE
´

+
∂

∂xn

`
un(ρE + p)

´
= 0

Ideal gas law and Dalton’s law for gas-mixtures

p(ρ1, . . . , ρK ,T ) =
KX

i=1

pi =
KX

i=1

ρi
R
Wi

T = ρ
R
W

T with
KX

i=1

ρi = ρ ,Yi =
ρi

ρ

Caloric equation

h(Y1, . . . ,YK ,T ) =
KX

i=1

Yi hi (T ) with hi (T ) = h0
i +

Z T

0
cpi (s)ds

Computation of T = T (ρ1, . . . , ρK , e) from implicit equation

KX
i=1

ρi hi (T )−RT
KX

i=1

ρi

Wi
− ρe = 0

for thermally perfect gases with γi (T ) = cpi (T )/cvi (T )
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Equations and FV schemes

Chemistry

Arrhenius-Kinetics:

ω̇i =
MX

j=1

(νr
ji − νf

ji )

»
k f

j

KY
n=1

“ ρn

Wn

”νf
jn − k r

j

KY
n=1

“ ρn

Wn

”νr
jn

–
i = 1, . . . ,K

I Parsing of mechanisms with Chemkin-II

I Evalutation of ω̇i with automatically generated optimized Fortran-77
functions in the line of Chemkin-II

Integration of reaction rates: ODE integration in S(·) for Euler equations with
chemical reaction

I Standard implicit or semi-implicit ODE-solver subcycles within each cell

I ρ, e, uk remain unchanged!

∂t ρi = Wi ω̇i (ρ1, . . . , ρK ,T ) i = 1, . . . ,K

Use Newton or bisection method to compute T iteratively.
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Equations and FV schemes

Non-equilibrium mechanism for hydrogen-oxgen combustion

A
[cm,mol, s] β

Eact

[cal mol−1 ]

1. H + O2 −→ O + OH 1.86 × 1014 0.00 16790.
2. O + OH −→ H + O2 1.48 × 1013 0.00 680.
3. H2 + O −→ H + OH 1.82 × 1010 1.00 8900.
4. H + OH −→ H2 + O 8.32 × 1009 1.00 6950.
5. H2O + O −→ OH + OH 3.39 × 1013 0.00 18350.
6. OH + OH −→ H2O + O 3.16 × 1012 0.00 1100.
7. H2O + H −→ H2 + OH 9.55 × 1013 0.00 20300.
8. H2 + OH −→ H2O + H 2.19 × 1013 0.00 5150.
9. H2O2 + OH −→ H2O + HO2 1.00 × 1013 0.00 1800.

10. H2O + HO2 −→ H2O2 + OH 2.82 × 1013 0.00 32790.
. . . . . . . . . . . . . . . . . .

30. OH + M −→ O + H + M 7.94 × 1019 −1.00 103720.
31. O2 + M −→ O + O + M 5.13 × 1015 0.00 115000.
32. O + O + M −→ O2 + M 4.68 × 1015 −0.28 0.
33. H2 + M −→ H + H + M 2.19 × 1014 0.00 96000.
34. H + H + M −→ H2 + M 3.02 × 1015 0.00 0.

Third body efficiencies: f (O2) = 0.40, f (H2O) = 6.50

C. K. Westbrook. Chemical kinetics of hydrocarbon oxidation in gaseous detonations. J. Combustion and Flame, 46:191–210, 1982.
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Equations and FV schemes

Riemann solver for combustion

(S1) Calculate standard Roe-averages ρ̂, ûn, Ĥ, Ŷi , T̂ .

(S2) Compute γ̂ := ĉp/ĉv with ĉ{p/v}i =
1

T
R
− T

L

Z T
R

T
L

c{p,v}i (τ) dτ .

(S3) Calculate φ̂i := (γ̂ − 1)
“

û2

2 − ĥi

”
+ γ̂ Ri T̂ with standard Roe-averages êi or ĥi .

(S4) Calculate ĉ :=
“PK

i=1 Ŷi φ̂i − (γ̂ − 1)û2 + (γ̂ − 1)Ĥ
”1/2

.

(S5) Use ∆q = q
R
− q

L
and ∆p to compute the wave strengths am.

(S6) Calculate W
1

= a
1
r̂

1
, W

2
=

K+dX
ι=2

aι r̂ι , W
3

= a
K+d+1

r̂
K+d+1

.

(S7) Evaluate s1 = û1 − ĉ, s2 = û1, s3 = û1 + ĉ.

(S8) Evaluate ρ?L/R , u?1,L/R , e?L/R , c?1,L/R from q?
L

= q
L

+W
1

and q?
R

= q
R
−W

3
.

(S9) If ρ?L/R ≤ 0 or e?L/R ≤ 0 use FHLL(q
L
, q

R
) and go to (S12).

(S10) Entropy correction: Evaluate |s̃ι|.
FRoe (q

L
, q

R
) = 1

2

`
f(q

L
) + f(q

R
)−P3

ι=1 |s̃ι|Wι

´
(S11) Positivity correction: Replace Fi by

F?i = Fρ ·


Y l
i , Fρ ≥ 0 ,

Y r
i , Fρ < 0 .

(S12) Evaluate maximal signal speed by S = max(|s1|, |s3|).
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(S2) Compute γ̂ := ĉp/ĉv with ĉ{p/v}i =
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“PK
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Equations and FV schemes

Riemann solver for combustion: carbuncle fix

Entropy corrections

[Harten, 1983]
[Harten and Hyman, 1983]

1. |s̃ι| =

( |sι| if|sι| ≥ 2η

|s2
ι |

4η
+ η otherwise

η = 1
2

maxι
˘
|sι(qR

)− sι(qL
)|
¯

2. Replace |sι| by |s̃ι| only if
sι(qL

) < 0 < sι(qR
)

2D modification of entropy correction
[Sanders et al., 1998]:

i + 1
2

, j

i, j − 1
2

i, j + 1
2

i + 1, j − 1
2

i + 1, j + 1
2

η̃i+1/2,j = max
˘
ηi+1/2,j , ηi,j−1/2, ηi,j+1/2, ηi+1,j−1/2, ηi+1,j+1/2

¯

Carbuncle phenomenon

I [Quirk, 1994b]

I Test from
[Deiterding, 2003]

Roe + EC 1. Exact Riemann solver

Roe + EC 2. SW FVS, VL FVS, HLL, Roe + EC 2.+2D
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Equations and FV schemes

Riemann solver for combustion: carbuncle fix

Entropy corrections [Harten, 1983]
[Harten and Hyman, 1983]
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|s2
ι |

4η
+ η otherwise
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Shock-induced combustion examples

Detonations - motivation for SAMR

I Extremly high spatial resolution in reaction zone necessary.

I Minimal spatial resolution: 7− 8 Pts/lig −→ ∆x1 ≈ 0.2− 0.175 mm
I Uniform grids for typical geometries: > 107 Pts in 2D, > 109 Pts in

3D −→ Self-adaptive finite volume method (AMR)
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Shock-induced combustion examples

Detonation ignition in a shock tube

I Shock-induced detonation ignition of H2 : O2 : Ar mixture at molar ratios
2:1:7 in closed 1d shock tube

I Insufficient resolution leads to inaccurate results

I Reflected shock is captured correctly by FV scheme, detonation is
resolution dependent

I Fine mesh necessary in the induction zone at the head of the detonation
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Shock-induced combustion examples

Detonation ignition in 1d - adaptive vs. uniform

Uniformly refined vs. dynamic adaptive simulations (Intel Xeon 3.4 GHz CPU)
Uniform Adaptive

∆x1[µm] Cells tm[µs] Time [s] lmax rl tm[µs] Time [s]
400 300 166.1 31
200 600 172.6 90 2 2 172.6 99
100 1200 175.5 277 3 2,2 175.8 167
50 2400 176.9 858 4 2,2,2 177.3 287
25 4800 177.8 2713 4 2,2,4 177.9 393

12.5 9600 178.3 9472 5 2,2,2,4 178.3 696
6.25 19200 178.6 35712 5 2,2,4,4 178.6 1370

∼ 12 Pts/lig
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Refinement criteria:

Yi SYi
· 10−4 ηr

Yi
· 10−3

O2 10.0 2.0
H2O 7.8 8.0
H 0.16 5.0
O 1.0 5.0

OH 1.8 5.0
H2 1.3 2.0

ερ = 0.07 kg m−3, εp = 50 kPa
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Shock-induced combustion examples

Shock-induced combustion around a sphere

I Spherical projectile of radius 1.5 mm travels with constant velocity
vI = 2170.6 m/s through H2 : O2 : Ar mixture (molar ratios 2:1:7) at 6.67 kPa
and T = 298 K

I Cylindrical symmetric simulation on AMR base mesh of 70× 40 cells

I Comparison of 3-level computation with refinement factors 2,2 (∼ 5 Pts/lig ) and
a 4-level computation with refinement factors 2,2,4 (∼ 19 Pts/lig ) at t = 350µs

I Higher resolved computation captures combustion zone visibly better and at
slightly different position (see below)

Iso-contours of p (black) and YH2
(white) on refinement domains for 3-level (left) and 4-level

computation (right)
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Shock-induced combustion examples

Combustion around a sphere - adaptation
Refinement indicators on l = 2 at t = 350µs.
Blue: ερ, light blue: εp , green shades: ηr

Yi
,

red: embedded boundary

Parallel performance
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Shock-induced combustion examples
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Shock-induced combustion examples

Detonation diffraction

I CJ detonation for
H2 : O2 : Ar/2 : 1 : 7 at
T0 = 298 K and p0 = 10 kPa.
Cell width λc = 1.6 cm

I Adaption criteria (similar as

before):

1. Scaled gradients of ρ and
p

2. Error estimation in Yi by
Richardson extrapolation

I 25 Pts/lig . 5 refinement levels
(2,2,2,4).

I Adaptive computations use up to
∼ 2.2 M instead of ∼ 150 M cells
(uniform grid)

I ∼ 3850 h CPU (∼ 80 h real time)
on 48 nodes Athlon 1.4GHz

E. Schultz. Detonation diffraction through an abrupt area expan-
sion. PhD thesis, California Institute of Technology, Pasadena,
California, April 2000.
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Shock-induced combustion examples

Detonation diffraction - adaptation

Final distribution to 48 nodes and density distribution on four refinement levels
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Shock-induced combustion examples

Detonation cell structure in 3D

I Simulation of only one quadrant

I 44.8 Pts/lig for H2 : O2 : Ar CJ detonation

I SAMR base grid 400x24x24, 2 additional
refinement levels (2, 4)

I Simulation uses ∼ 18 M cells instead of
∼ 118 M (unigrid)

I ∼ 51, 000 h CPU on 128 CPU Compaq Alpha.
H: 37.6 %, S: 25.1 %

Schlieren and isosurface of YOH

Schlieren on refinement levels

Distribution to 128 processors
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Outline

Complex geometry
Boundary aligned meshes
Cartesian techniques
Implicit geometry representation
Accuracy / verification

Combustion
Equations and FV schemes
Shock-induced combustion examples

Fluid-structure interaction
Coupling to a solid mechanics solver
Rigid body motion
Thin elastic structures
Deforming thin structures

Turbulence
Large-eddy simulation
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Coupling to a solid mechanics solver

Construction of coupling data

I Moving boundary/interface is treated
as a moving contact discontinuity and
represented by level set
[Fedkiw, 2002][Arienti et al., 2003]

I One-sided construction of mirrored
ghost cell and new FEM nodal point
values

I FEM ansatz-function interpolation to
obtain intermediate surface values

I Explicit coupling possible if geometry
and velocities are prescribed for the
more compressible medium
[Specht, 2000]

uF
n := uS

n (t)|I
UpdateFluid(∆t )
σS

nn := pF (t + ∆t)|I
UpdateSolid(∆t )
t := t + ∆t

Coupling conditions on
interface

uS
n = uF

n

σS
nn = pF

σS
nm = 0

˛̨̨̨
˛̨
I
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Coupling to a solid mechanics solver

Usage of SAMR

I Eulerian SAMR + non-adaptive Lagrangian FEM scheme

I Exploit SAMR time step refinement for effective coupling to solid solver

I Lagrangian simulation is called only at level lc ≤ lmax

I SAMR refines solid boundary at least at level lc
I Additional levels can be used resolve geometric ambiguities

I Nevertheless: Inserting sub-steps accommodates for time step reduction
from the solid solver within an SAMR cycle

I Communication strategy:

I Updated boundary info from solid solver must be received before
regridding operation

I Boundary data is sent to solid when highest level available

I Inter-solver communication (point-to-point or globally) managed on the
fly special coupling module
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Coupling to a solid mechanics solver

SAMR algorithm for FSI coupling

F1

Time

S1 S5S3 S7S2 S6S4 S8

F2

l=0

l=2

l=l =1
c

F5

F3 F6F4 F7

AdvanceLevel(l)

Repeat rl times

Set ghost cells of Ql (t)

CPT(ϕl, C l, I, δl)

If time to regrid?

Regrid(l)
UpdateLevel(l)
If level l + 1 exists?

Set ghost cells of Ql (t + ∆tl )
AdvanceLevel(l + 1)
Average Ql+1(t + ∆tl ) onto Ql (t + ∆tl )

If l = lc?
SendInterfaceData(pF (t + ∆tl )|I)
If (t + ∆tl ) < (t0 + ∆t0)?

ReceiveInterfaceData(I, uS |I)

t := t + ∆tl

I Call CPT algorithm
before Regrid(l)

I Include also call to
CPT(·) into
Recompose(l) to
ensure consistent level
set data on levels that
have changed

I Communicate boundary
data on coupling level lc
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Coupling to a solid mechanics solver

Fluid and solid update / exchange of time steps
FluidStep( )

∆τ
F

:= min
l=0,··· ,lmax

(Rl · StableFluidTimeStep(l), ∆τ
S
)

∆tl := ∆τ
F
/Rl for l = 0, · · · , L

ReceiveInterfaceData(I, uS |I)
AdvanceLevel(0)

SolidStep( )

∆τ
S

:= min(K · Rlc · StableSolidTimeStep(), ∆τ
F
)

Repeat Rlc times

tend := t + ∆τ
S
/Rlc, ∆t := ∆τ

S
/(KRlc )

While t < tend

SendInterfaceData(I(t), ~uS |I (t))
ReceiveInterfaceData(pF |I)
UpdateSolid(pF |I, ∆t)
t := t + ∆t
∆t := min(StableSolidTimeStep(), tend − t)

I Time step stays
constant for Rlc steps,
which correponds to
one fluid step at level 0

with Rl =
Ql
ι=0 rι
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Coupling to a solid mechanics solver

Parallelization strategy for coupled simulations

Coupling of an Eulerian FV fluid Solver and a Lagrangian FEM Solver:

I Distribute both meshes seperately and copy necessary nodal values and
geometry data to fluid nodes

I Setting of ghost cell values becomes strictly local operation

I Construct new nodal values strictly local on fluid nodes and transfer them
back to solid nodes

I Only surface data is transfered

I Asynchronous communication ensures scalability

I Generic encapsulated implementation guarantees reusability

Fluid Node 1

Fluid Node 0

Fluid None N

Solid Node 0

Solid Node 1

Solid Node M

SendBoundaries

SendVelocities

SendPressures

S
y
n

c
h

ro
n

iz
a

ti
o

n S
y
n

c
h

ro
n

iz
a

tio
n

Complex hyperbolic applications 34



Complex geometry Combustion Fluid-structure interaction Turbulence References

Coupling to a solid mechanics solver

Parallelization strategy for coupled simulations

Coupling of an Eulerian FV fluid Solver and a Lagrangian FEM Solver:

I Distribute both meshes seperately and copy necessary nodal values and
geometry data to fluid nodes

I Setting of ghost cell values becomes strictly local operation

I Construct new nodal values strictly local on fluid nodes and transfer them
back to solid nodes

I Only surface data is transfered

I Asynchronous communication ensures scalability

I Generic encapsulated implementation guarantees reusability

Fluid Node 1

Fluid Node 0

Fluid None N

Solid Node 0

Solid Node 1

Solid Node M

SendBoundaries

SendVelocities

SendPressures

S
y
n

c
h

ro
n

iz
a

ti
o

n S
y
n

c
h

ro
n

iz
a

tio
n

Complex hyperbolic applications 34



Complex geometry Combustion Fluid-structure interaction Turbulence References

Coupling to a solid mechanics solver

Parallelization strategy for coupled simulations

Coupling of an Eulerian FV fluid Solver and a Lagrangian FEM Solver:

I Distribute both meshes seperately and copy necessary nodal values and
geometry data to fluid nodes

I Setting of ghost cell values becomes strictly local operation

I Construct new nodal values strictly local on fluid nodes and transfer them
back to solid nodes

I Only surface data is transfered

I Asynchronous communication ensures scalability

I Generic encapsulated implementation guarantees reusability

Fluid Node 1

Fluid Node 0

Fluid None N

Solid Node 0

Solid Node 1

Solid Node M

SendBoundaries

SendVelocities

SendPressures

S
y
n

c
h

ro
n

iz
a

ti
o

n S
y
n

c
h

ro
n

iz
a

tio
n

Complex hyperbolic applications 34



Complex geometry Combustion Fluid-structure interaction Turbulence References

Coupling to a solid mechanics solver

Parallelization strategy for coupled simulations

Coupling of an Eulerian FV fluid Solver and a Lagrangian FEM Solver:

I Distribute both meshes seperately and copy necessary nodal values and
geometry data to fluid nodes

I Setting of ghost cell values becomes strictly local operation

I Construct new nodal values strictly local on fluid nodes and transfer them
back to solid nodes

I Only surface data is transfered

I Asynchronous communication ensures scalability

I Generic encapsulated implementation guarantees reusability

Fluid Node 1

Fluid Node 0

Fluid None N

Solid Node 0

Solid Node 1

Solid Node M

SendBoundaries

SendVelocities

SendPressures

S
y
n

c
h

ro
n

iz
a

ti
o

n S
y
n

c
h

ro
n

iz
a

tio
n

Complex hyperbolic applications 34



Complex geometry Combustion Fluid-structure interaction Turbulence References

Coupling to a solid mechanics solver

Eulerian/Lagrangian communication module

1. Put bounding boxes
around each solid
processors piece of the
boundary and around
each fluid processors
grid

2. Gather, exchange and
broadcast of bounding
box information

3. Optimal point-to-point
communication pattern,
non-blocking
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Rigid body motion

Lift-up of a spherical body

Cylindrical body hit by Mach 3 shockwave, 2D test case by
[Falcovitz et al., 1997]

Schlieren plot of density

Refinement levels
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Thin elastic structures

Treatment of thin structures

I Thin boundary structures or
lower-dimensional shells require
“thickening” to apply embedded
boundary method

I Unsigned distance level set function ϕ

I Treat cells with 0 < ϕ < d as ghost
fluid cells

p
+

p
-

I Leaving ϕ unmodified ensures correctness of ∇ϕ
I Use face normal in shell element to evaluate in ∆p = p+ − p−

I Utilize finite difference solver using the beam equation

ρsh
∂2w

∂t2
+ EI

∂4w

∂x̄4
= pF

to verify FSI algorithms
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Thin elastic structures

FSI verification by elastic vibration

I Thin steel plate (thickness h = 1 mm, length 50 mm), clamped at lower
end

I ρs = 7600 kg/m3, E = 220 GPa, I = h3/12, ν = 0.3

I Modeled with beam solver (101 points) and thin-shell FEM solver (325
triangles) by F. Cirak

I Left: Coupling verification with constant instantenous loading by
∆p = 100 kPa

I Right: FSI verification with Mach 1.21 shockwave in air (γ = 1.4)
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Thin elastic structures

Shock-driven elastic panel motion

Test case suggested by [Giordano et al., 2005]

I Forward facing step geometry, fixed walls everywhere except at inflow

r=1.6458 kg/m
=112.61 m/s, =0

=156.18 kPa

3

u u

p
1 2

r=1.2 kg/m
=0, =0

=100 kPa

3

u u

p
1 2

400 mm

80 mm

265 mm

250 mm

130 mm

65 mm

I SAMR base mesh 320× 64(×2), r1,2 = 2

I Intel 3.4GHz Xeon dual processors, GB Ethernet interconnect

I Beam-FSI: 12.25 h CPU on 3 fluid CPU + 1 solid CPU
I FEM-FSI: 322 h CPU on 14 fluid CPU + 2 solid CPU

t = 0.43 ms after impact
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Deforming thin structures

Detonation-driven plastic deformation

Chapman-Jouguet detonation in a tube filled with a stoichiometric ethylene and
oxygen (C2H4 + 3O2, 295 K) mixture. Euler equations with single exothermic
reaction A −→ B

∂tρ+ ∂xn (ρun) = 0 , ∂t (ρuk ) + ∂xn (ρuk un + δknp) = 0 , k = 1, . . . , d

∂t (ρE) + ∂xn (un(ρE + p)) = 0 , ∂t (Y ρ) + ∂xn (Y ρun) = ψ

with

p = (γ − 1)(ρE −
1

2
ρunun − ρYq0) and ψ = −kY ρ exp

„
−EAρ

p

«

modeled with heuristic detonation model by
[Mader, 1979]

V := ρ−1, V0 := ρ−1
0 , VCJ := ρCJ

Y ′ := 1− (V − V0)/(VCJ − V0)
If 0 ≤ Y ′ ≤ 1 and Y > 10−8 then

If Y < Y ′ and Y ′ < 0.9 then Y ′ := 0
If Y ′ < 0.99 then p′ := (1− Y ′)pCJ

else p′ := p
ρA := Y ′ρ
E := p′/(ρ(γ − 1)) + Y ′q0 + 1

2
unun

Comparison of the pressure traces in the experiment
and in a 1d simulation
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Deforming thin structures

Tube with flaps

I Fluid: VanLeer FVS

I Detonation model with γ = 1.24, pCJ = 3.3 MPa, DCJ = 2376 m/s
I AMR base level: 104× 80× 242, r1,2 = 2, r3 = 4
I ∼ 4 · 107 cells instead of 7.9 · 109 cells (uniform)
I Tube and detonation fully refined
I Thickening of 2D mesh: 0.81 mm on both sides (real 0.445 mm)

I Solid: thin-shell solver by F. Cirak

I Aluminum, J2 plasticity with hardening, rate sensitivity, and thermal
softening

I Mesh: 8577 nodes, 17056 elements

I 16+2 nodes 2.2 GHz AMD Opteron quad processor, PCI-X 4x Infiniband
network, ∼ 4320 h CPU to tend = 450µs

0.032 ms 0.030 ms 0.212 ms 0.210 ms
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Deforming thin structures

Tube with flaps: results

Fluid density and diplacement in y-
direction in solid

Schlieren plot of fluid density on refine-
ment levels

[Cirak et al., 2007]
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Deforming thin structures

Underwater explosion modeling

Volume fraction based two-component model with
Pm

i=1 α
i = 1, that defines

mixture quantities as

ρ =
mX

i=1

αiρi , ρun =
mX

i=1

αiρiui
n , ρe =

mX
i=1

αiρie i

Assuming total pressure p = (γ − 1) ρe − γp∞ and speed of sound

c = (γ (p + p∞)/ρ)1/2 yields

p

γ − 1
=

mX
i=1

αipi

γ i − 1
,

γp∞
γ − 1

=
mX

i=1

αiγ ipi
∞

γ i − 1

and the overall set of equations [Shyue, 1998]

∂tρ+∂xn (ρun) = 0 , ∂t(ρuk )+∂xn (ρukun+δknp) = 0 , ∂t(ρE)+∂xn (un(ρE+p)) = 0

∂

∂t

„
1

γ − 1

«
+ un

∂

∂xn

„
1

γ − 1

«
= 0 ,

∂

∂t

„
γp∞
γ − 1

«
+ un

∂

∂xn

„
γp∞
γ − 1

«
= 0

Oscillation free at contacts: [Abgrall and Karni, 2001][Shyue, 2006]
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Deforming thin structures

Approximate Riemann solver

Use HLLC approach because of robustness and positivity preservation

qHLLC (x1, t) =

8>><>>:
q

L
, x1 < s

L
t,

q?
L
, s

L
t ≤ x1 < s? t,

q?
R
, s? t ≤ x1 ≤ s

R
t,

q
R
, x1 > s

R
t, x1

q
L q

R

q⋆

L q⋆

R
s
L

t
s
R

t

s⋆ t

Wave speed estimates [Davis, 1988] s
L

= min{u
1,L
− c

L
, u

1,R
− c

R
},

s
R

= max{u
1,L

+ c
L
, u

1,R
+ c

R
}

Unkown state [Toro et al., 1994]

s? =
p

R
− p

L
+ s

L
u

1,L
(s

L
− u

1,L
)− ρ

R
u

1,R
(s

R
− u

1,R
)

ρ
L

(s
L
− u

1,L
)− ρ

R
(s

R
− u

1,R
)

q?
τ

=

»
η, ηs?, ηu2, η

»
(ρE)τ

ρτ
+ (s? − u1,τ )

„
sτ +

pτ

ρτ (sτ − u1,τ )

«–
,

1

γτ − 1
,
γτp∞,τ

γτ − 1

–T

η = ρτ
sτ − u1,τ

sτ − s?
, τ = {L,R}

Evaluate waves as W1 = q?
L
− q

L
, W2 = q?

R
− q?

L
, W3 = q

R
− q?

R
and λ1 = s

L
,

λ2 = s?, λ3 = s
R

to compute the fluctuations A−∆ =
P
λν<0 λνWν ,

A+∆ =
P
λν≥0 λνWν for ν = {1, 2, 3}

Overall scheme: Wave Propagation method [Shyue, 2006]
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R
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L
,
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R

to compute the fluctuations A−∆ =
P
λν<0 λνWν ,

A+∆ =
P
λν≥0 λνWν for ν = {1, 2, 3}

Overall scheme: Wave Propagation method [Shyue, 2006]
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Deforming thin structures

Underwater explosion FSI simulations

I Air: γA = 1.4, pA
∞ = 0, ρA = 1.29 kg/m3

I Water: γW = 7.415, pW
∞ = 296.2 MPa, ρW = 1027 kg/m3

I Cavitation modeling with pressure cut-off model at p = −1MPa

I 3D simulation of deformation of air backed aluminum plate with r = 85 mm,

h = 3 mm from underwater explosion

I Water basin [Ashani and Ghamsari, 2008] 2 m× 1.6 m× 2m
I Explosion modeled as energy increase (mC4 · 6.06 MJ/kg) in sphere

with r=5mm
I ρs = 2719 kg/m3, E = 69 GPa, ν = 0.33, J2 plasticity model, yield

stress σy = 217.6 MPa

I 3D simulation of copper plate r = 32 mm, h = 0.25 mm rupturing due to water

hammer

I Water-filled shocktube 1.3 m with driver piston
[Deshpande et al., 2006]

I Piston simulated with separate level set, see [Deiterding et al., 2009]
for pressure wave

I ρs = 8920 kg/m3, E = 130 GPa, ν = 0.31, J2 plasticity model,
σy = 38.5 MPa, cohesive interface model, max. tensile stress
σc = 525 MPa
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Deforming thin structures

Underwater explosion simulation

I AMR base grid 50× 40× 50, r1,2,3 = 2, r4 = 4, lc = 3, highest level restricted to
initial explosion center, 3rd and 4th level to plate vicinity

I Triangular mesh with 8148 elements

I Computations of 1296 coupled time steps
to tend = 1 ms

I 10+2 nodes 3.4 GHz Intel Xeon dual
processor, ∼ 130 h CPU

Maximal deflection [mm]
Exp. Sim.

20 g, d = 25 cm 28.83 25.88
30 g, d = 30 cm 30.09 27.31
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Deforming thin structures

Plate in underwater shocktube

I AMR base mesh 374× 20× 20, r1,2 = 2, lc = 2, solid mesh: 8896 triangles

I ∼ 1250 coupled time steps to tend = 1 ms

I 6+6 nodes 3.4 GHz Intel Xeon dual processor, ∼ 800 h CPU

p0 = 64 MPa

p0 = 173 MPa
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Outline

Complex geometry
Boundary aligned meshes
Cartesian techniques
Implicit geometry representation
Accuracy / verification

Combustion
Equations and FV schemes
Shock-induced combustion examples

Fluid-structure interaction
Coupling to a solid mechanics solver
Rigid body motion
Thin elastic structures
Deforming thin structures

Turbulence
Large-eddy simulation
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Large-eddy simulation

Favre-averaged Navier-Stokes equations

∂ρ̄

∂t
+

∂

∂xn

`
ρ̄ũn
´

= 0

∂

∂t

`
ρ̄ũk

´
+
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`
ρ̄ũk ũn + δknp̄ − τ̃kn + σkn

´
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q̃n = −λ̃
∂T̃
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,

and inter-species diffusion

J̃ i
n = −ρ̄D̃i

∂Ỹi

∂xn
Favre-filtering

φ̃ =
ρφ

ρ̄
with φ̄(x, t; ∆c ) =

Z
Ω

G(x− x
′
; ∆c )φ(x

′
, t)dx

′
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ρ̄ũk ũn + δknp̄ − τ̃kn + σkn

´
= 0

∂ρ̄Ē
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ρ̄Ỹi

´
+

∂

∂xn

`
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Large-eddy simulation

Numerical solution approach

I Subgrid terms σkn, σe
n , σi

n are computed by Pullin’s stretched-vortex model

I Cutoff ∆c is set to local SAMR resolution ∆xl

I It remains to solve the Navier-Stokes equations in the hyperbolic regime

I 3rd order WENO method (hybridized with a tuned centered
difference stencil) for convection

I 2nd order conservative centered differences for diffusion

Example: Cylindrical Richtmyer-Meshkov instability

I Sinusoidal interface between two gases hit by
shock wave

I Objective is correctly predict turbulent mixing

I Embedded boundary method used to regularize
apex

I AMR base grid 95× 95× 64 cells, r1,2,3 = 2

I ∼ 70, 000 h CPU on 32 AMD 2.5GHZ-quad-core
nodes

Complex hyperbolic applications 50
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Large-eddy simulation

Planar Richtmyer-Meshkov instability

I Perturbed Air-SF6 interface shocked and
re-shocked by Mach 1.5 shock

I Containment of turbulence in refined
zones

I 96 CPUs IBM SP2-Power3

I WENO-TCD scheme with LES model

I AMR base grid 172× 56× 56, r1,2 = 2,
10 M cells in average instead of 3 M
(uniform)

Task 2ms (%) 5ms (%) 10ms (%)
Integration 45.3 65.9 52.0

Boundary setting 44.3 28.6 41.9
Flux correction 7.2 3.4 4.1
Interpolation 0.9 0.4 0.3

Reorganization 1.6 1.2 1.2
Misc. 0.6 0.5 0.5

Max. imbalance 1.25 1.23 1.30

Complex hyperbolic applications 51
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Large-eddy simulation

Flux correction for Runge-Kutta method

Recall Runge-Kutta temporal update

Q̃υj = αυQn
j + βυ Q̃υ−1

j + γυ
∆t

∆xk
∆Fk (Q̃υ−1)

rewrite scheme as

Qn+1 = Qn −
ΥX
υ=1

ϕυ
∆t

∆xk
∆Fk (Q̃υ−1) with ϕυ = γυ

ΥY
ν=υ+1

βν

Flux correction to be used [Pantano et al., 2007]

1. δF1,l+1

i− 1
2
,j

:= −ϕ1F
1,l
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2
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rl+1−1X
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v+ 1
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“
Q̃υ−1(t + κ∆tl+1)

”
Storage-efficient SSPRK(3,3):

υ αυ βυ γυ ϕυ
1 1 0 1 1

6
2 3

4
1
4

1
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1
6
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