Complex geometry	Combustion	Fluid-structure interaction		References
0000000000	000000000000	00000000000000000	0000	000000

Lecture 3 Complex hyperbolic applications

Course Block-structured Adaptive Mesh Refinement Methods for Conservation Laws Theory, Implementation and Application

> Ralf Deiterding Computer Science and Mathematics Division Oak Ridge National Laboratory P.O. Box 2008 MS6367, Oak Ridge, TN 37831, USA

> > E-mail: deiterdingr@ornl.gov

Complex geometry	Combustion	Fluid-structure interaction	References

Complex geometry

Boundary aligned meshes Cartesian techniques Implicit geometry representation Accuracy / verification

Complex geometry	Combustion	Fluid-structure interaction	References

Complex geometry

Boundary aligned meshes Cartesian techniques Implicit geometry representation Accuracy / verification

Combustion

Equations and FV schemes Shock-induced combustion examples

Complex geometry	Combustion	Fluid-structure interaction	References

Complex geometry

Boundary aligned meshes Cartesian techniques Implicit geometry representation Accuracy / verification

Combustion

Equations and FV schemes Shock-induced combustion examples

Fluid-structure interaction

Coupling to a solid mechanics solver Rigid body motion Thin elastic structures Deforming thin structures

Complex geometry	Combustion	Fluid-structure interaction	References

Complex geometry

Boundary aligned meshes Cartesian techniques Implicit geometry representation Accuracy / verification

Combustion

Equations and FV schemes Shock-induced combustion examples

Fluid-structure interaction

Coupling to a solid mechanics solver Rigid body motion Thin elastic structures Deforming thin structures

Turbulence

Large-eddy simulation

Complex geometry	Combustion	Fluid-structure interaction	References

Complex geometry

Boundary aligned meshes Cartesian techniques Implicit geometry representation Accuracy / verification

Combustion

Equations and FV schemes Shock-induced combustion examples

Fluid-structure interaction

Coupling to a solid mechanics solver Rigid body motion Thin elastic structures Deforming thin structures

Turbulence

Large-eddy simulation

Combustion

Turbulence

References 000000

SAMR on boundary aligned meshes

Analytic or stored geometric mapping of the coordinates (graphic from [Yamaleev and Carpenter, 2002])

- Topology remains unchanged and thereby entire SAMR algorithm
- Patch solver and interpolation need to consider geometry transformation
- Handles boundary layers well

Complex geometry 00000000000 Boundary aligned meshes

References

SAMR on boundary aligned meshes

Analytic or stored geometric mapping of the coordinates (graphic from [Yamaleev and Carpenter, 2002])

- Topology remains unchanged and thereby entire SAMR algorithm
- Patch solver and interpolation need to consider • geometry transformation
- Handles boundary layers well

Component grid 1. base grid 1 Refinement grids interpolate from refinements of a different base grid Component grid 2. base grid 2

Overlapping adaptive meshes [Henshaw and Schwendeman, 2003], [Meakin, 1995]

- Idea is to use a non-Cartesian structured grids only near boundary
- Very suitable for moving objects with boundary layers
- Interpolation between meshes is usually non-conservative

Complex geometry	Combustion	Fluid-structure interaction	Turbulence	References
000000000000000000000000000000000000000				
Cartesian techniques				
a	-			

Cut-cell techniques

Accurate embedded boundary method

$$V_{j}^{n+1}\mathbf{Q}_{j}^{n+1} = V_{j}^{n}\mathbf{Q}_{j}^{n} - \Delta t \left(A_{j+1/2}^{n+1/2} \mathbf{F}(\mathbf{Q}, j) - A_{j-1/2}^{n+1/2} \mathbf{F}(\mathbf{Q}, j-1)\right)$$

Methods that represent the boundary sharply:

- Cut-cell approach constructs appropriate finite volumes
- Conservative by construction. Correct boundary flux

Cut-cell techniques

Accurate embedded boundary method

$$V_{j}^{n+1}\mathbf{Q}_{j}^{n+1} = V_{j}^{n}\mathbf{Q}_{j}^{n} - \Delta t \left(A_{j+1/2}^{n+1/2} \mathbf{F}(\mathbf{Q}, j) - A_{j-1/2}^{n+1/2} \mathbf{F}(\mathbf{Q}, j-1)\right)$$

Methods that represent the boundary sharply:

- Cut-cell approach constructs appropriate finite volumes
- Conservative by construction. Correct boundary flux

- Cell merging: [Quirk, 1994a]
- Usually explicit geometry representation used [Aftosmis, 1997], but can also be implicit, cf. [Nourgaliev et al., 2003], [Murman et al., 2003]

Embedded boundary techniques

Volume of fluid methods that resemble a cut-cell technique on purely Cartesian mesh

Redistribution of boundary flux achieves conservation and bypasses time step restriction: [Pember et al., 1999], [Berger and Helzel, 2002] Complex geometry 0000000000 Cartesian techniques Combustion

Embedded boundary techniques

Volume of fluid methods that resemble a cut-cell technique on purely Cartesian mesh

 Redistribution of boundary flux achieves conservation and bypasses time step restriction: [Pember et al., 1999], [Berger and Helzel, 2002]

Methods that diffuse the boundary in one cell (good overview in [Mittal and laccarino, 2005]):

- Related to the immersed boundary method by Peskin, cf. [Roma et al., 1999]
- Boundary prescription often by internal ghost cell values, cf. [Tseng and Ferziger, 2003]
- Not conservative by construction but conservative correction possible
- Usually combined with implicit geometry representation

Complex geometry 0000000000 Cartesian techniques Combustion

References 000000

Embedded boundary techniques

Volume of fluid methods that resemble a cut-cell technique on purely Cartesian mesh

 Redistribution of boundary flux achieves conservation and bypasses time step restriction: [Pember et al., 1999], [Berger and Helzel, 2002]

Methods that diffuse the boundary in one cell (good overview in [Mittal and laccarino, 2005]):

- Related to the immersed boundary method by Peskin, cf. [Roma et al., 1999]
- Boundary prescription often by internal ghost cell values, cf. [Tseng and Ferziger, 2003]
- Not conservative by construction but conservative correction possible
- Usually combined with implicit geometry representation

K. J. Richards et al., On the use of the immersed boundary method for engine modeling

Level-set method for boundary embedding

Implicit boundary representation via distance function φ, normal **n** = ∇φ/|∇φ|

Level-set method for boundary embedding

- ► Implicit boundary representation via distance function φ , normal $\mathbf{n} = \nabla \varphi / |\nabla \varphi|$
- Complex boundary moving with local velocity w, treat interface as moving rigid wall

Turbulence 0000 References 000000

Cartesian techniques

Level-set method for boundary embedding

- Implicit boundary representation via distance function φ, normal n = ∇φ/|∇φ|
- Complex boundary moving with local velocity
 w, treat interface as moving rigid wall
- Construction of values in embedded boundary cells by interpolation / extrapolation

Level-set method for boundary embedding

- Implicit boundary representation via distance function φ, normal n = ∇φ/|∇φ|
- Complex boundary moving with local velocity
 w, treat interface as moving rigid wall
- Construction of values in embedded boundary cells by interpolation / extrapolation

Interpolate / constant value extrapolate values at

$$\tilde{\mathbf{x}} = \mathbf{x} + 2\varphi \mathbf{n}$$

Level-set method for boundary embedding

- Implicit boundary representation via distance function φ, normal n = ∇φ/|∇φ|
- Complex boundary moving with local velocity
 w, treat interface as moving rigid wall
- Construction of values in embedded boundary cells by interpolation / extrapolation

Interpolate / constant value extrapolate values at

$$\tilde{\mathbf{x}} = \mathbf{x} + 2\varphi \mathbf{n}$$

Velocity in ghost cells

$$\begin{aligned} \mathbf{u}' &= (2\mathbf{w}\cdot\mathbf{n} - \mathbf{u}\cdot\mathbf{n})\mathbf{n} + (\mathbf{u}\cdot\mathbf{t})\mathbf{t} \\ &= 2\left((\mathbf{w} - \mathbf{u})\cdot\mathbf{n}\right)\mathbf{n} + \mathbf{u} \end{aligned}$$

Closest point transform algorithm

The signed distance φ to a surface $\mathcal I$ satisfies the eikonal equation [Sethian, 1999]

$$|
abla arphi| = 1$$
 with $arphi|_{\mathcal{T}} = 0$

Solution smooth but non-diferentiable across characteristics.

Closest point transform algorithm

The signed distance φ to a surface $\mathcal I$ satisfies the eikonal equation [Sethian, 1999]

$$|
abla arphi| = 1$$
 with $arphi|_{\mathcal{T}} = 0$

Solution smooth but non-diferentiable across characteristics.

Distance computation trivial for non-overlapping elementary shapes but difficult to do efficiently for triangulated surface meshes:

 Geometric solution approach with plosest-point-transform algorithm [Mauch, 2003]

Combustion

Implicit geometry representation

Closest point transform algorithm

The signed distance φ to a surface $\mathcal I$ satisfies the eikonal equation [Sethian, 1999]

$$|
abla arphi| = 1$$
 with $arphi|_{\mathcal{T}} = 0$

Solution smooth but non-diferentiable across characteristics.

Distance computation trivial for non-overlapping elementary shapes but difficult to do efficiently for triangulated surface meshes:

 Geometric solution approach with plosest-point-transform algorithm [Mauch, 2003]

Combustion

(c)

Turbulence

References 000000

Implicit geometry representation

The characteristic / scan conversion algorithm

1. Build the characteristic polyhedrons for the surface mesh

Combustion

Fluid-structure interaction

Turbulence

References 000000

Implicit geometry representation

The characteristic / scan conversion algorithm

- 1. Build the characteristic polyhedrons for the surface mesh
- 2. For each face/edge/vertex
 - $2.1\,$ Scan convert the polyhedron.

Combustion

Fluid-structure interaction

Turbulence

References 000000

Implicit geometry representation

The characteristic / scan conversion algorithm

- 1. Build the characteristic polyhedrons for the surface mesh
- 2. For each face/edge/vertex
 - 2.1 Scan convert the polyhedron.
 - 2.2 Compute distance to that primitive for the scan converted points

Combustion

Fluid-structure interaction

Turbulence

References 000000

Implicit geometry representation

The characteristic / scan conversion algorithm

- 1. Build the characteristic polyhedrons for the surface mesh
- 2. For each face/edge/vertex
 - 2.1 Scan convert the polyhedron.
 - 2.2 Compute distance to that primitive for the scan converted points
- 3. Computational complexity.
 - O(m) to build the b-rep and the polyhedra.
 - O(n) to scan convert the polyhedra and compute the distance, etc.

Combustion

Fluid-structure interaction

Turbulence

References 000000

Implicit geometry representation

The characteristic / scan conversion algorithm

- 1. Build the characteristic polyhedrons for the surface mesh
- 2. For each face/edge/vertex
 - 2.1 Scan convert the polyhedron.
 - 2.2 Compute distance to that primitive for the scan converted points
- 3. Computational complexity.
 - O(m) to build the b-rep and the polyhedra.
 - O(n) to scan convert the polyhedra and compute the distance, etc.
- 4. Problem reduction by evaluation only within specified max. distance

[Mauch, 2003], see also [Deiterding et al., 2006]

Accuracy test: stationary vortex

Construct non-trivial *radially symmetric* and *stationary* solution by balancing hydrodynamic pressure and centripetal force per volume element, i.e.

$$\frac{d}{dr}p(r) = \rho(r)\frac{U(r)^2}{r}$$

For $ho_0\equiv 1$ and the velocity field

$$U(r) = \alpha \cdot \begin{cases} 2r/R & \text{if } 0 < r < R/2, \\ 2(1 - r/R) & \text{if } R/2 \le r \le R, \\ 0 & \text{if } r > R, \end{cases}$$

Accuracy test: stationary vortex

Construct non-trivial *radially symmetric* and *stationary* solution by balancing hydrodynamic pressure and centripetal force per volume element, i.e.

$$\frac{d}{dr}p(r) = \rho(r)\frac{U(r)^2}{r}$$

For $\rho_0 \equiv 1$ and the velocity field

$$U(r) = \alpha \cdot \begin{cases} 2r/R & \text{if } 0 < r < R/2, \\ 2(1 - r/R) & \text{if } R/2 \le r \le R, \\ 0 & \text{if } r > R, \end{cases}$$

one gets with boundary condition $p(R) = p_0 \equiv 2$ the pressure distribution

$$p(r) = p_0 + 2\rho_0 \alpha^2 \cdot \begin{cases} r^2/R^2 + 1 - 2\log 2 & \text{if } 0 < r < R/2, \\ r^2/R^2 + 3 - 4r/R + 2\log(r/R) & \text{if } R/2 \le r \le R, \\ 0 & \text{if } r > R. \end{cases}$$

Accuracy test: stationary vortex

Construct non-trivial *radially symmetric* and *stationary* solution by balancing hydrodynamic pressure and centripetal force per volume element, i.e.

$$\frac{d}{dr}p(r) = \rho(r)\frac{U(r)^2}{r}$$

For $\rho_0 \equiv 1$ and the velocity field

$$U(r) = \alpha \cdot \begin{cases} 2r/R & \text{if } 0 < r < R/2, \\ 2(1 - r/R) & \text{if } R/2 \le r \le R, \\ 0 & \text{if } r > R, \end{cases}$$

U(r)

one gets with boundary condition $p(R) = p_0 \equiv 2$ the pressure distribution

$$p(r) = p_0 + 2\rho_0 \alpha^2 \cdot \begin{cases} r^2/R^2 + 1 - 2\log 2 & \text{if } 0 < r < R/2, \\ r^2/R^2 + 3 - 4r/R + 2\log(r/R) & \text{if } R/2 \le r \le R, \\ 0 & \text{if } r > R. \end{cases}$$

Entire solution for Euler equations reads

$$\begin{aligned} \rho(x_1, x_2, t) &= \rho_0, \ u_1(x_1, x_2, t) = -U(r) \sin \phi, \ u_2(x_1, x_2, t) = U(r) \cos \phi, \ \rho(x_1, x_2, t) = \rho(r) \\ \text{for all } t &\geq 0 \text{ with } r = \sqrt{(x_1 - x_{1,c})^2 + (x_2 - x_{2,c})^2} \text{ and } \phi = \arctan \frac{x_2 - x_{2,c}}{x_1 - x_{1,c}} \end{aligned}$$

Fluid-structure interaction

Turbulence

References 000000

Stationary vortex: results

Compute one full rotation, Roe solver, embedded slip wall boundary conditions $x_{1,c} = 0.5, x_{2,c} = 0.5, R = 0.4, t_{end} = 1, \Delta h = \Delta x_1 = \Delta x_2 = 1/N, \alpha = R\pi$

No embedded boundary					
N	Wave Propagation		Godunov Splitting		
	Error	Order	Error	Order	
20	0.0111235		0.0182218		
40	0.0037996	1.55	0.0090662	1.01	
80	0.0013388	1.50	0.0046392	0.97	
160	0.0005005	1.42	0.0023142	1.00	

No embedded boundary

Stationary vortex: results

Compute one full rotation, Roe solver, embedded slip wall boundary conditions $x_{1,c} = 0.5, x_{2,c} = 0.5, R = 0.4, t_{end} = 1, \Delta h = \Delta x_1 = \Delta x_2 = 1/N, \alpha = R\pi$

N	Wave Propagation		Godunov Splitting				
	Error	Order	Error	Order			
20	0.0111235		0.0182218				
40	0.0037996	1.55	0.0090662	1.01			
80	0.0013388	1.50	0.0046392	0.97			
160	0.0005005	1.42	0.0023142	1.00			

No embedded boundary

Marginal shear flow along embedded boundary, $\alpha = R\pi$, $R_G = R$, $U_W = 0$

N	Wave Propagation			Godunov Splitting		
/ •	Error	Order	Mass loss	Error	Order	Mass loss
20	0.0120056		0.0079236	0.0144203		0.0020241
40	0.0035074	1.78	0.0011898	0.0073070	0.98	0.0001300
80	0.0014193	1.31	0.0001588	0.0038401	0.93	-0.0001036
160	0.0005032	1.50	5.046e-05	0.0018988	1.02	-2.783e-06

Combustion

Fluid-structure interaction

Turbulence

References 000000

Stationary vortex: results

Compute one full rotation, Roe solver, embedded slip wall boundary conditions $x_{1,c} = 0.5, x_{2,c} = 0.5, R = 0.4, t_{end} = 1, \Delta h = \Delta x_1 = \Delta x_2 = 1/N, \alpha = R\pi$

No embedded boundary					
N	Wave Propagation		Godunov Splitting		
	Error	Order	Error	Order	
20	0.0111235		0.0182218		
40	0.0037996	1.55	0.0090662	1.01	
80	0.0013388	1.50	0.0046392	0.97	
160	0.0005005	1.42	0.0023142	1.00	

No embedded boundary

Marginal shear flow along embedded boundary, $\alpha = R\pi$, $R_G = R$, $U_W = 0$

M	Wav	Wave Propagation			Godunov Splitting		
/ •	Error	Order	Mass loss	Error	Order	Mass loss	
20	0.0120056		0.0079236	0.0144203		0.0020241	
40	0.0035074	1.78	0.0011898	0.0073070	0.98	0.0001300	
80	0.0014193	1.31	0.0001588	0.0038401	0.93	-0.0001036	
160	0.0005032	1.50	5.046e-05	0.0018988	1.02	-2.783e-06	

Major shear flow along embedded boundary, $\alpha = R\pi, \ R_G = R/2, \ U_W = 0$

N	Wave Propagation			Godunov Splitting		
	Error	Order	Mass loss	Error	Order	Mass loss
20	0.0423925		0.0423925	0.0271446		0.0271446
40	0.0358735	0.24	0.0358735	0.0242260	0.16	0.0242260
80	0.0212340	0.76	0.0212340	0.0128638	0.91	0.0128638
160	0.0121089	0.81	0.0121089	0.0070906	0.86	0.0070906

Complex geometry	Combustion	Fluid-structure interaction		References			
000000000000							
Accuracy / verification							

Verification: shock reflection

- Reflection of a Mach 2.38 shock in nitrogen at 43° wedge
- 2nd order MUSCL scheme with Roe solver, 2nd order multidimensional wave propagation method

Complex geometry	Combustion		References
000000000000			
Accuracy / verification			

Verification: shock reflection

- Reflection of a Mach 2.38 shock in nitrogen at 43° wedge
- 2nd order MUSCL scheme with Roe solver, 2nd order multidimensional wave propagation method

Cartesian base grid 360×160 cells on domain of $36 \text{ mm} \times 16 \text{ mm}$ with up to 3 refinement levels with $r_l = 2, 4, 4$ and $\Delta x_{1,2} = 3.125 \mu m$, 38 h CPU

Verification: shock reflection

- Reflection of a Mach 2.38 shock in nitrogen at 43° wedge
- 2nd order MUSCL scheme with Roe solver, 2nd order multidimensional wave propagation method

Cartesian base grid 360×160 cells on domain of $36 \text{ mm} \times 16 \text{ mm}$ with up to 3 refinement levels with $r_l = 2, 4, 4$ and $\Delta x_{1,2} = 3.125 \mu m$, 38 h CPU

GFM base grid 390 \times 330 cells on domain of $26 \ mm$ \times $22 \ mm$ with up to 3 refinement levels with r_{l} = 2, 4, 4 and $\Delta x_{e,1,2}$ = $2.849 \mu m$, 200 h CPU

Shock reflection: SAMR solution for Euler equations

 $\Delta x = 3.125 \text{ mm}$

 $\Delta x = 25 \,\mathrm{mm}$

 $\Delta x = 12.5 \,\mathrm{mm}$

Shock reflection: SAMR solution for Euler equations

 $\Delta x = 12.5 \,\mathrm{mm}$

Complex hyperbolic applications

Shock reflection: solution for Navier-Stokes equations

- No-slip boundary conditions enforced
- Conservative 2nd order centered differences to approximate stress tensor and heat flow

Shock reflection: solution for Navier-Stokes equations

- No-slip boundary conditions enforced
- Conservative 2nd order centered differences to approximate stress tensor and heat flow

Shock reflection: solution for Navier-Stokes equations

- No-slip boundary conditions enforced
- Conservative 2nd order centered differences to approximate stress tensor and heat flow

Complex geometry	Combustion		References

Outline

Complex geometry

Boundary aligned meshes Cartesian techniques Implicit geometry representation Accuracy / verification

Combustion

Equations and FV schemes Shock-induced combustion examples

Fluid-structure interaction

Coupling to a solid mechanics solver Rigid body motion Thin elastic structures Deforming thin structures

Turbulence

Large-eddy simulation

Complex geometry	Combustion		References
	• 0000 00000000		
Equations and EV schemes			

Governing equations for premixed combustion

Euler equations with reaction terms

$$\begin{aligned} \frac{\partial \rho_i}{\partial t} &+ \frac{\partial}{\partial x_n} (\rho_i u_n) = \dot{\omega}_i , \quad i = 1, \dots, K \\ \frac{\partial}{\partial t} (\rho u_k) &+ \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p) = 0 , \quad k = 1, \dots, d \\ \frac{\partial}{\partial t} (\rho E) &+ \frac{\partial}{\partial x_n} (u_n (\rho E + p)) = 0 \end{aligned}$$

Governing equations for premixed combustion

Euler equations with reaction terms

$$\begin{aligned} \frac{\partial \rho_i}{\partial t} &+ \frac{\partial}{\partial x_n} (\rho_i u_n) = \dot{\omega}_i , \quad i = 1, \dots, K \\ \frac{\partial}{\partial t} (\rho u_k) &+ \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p) = 0 , \quad k = 1, \dots, d \\ \frac{\partial}{\partial t} (\rho E) &+ \frac{\partial}{\partial x_n} (u_n (\rho E + p)) = 0 \end{aligned}$$

Ideal gas law and Dalton's law for gas-mixtures

$$p(\rho_1,\ldots,\rho_K,T) = \sum_{i=1}^K p_i = \sum_{i=1}^K \rho_i \frac{\mathcal{R}}{W_i} T = \rho \frac{\mathcal{R}}{W} T \quad \text{with} \quad \sum_{i=1}^K \rho_i = \rho, Y_i = \frac{\rho_i}{\rho}$$

Governing equations for premixed combustion

Euler equations with reaction terms

$$\begin{aligned} \frac{\partial \rho_i}{\partial t} &+ \frac{\partial}{\partial x_n} (\rho_i u_n) = \dot{\omega}_i , \quad i = 1, \dots, K \\ \frac{\partial}{\partial t} (\rho u_k) &+ \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p) = 0 , \quad k = 1, \dots, d \\ \frac{\partial}{\partial t} (\rho E) &+ \frac{\partial}{\partial x_n} (u_n (\rho E + p)) = 0 \end{aligned}$$

Ideal gas law and Dalton's law for gas-mixtures

$$p(\rho_1,\ldots,\rho_K,T) = \sum_{i=1}^K p_i = \sum_{i=1}^K \rho_i \frac{\mathcal{R}}{W_i} T = \rho \frac{\mathcal{R}}{W} T \quad \text{with} \quad \sum_{i=1}^K \rho_i = \rho, Y_i = \frac{\rho_i}{\rho}$$

Caloric equation

$$h(Y_1,\ldots,Y_K,T)=\sum_{i=1}^K Y_ih_i(T) \quad \text{with} \quad h_i(T)=h_i^0+\int_0^T c_{pi}(s)ds$$

Governing equations for premixed combustion

Euler equations with reaction terms

$$\begin{aligned} \frac{\partial \rho_i}{\partial t} &+ \frac{\partial}{\partial x_n} (\rho_i u_n) = \dot{\omega}_i , \quad i = 1, \dots, K \\ \frac{\partial}{\partial t} (\rho u_k) &+ \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p) = 0 , \quad k = 1, \dots, d \\ \frac{\partial}{\partial t} (\rho E) &+ \frac{\partial}{\partial x_n} (u_n (\rho E + p)) = 0 \end{aligned}$$

Ideal gas law and Dalton's law for gas-mixtures

$$p(\rho_1,\ldots,\rho_K,T) = \sum_{i=1}^{K} p_i = \sum_{i=1}^{K} \rho_i \frac{\mathcal{R}}{W_i} T = \rho \frac{\mathcal{R}}{W} T \quad \text{with} \quad \sum_{i=1}^{K} \rho_i = \rho, Y_i = \frac{\rho_i}{\rho}$$

Caloric equation

$$h(Y_1,\ldots,Y_K,T)=\sum_{i=1}^K Y_ih_i(T)$$
 with $h_i(T)=h_i^0+\int_0^T c_{pi}(s)ds$

Computation of $T = T(\rho_1, \dots, \rho_K, e)$ from implicit equation

$$\sum_{i=1}^{K} \rho_i h_i(T) - \mathcal{R}T \sum_{i=1}^{K} \frac{\rho_i}{W_i} - \rho e = 0$$

for thermally perfect gases with $\gamma_i(T) = c_{pi}(T)/c_{vi}(T)$

Complex geometry	Combustion		References
	000000000000000000000000000000000000000		
Equations and FV schemes			
Chemistry			
•••••			

Arrhenius-Kinetics:

$$\dot{\omega}_i = \sum_{j=1}^M (\nu_{ji}^r - \nu_{ji}^f) \left[k_j^f \prod_{n=1}^K \left(\frac{\rho_n}{W_n} \right)^{\nu_{jn}^f} - k_j^r \prod_{n=1}^K \left(\frac{\rho_n}{W_n} \right)^{\nu_{jn}^f} \right] \quad i = 1, \dots, K$$

Complex geometry	Combustion		References
	000000000000000000000000000000000000000		
Equations and FV schemes			
Chamictor			
Chemistry			

Arrhenius-Kinetics: $\dot{\omega}_i =$

$$=\sum_{j=1}^{M} (\nu_{ji}^{r} - \nu_{ji}^{f}) \left[k_{j}^{f} \prod_{n=1}^{K} \left(\frac{\rho_{n}}{W_{n}} \right)^{\nu_{jn}^{f}} - k_{j}^{r} \prod_{n=1}^{K} \left(\frac{\rho_{n}}{W_{n}} \right)^{\nu_{jn}^{r}} \right] \quad i = 1, \dots, K$$

Parsing of mechanisms with Chemkin-II

• Evalutation of $\dot{\omega}_i$ with automatically generated optimized Fortran-77 functions in the line of Chemkin-II

Complex geometry	Combustion		References
	000000000000000000000000000000000000000		
Equations and FV schemes			
Chamictor			
Chemistry			

Arrhenius-Kinetics: $\dot{\omega}_i = \sum_{j=1}^{M} (\nu_{ji}^r - \nu_{ji}^f) \left[k_j^f \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu_{jn}^f} - k_j^r \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu_{jn}^f} \right] \quad i = 1, \dots, K$

- Parsing of mechanisms with Chemkin-II
- Evalutation of $\dot{\omega}_i$ with automatically generated optimized Fortran-77 functions in the line of Chemkin-II

Integration of reaction rates: ODE integration in $\mathcal{S}^{(\cdot)}$ for Euler equations with chemical reaction

- Standard implicit or semi-implicit ODE-solver subcycles within each cell
- \triangleright ρ , e, u_k remain unchanged!

$$\partial_t \rho_i = W_i \dot{\omega}_i (\rho_1, \dots, \rho_K, T) \qquad i = 1, \dots, K$$

Use Newton or bisection method to compute T iteratively.

Complex geometry	Combustion	Fluid-structure interaction	References
	000000000000000000000000000000000000000		
Equations and FV schemes			

Non-equilibrium mechanism for hydrogen-oxgen combustion

				Α		Eact
				[cm, mol, s]	β	[cal mol ⁻¹]
1.	$H + O_2$	\rightarrow	O + OH	1.86×10^{14}	0.00	16790.
2.	O + OH	\rightarrow	$H + O_2$	1.48×10^{13}	0.00	680.
3.	$H_2 + O$	\rightarrow	H + OH	1.82×10^{10}	1.00	8900.
4.	H + OH	\rightarrow	$H_2 + O$	8.32×10^{09}	1.00	6950.
5.	$H_2O + O$	\rightarrow	OH + OH	3.39×10^{13}	0.00	18350.
6.	OH + OH	\rightarrow	$H_2O + O$	3.16×10^{12}	0.00	1100.
7.	$H_2O + H$	\rightarrow	$H_2 + OH$	9.55×10^{13}	0.00	20300.
8.	$H_2 + OH$	\rightarrow	$H_2O + H$	2.19×10^{13}	0.00	5150.
9.	$H_2O_2 + OH$	\rightarrow	$H_2O + HO_2$	1.00×10^{13}	0.00	1800.
10.	$H_2O + HO_2$	\rightarrow	$H_2O_2 + OH$	2.82×10^{13}	0.00	32790.
30.	OH + M	\rightarrow	O + H + M	7.94×10^{19}	-1.00	103720.
31.	$O_2 + M$	\rightarrow	O + O + M	5.13×10^{15}	0.00	115000.
32.	O + O + M	\rightarrow	$O_2 + M$	4.68×10^{15}	-0.28	0.
33.	$H_2 + M$	\rightarrow	H + H + M	2.19×10^{14}	0.00	96000.
34.	H + H + M	\rightarrow	$H_2 + M$	3.02×10^{15}	0.00	0.

Third body efficiencies: $f(O_2) = 0.40$, $f(H_2O) = 6.50$

C. K. Westbrook. Chemical kinetics of hydrocarbon oxidation in gaseous detonations. J. Combustion and Flame, 46:191-210, 1982.

Riemann solver for combustion

(S1) Calculate standard Roe-averages $\hat{\rho}$, \hat{u}_n , \hat{H} , \hat{Y}_i , \hat{T} .

(S2) Compute
$$\hat{\gamma} := \hat{c}_p / \hat{c}_v$$
 with $\hat{c}_{\{p/v\}i} = \frac{1}{T_R - T_L} \int_{T_L}^{T_R} c_{\{p,v\}i}(\tau) d\tau$.

(S3) Calculate $\hat{\phi}_i := (\hat{\gamma} - 1) \left(\frac{i \hat{u}^2}{2} - \hat{h}_i\right) + \hat{\gamma} R_i \hat{T}$ with standard Roe-averages \hat{e}_i or \hat{h}_i .

- (S4) Calculate $\hat{\mathbf{c}} := \left(\sum_{i=1}^{K} \hat{Y}_i \hat{\phi}_i (\hat{\gamma} 1)\hat{\mathbf{u}}^2 + (\hat{\gamma} 1)\hat{H}\right)^{1/2}$.
- (S5) Use $\Delta \mathbf{q} = \mathbf{q}_R \mathbf{q}_L$ and Δp to compute the wave strengths a_m .

(S6) Calculate
$$\mathcal{W}_1 = a_1 \hat{\mathbf{r}}_1, \mathcal{W}_2 = \sum_{\iota=2}^{K+d} a_\iota \hat{\mathbf{r}}_\iota, \mathcal{W}_3 = a_{K+d+1} \hat{\mathbf{r}}_{K+d+1}$$
.

(S7) Evaluate $s_1 = \hat{u}_1 - \hat{c}$, $s_2 = \hat{u}_1$, $s_3 = \hat{u}_1 + \hat{c}$.

(S1) Calculate standard Roe-averages $\hat{\rho}$, \hat{u}_n , \hat{H} , \hat{Y}_i , \hat{T} .

(S2) Compute
$$\hat{\gamma} := \hat{c}_p / \hat{c}_v$$
 with $\hat{c}_{\{p/v\}i} = \frac{1}{T_R - T_L} \int_{T_L}^{T_R} c_{\{p,v\}i}(\tau) d\tau$.

(S3) Calculate $\hat{\phi}_i := (\hat{\gamma} - 1) \left(\frac{i\hat{u}^2}{2} - \hat{h}_i\right) + \hat{\gamma} R_i \hat{T}$ with standard Roe-averages \hat{e}_i or \hat{h}_i .

- (S4) Calculate $\hat{\mathbf{c}} := \left(\sum_{i=1}^{K} \hat{Y}_i \, \hat{\phi}_i (\hat{\gamma} 1) \hat{\mathbf{u}}^2 + (\hat{\gamma} 1) \hat{H}\right)^{1/2}$.
- (S5) Use $\Delta \mathbf{q} = \mathbf{q}_R \mathbf{q}_L$ and Δp to compute the wave strengths a_m .

(S6) Calculate
$$\mathcal{W}_1 = a_1 \hat{\mathbf{r}}_1, \mathcal{W}_2 = \sum_{\iota=2}^{K+d} a_\iota \hat{\mathbf{r}}_\iota, \mathcal{W}_3 = a_{K+d+1} \hat{\mathbf{r}}_{K+d+1}$$
.

(S7) Evaluate
$$s_1 = \hat{u}_1 - \hat{c}$$
, $s_2 = \hat{u}_1$, $s_3 = \hat{u}_1 + \hat{c}$.

(S8) Evaluate
$$\rho_{L/R}^{\star}$$
, $u_{1,L/R}^{\star}$, $e_{L/R}^{\star}$, $c_{1,L/R}^{\star}$ from $\mathbf{q}_{L}^{\star} = \mathbf{q}_{L} + \mathcal{W}_{1}$ and $\mathbf{q}_{R}^{\star} = \mathbf{q}_{R} - \mathcal{W}_{3}$.

(S9) If
$$\rho_{L/R}^{\star} \leq 0$$
 or $e_{L/R}^{\star} \leq 0$ use $\mathbf{F}_{HLL}(\mathbf{q}_L, \mathbf{q}_R)$ and go to (S12).

(S1) Calculate standard Roe-averages $\hat{\rho}$, \hat{u}_n , \hat{H} , \hat{Y}_i , \hat{T} .

(S2) Compute
$$\hat{\gamma} := \hat{c}_p / \hat{c}_v$$
 with $\hat{c}_{\{p/v\}i} = \frac{1}{T_R - T_L} \int_{T_L}^{T_R} c_{\{p,v\}i}(\tau) d\tau$.

(S3) Calculate $\hat{\phi}_i := (\hat{\gamma} - 1) \left(\frac{i \hat{u}^2}{2} - \hat{h}_i\right) + \hat{\gamma} R_i \hat{T}$ with standard Roe-averages \hat{e}_i or \hat{h}_i .

- (S4) Calculate $\hat{\mathbf{c}} := \left(\sum_{i=1}^{K} \hat{Y}_i \, \hat{\phi}_i (\hat{\gamma} 1) \hat{\mathbf{u}}^2 + (\hat{\gamma} 1) \hat{H}\right)^{1/2}$.
- (S5) Use $\Delta \mathbf{q} = \mathbf{q}_R \mathbf{q}_L$ and Δp to compute the wave strengths a_m .

(S6) Calculate
$$\mathcal{W}_1 = a_1 \hat{\mathbf{r}}_1, \ \mathcal{W}_2 = \sum_{\iota=2}^{K+d} a_\iota \hat{\mathbf{r}}_\iota, \ \mathcal{W}_3 = a_{K+d+1} \hat{\mathbf{r}}_{K+d+1}$$

(S7) Evaluate
$$s_1 = \hat{u}_1 - \hat{c}$$
, $s_2 = \hat{u}_1$, $s_3 = \hat{u}_1 + \hat{c}$.

(S8) Evaluate
$$\rho_{L/R}^{\star}$$
, $u_{1,L/R}^{\star}$, $e_{L/R}^{\star}$, $c_{1,L/R}^{\star}$ from $\mathbf{q}_{L}^{\star} = \mathbf{q}_{L} + \mathcal{W}_{1}$ and $\mathbf{q}_{R}^{\star} = \mathbf{q}_{R} - \mathcal{W}_{3}$.

(S9) If
$$\rho_{L/R}^{\star} \leq 0$$
 or $e_{L/R}^{\star} \leq 0$ use $\mathbf{F}_{HLL}(\mathbf{q}_L, \mathbf{q}_R)$ and go to (S12).

S10) Entropy correction: Evaluate
$$|\tilde{s}_{\iota}|$$
.
 $\mathbf{F}_{Roe}(\mathbf{q}_{L}, \mathbf{q}_{R}) = \frac{1}{2} \left(\mathbf{f}(\mathbf{q}_{L}) + \mathbf{f}(\mathbf{q}_{R}) - \sum_{\iota=1}^{3} |\tilde{s}_{\iota}| \mathcal{W}_{\iota} \right)$

Complex geometry Combustion Turbulence Equations and FV schemes Riemann solver for combustion Calculate standard Roe-averages $\hat{\rho}$, \hat{u}_n , \hat{H} , \hat{Y}_i . \hat{T} . (S2) Compute $\hat{\gamma} := \hat{c}_p / \hat{c}_v$ with $\hat{c}_{\{p/v\}i} = \frac{1}{T_p - T_i} \int_{T_i}^{T_R} c_{\{p,v\}i}(\tau) d\tau$. (S3) Calculate $\hat{\phi}_i := (\hat{\gamma} - 1) \left(\frac{\hat{u}^2}{2} - \hat{h}_i\right) + \hat{\gamma} R_i \hat{T}$ with standard Roe-averages \hat{e}_i or \hat{h}_i . (S4) Calculate $\hat{c} := \left(\sum_{i=1}^{K} \hat{Y}_i \hat{\phi}_i - (\hat{\gamma} - 1) \hat{u}^2 + (\hat{\gamma} - 1) \hat{H} \right)^{1/2}$. (S5) Use $\Delta \mathbf{q} = \mathbf{q}_{R} - \mathbf{q}_{I}$ and Δp to compute the wave strengths a_{m} .

- (S6) Calculate $\mathcal{W}_1 = a_1 \hat{\mathbf{r}}_1, \ \mathcal{W}_2 = \sum_{\iota=2}^{K+d} a_\iota \hat{\mathbf{r}}_\iota, \ \mathcal{W}_3 = a_{K+d+1} \hat{\mathbf{r}}_{K+d+1}.$
- (S7) Evaluate $s_1 = \hat{u}_1 \hat{c}$, $s_2 = \hat{u}_1$, $s_3 = \hat{u}_1 + \hat{c}$.
- (S8) Evaluate $\rho_{L/R}^{\star}$, $\mathbf{u}_{1,L/R}^{\star}$, $\mathbf{c}_{L/R}^{\star}$, $\mathbf{r}_{1,L/R}^{\star}$ from $\mathbf{q}_{L}^{\star} = \mathbf{q}_{L} + \mathcal{W}_{1}$ and $\mathbf{q}_{R}^{\star} = \mathbf{q}_{R} \mathcal{W}_{3}$.
- (S9) If $\rho_{L/R}^{\star} \leq 0$ or $e_{L/R}^{\star} \leq 0$ use $\mathbf{F}_{HLL}(\mathbf{q}_L, \mathbf{q}_R)$ and go to (S12).
- (S10) Entropy correction: Evaluate $|\tilde{s}_{\iota}|$.

$$\mathbf{F}_{\textit{Roe}}(\mathbf{q}_{\textit{L}},\mathbf{q}_{\textit{R}}) = \frac{1}{2} \left(\mathbf{f}(\mathbf{q}_{\textit{L}}) + \mathbf{f}(\mathbf{q}_{\textit{R}}) - \sum_{\iota=1}^{3} |\tilde{\mathbf{s}}_{\iota}| \mathcal{W}_{\iota} \right)$$

(S11) Positivity correction: Replace **F**_i by

$$\mathbf{F}_i^{\star} = \mathbf{F}_{\rho} \cdot \left\{ \begin{array}{cc} Y_i^l \ , & \mathbf{F}_{\rho} \ge 0 \ , \\ Y_i^r \ , & \mathbf{F}_{\rho} < 0 \ . \end{array} \right.$$

(S12) Evaluate maximal signal speed by $S = \max(|s_1|, |s_3|)$.

Complex geometry	Combustion	Fluid-structure interaction	References
	000000000000000000000000000000000000000		
Equations and FV schemes			

Riemann solver for combustion: carbuncle fix

Entropy corrections

Riemann solver for combustion: carbuncle fix

Entropy corrections [Harten, 1983]

$$\begin{split} 1. \quad |\tilde{\mathbf{s}}_{\iota}| &= \begin{cases} |\mathbf{s}_{\iota}| & \text{if} |\mathbf{s}_{\iota}| \geq 2\eta \\ \frac{|\mathbf{s}_{\iota}^2|}{4\eta} + \eta & \text{otherwise} \\ \eta &= \frac{1}{2} \max_{\iota} \left\{ |\mathbf{s}_{\iota}(\mathbf{q}_{R}) - \mathbf{s}_{\iota}(\mathbf{q}_{L})| \right\} \end{split}$$

Riemann solver for combustion: carbuncle fix

Entropy corrections [Harten, 1983] [Harten and Hyman, 1983]

$$\begin{split} 1. \quad |\mathbf{\tilde{s}}_{\iota}| &= \begin{cases} |\mathbf{s}_{\iota}| & \text{if}|\mathbf{s}_{\iota}| \geq 2\eta \\ \frac{|\mathbf{s}_{\iota}^2|}{4\eta} + \eta & \text{otherwise} \\ \eta &= \frac{1}{2}\max_{\iota}\left\{|\mathbf{s}_{\iota}(\mathbf{q}_{R}) - \mathbf{s}_{\iota}(\mathbf{q}_{L})|\right\} \end{split}$$

2. Replace $|s_{\iota}|$ by $|\tilde{s}_{\iota}|$ only if $s_{\iota}(\mathbf{q}_{L}) < 0 < s_{\iota}(\mathbf{q}_{R})$

Riemann solver for combustion: carbuncle fix

Entropy corrections [Harten, 1983] [Harten and Hyman, 1983]

- $$\begin{split} 1. \quad |\mathbf{\tilde{s}}_{\iota}| &= \begin{cases} |\mathbf{s}_{\iota}| & \text{if}|\mathbf{s}_{\iota}| \geq 2\eta \\ \frac{|\mathbf{s}_{\iota}^{2}|}{4\eta} + \eta & \text{otherwise} \\ \eta &= \frac{1}{2}\max_{\iota}\left\{|\mathbf{s}_{\iota}(\mathbf{q}_{R}) \mathbf{s}_{\iota}(\mathbf{q}_{L})|\right\} \end{split}$$
- 2. Replace $|s_{\iota}|$ by $|\tilde{s}_{\iota}|$ only if $s_{\iota}(\mathbf{q}_{L}) < 0 < s_{\iota}(\mathbf{q}_{R})$

2D modification of entropy correction [Sanders et al., 1998]:

$$\tilde{\eta}_{i+1/2,j} = \max\left\{\eta_{i+1/2,j}, \eta_{i,j-1/2}, \ \eta_{i,j+1/2}, \eta_{i+1,j-1/2}, \eta_{i+1,j+1/2}\right\}$$

Riemann solver for combustion: carbuncle fix

Entropy corrections [Harten, 1983] [Harten and Hyman, 1983]

- $$\begin{split} 1. \quad |\mathbf{\tilde{s}}_{\iota}| &= \begin{cases} |\mathbf{s}_{\iota}| & \text{if}|\mathbf{s}_{\iota}| \geq 2\eta \\ \frac{|\mathbf{s}_{\iota}^{2}|}{4\eta} + \eta & \text{otherwise} \\ \eta &= \frac{1}{2}\max_{\iota}\left\{|\mathbf{s}_{\iota}(\mathbf{q}_{R}) \mathbf{s}_{\iota}(\mathbf{q}_{L})|\right\} \end{split}$$
- 2. Replace $|s_{\iota}|$ by $|\tilde{s}_{\iota}|$ only if $s_{\iota}(\mathbf{q}_{L}) < 0 < s_{\iota}(\mathbf{q}_{R})$

2D modification of entropy correction [Sanders et al., 1998]:

$$\tilde{\eta}_{i+1/2,j} = \max\left\{\eta_{i+1/2,j}, \eta_{i,j-1/2}, \ \eta_{i,j+1/2}, \eta_{i+1,j-1/2}, \eta_{i+1,j+1/2}\right\}$$

Roe + EC 1. Exact Riemann solver Carbuncle phenomenon [Quirk, 1994b] Roe + EC 2. SW FVS. VL FVS. HLL. Roe + EC 2.+2D Test from [Deiterding, 2003]

Detonations - motivation for SAMR

Extremly high spatial resolution in reaction zone necessary.

Detonations - motivation for SAMR

- Extremly high spatial resolution in reaction zone necessary.
- Minimal spatial resolution: $7 8 \operatorname{Pts}/l_{ig} \longrightarrow \Delta x_1 \approx 0.2 0.175 \operatorname{mm}$

Approximation of ${
m H}_2:{
m O}_2$ detonation at $\sim 1.5\,{
m Pts}/l_{ig}$ (left) and $\sim 24\,{
m Pts}/l_{ig}$ (right)

Detonations - motivation for SAMR

- Extremly high spatial resolution in reaction zone necessary.
- ▶ Minimal spatial resolution: $7 8 \operatorname{Pts}/I_{ig} \longrightarrow \Delta x_1 \approx 0.2 0.175 \operatorname{mm}$
- ▶ Uniform grids for typical geometries: $> 10^7 \, {\rm Pts}$ in 2D, $> 10^9 \, {\rm Pts}$ in 3D \longrightarrow Self-adaptive finite volume method (AMR)

Approximation of $m H_2$: $m O_2$ detonation at $\sim 1.5\,
m Pts/{\it I_{ig}}$ (left) and $\sim 24\,
m Pts/{\it I_{ig}}$ (right)

Detonation ignition in a shock tube

- \blacktriangleright Shock-induced detonation ignition of $H_2:O_2:Ar$ mixture at molar ratios 2:1:7 in closed 1d shock tube
- Insufficient resolution leads to inaccurate results

Complex geometry

Combustion

Shock-induced combustion examples

Detonation ignition in a shock tube

- \blacktriangleright Shock-induced detonation ignition of $H_2:O_2:Ar$ mixture at molar ratios 2:1:7 in closed 1d shock tube
- Insufficient resolution leads to inaccurate results
- Reflected shock is captured correctly by FV scheme, detonation is resolution dependent

Left: Comparison of pressure distribution $t=170\,\mu{
m s}$ after shock reflection.

Complex geometry

Combustion

Shock-induced combustion examples

Detonation ignition in a shock tube

- \blacktriangleright Shock-induced detonation ignition of $H_2:O_2:Ar$ mixture at molar ratios 2:1:7 in closed 1d shock tube
- Insufficient resolution leads to inaccurate results
- Reflected shock is captured correctly by FV scheme, detonation is resolution dependent
- > Fine mesh necessary in the induction zone at the head of the detonation

Left: Comparison of pressure distribution $t=170\,\mu{\rm s}$ after shock reflection.Right: Domains of refinement levels

0000000000		000000000000000000000000000000000000000	0000	000000
Shock-induced combustion examples	0000000000000000		0000	000000

Detonation ignition in 1d - adaptive vs. uniform

Uniformly refined vs. dynamic adaptive simulations (Intel Xeon $3.4{ m GHz}$ CPU)							
		Uniform	1		Ad	laptive	
$\Delta x_1[\mu m]$	Cells	$t_m[\mu s]$	Time [s]	I _{max}	r _l	$t_m[\mu s]$	Time [s]
400	300	166.1	31				
200	600	172.6	90	2	2	172.6	99
100	1200	175.5	277	3	2,2	175.8	167
50	2400	176.9	858	4	2,2,2	177.3	287
25	4800	177.8	2713	4	2,2,4	177.9	393
12.5	9600	178.3	9472	5	2,2,2,4	178.3	696
6.25	19200	178.6	35712	5	2,2,4,4	178.6	1370

Detonation ignition in 1d - adaptive vs. uniform

Uniformly refined vs. dynamic adaptive simulations (Intel Xeon 3.4 GHz CPU)								
		Uniform	1		Adaptive			
$\Delta x_1 [\mu m]$	Cells	$t_m[\mu s]$	Time [s]	I _{max}	rı	$t_m[\mu s]$	Time [s]	
400	300	166.1	31					
200	600	172.6	90	2	2	172.6	99	
100	1200	175.5	277	3	2,2	175.8	167	
50	2400	176.9	858	4	2,2,2	177.3	287	
25	4800	177.8	2713	4	2,2,4	177.9	393	
12.5	9600	178.3	9472	5	2,2,2,4	178.3	696	
6.25	19200	178.6	35712	5	2,2,4,4	178.6	1370	

Refinement criteria:

Yi	$S_{Y_i} \cdot 10^{-4}$	$\eta_{Y_i}^r \cdot 10^{-3}$		
O_2	10.0	2.0		
H_2O	7.8	8.0		
Η	0.16	5.0		
Ο	1.0	5.0		
OH	1.8	5.0		
H_2	1.3	2.0		
$\epsilon_{ ho} = 0.07 \mathrm{kg} \mathrm{m}^{-3}$, $\epsilon_{ ho} = 50 \mathrm{kPa}$				

Complex geometry	Combustion		References
	0000000000000		
Shock-induced combustion examples			

Shock-induced combustion around a sphere

- Spherical projectile of radius 1.5 mm travels with constant velocity $v_l = 2170.6 \text{ m/s}$ through $H_2 : O_2 : Ar$ mixture (molar ratios 2:1:7) at 6.67 kPa and T = 298 K
- Cylindrical symmetric simulation on AMR base mesh of 70×40 cells

Shock-induced combustion around a sphere

- Spherical projectile of radius 1.5 mm travels with constant velocity $v_l = 2170.6 \text{ m/s}$ through $H_2 : O_2 : Ar$ mixture (molar ratios 2:1:7) at 6.67 kPa and T = 298 K
- Cylindrical symmetric simulation on AMR base mesh of 70 \times 40 cells
- Comparison of 3-level computation with refinement factors 2,2 (\sim 5 Pts/ l_{ig}) and a 4-level computation with refinement factors 2,2,4 (\sim 19 Pts/ l_{ig}) at $t = 350 \,\mu s$

Iso-contours of ρ (black) and $Y_{\rm H_2}$ (white) on refinement domains for 3-level (left) and 4-level computation (right)

Shock-induced combustion around a sphere

- Spherical projectile of radius 1.5 mm travels with constant velocity $v_l = 2170.6 \text{ m/s}$ through $H_2 : O_2 : Ar$ mixture (molar ratios 2:1:7) at 6.67 kPa and T = 298 K
- Cylindrical symmetric simulation on AMR base mesh of 70 × 40 cells
- Comparison of 3-level computation with refinement factors 2,2 (\sim 5 Pts/ l_{ig}) and a 4-level computation with refinement factors 2,2,4 (\sim 19 Pts/ l_{ig}) at $t = 350 \,\mu s$
- Higher resolved computation captures combustion zone visibly better and at slightly different position (see below)

Iso-contours of p (black) and Y_{H_2} (white) on refinement domains for 3-level (left) and 4-level computation (right)

Complex geometry	Combustion		References
	0000000000000		
Shock-induced combustion examples			

Combustion around a sphere - adaptation

Refinement indicators on l = 2 at $t = 350 \, \mu s$. Blue: ϵ_{ρ} , light blue: ϵ_{p} , green shades: η'_{Y_i} , red: embedded boundary

Refinement criteria:

Yi	$S_{Y_i} \cdot 10^{-4}$	$\eta_{Y_i}^r \cdot 10^{-4}$	
O_2	10.0	4.0	
H_2O	5.8	3.0	
Η	0.2	10.0	
Ο	1.4	10.0	
OH	2.3	10.0	
H_2	1.3	4.0	
$\epsilon_{\rho} = 0.02 \mathrm{kg}\mathrm{m}^{-3}$, $\epsilon_{\rho} = 16 \mathrm{kPa}$			

Combustion around a sphere - adaptation

Refinement indicators on l = 2 at $t = 350 \,\mu s$. Blue: ϵ_{ρ} , light blue: ϵ_{p} , green shades: η'_{Y_i} , red: embedded boundary

Refinement criteria:

Yi	$S_{Y_i} \cdot 10^{-4}$	$\eta_{Y_i}^r \cdot 10^{-4}$
O_2	10.0	4.0
H_2O	5.8	3.0
Η	0.2	10.0
Ο	1.4	10.0
OH	2.3	10.0
H_2	1.3	4.0
$\epsilon_{ ho} = 0.02 \mathrm{kg} \mathrm{m}^{-3}$, $\epsilon_{ ho} = 16 \mathrm{kPa}$		

Combustion

Iuid-structure interaction

Turbulence

References 000000

Shock-induced combustion examples

Detonation diffraction

- CJ detonation for $H_2: O_2: Ar/2: 1: 7$ at $T_0 = 298 \text{ K}$ and $p_0 = 10 \text{ kPa}$. Cell width $\lambda_c = 1.6 \text{ cm}$
- Adaption criteria (similar as before):
 - 1. Scaled gradients of ρ and p
 - 2. Error estimation in *Y_i* by Richardson extrapolation
- 25 Pts/*l_{ig}*. 5 refinement levels (2,2,2,4).
- Adaptive computations use up to $\sim 2.2 \,\mathrm{M}$ instead of $\sim 150 \,\mathrm{M}$ cells (uniform grid)
- $\blacktriangleright \sim 3850 \, {\rm h}$ CPU ($\sim 80 \, {\rm h}$ real time) on 48 nodes Athlon 1.4GHz

E. Schultz. *Detonation diffraction through an abrupt area expansion*. PhD thesis, California Institute of Technology, Pasadena, California, April 2000.

Combustion

Fluid-structure interaction

Turbulence

References 000000

Shock-induced combustion examples

Detonation diffraction - adaptation

Combustion

Fluid-structure interaction

Turbulence 0000 References 000000

Shock-induced combustion examples

Detonation diffraction - adaptation

Combustion

Fluid-structure interaction

Turbulence 0000 References 000000

Shock-induced combustion examples

Detonation diffraction - adaptation

Combustion

Fluid-structure interaction

Turbulence 0000 References 000000

Shock-induced combustion examples

Detonation diffraction - adaptation

Combustion

Fluid-structure interaction

Turbulence 0000 References 000000

Shock-induced combustion examples

Detonation diffraction - adaptation

Combustion

Fluid-structure interaction

Turbulence 0000 References 000000

Shock-induced combustion examples

Detonation cell structure in 3D

- Simulation of only one quadrant
- ▶ 44.8 Pts/l_{ig} for H₂ : O₂ : Ar CJ detonation
- SAMR base grid 400x24x24, 2 additional refinement levels (2, 4)
- Simulation uses $\sim 18 \,\mathrm{M}$ cells instead of $\sim 118 \,\mathrm{M}$ (unigrid)
- ~ 51,000 h CPU on 128 CPU Compaq Alpha.
 H: 37.6 %, S: 25.1 %

Schlieren and isosurface of $Y_{\rm OH}$

Combustion

Turbulence

References 000000

Shock-induced combustion examples

Detonation cell structure in 3D

- Simulation of only one quadrant
- ▶ 44.8 Pts/I_{ig} for $H_2 : O_2 : Ar CJ$ detonation
- SAMR base grid 400x24x24, 2 additional refinement levels (2, 4)
- Simulation uses $\sim 18 \,\mathrm{M}$ cells instead of $\sim 118 \,\mathrm{M}$ (unigrid)
- ~ 51,000 h CPU on 128 CPU Compaq Alpha.
 H: 37.6 %, S: 25.1 %

Schlieren and isosurface of $Y_{\rm OH}$

Schlieren on refinement levels

Combustion

Turbulence 0000 References 000000

Shock-induced combustion examples

Detonation cell structure in 3D

- Simulation of only one quadrant
- ▶ 44.8 Pts/I_{ig} for $H_2 : O_2 : Ar CJ$ detonation
- SAMR base grid 400x24x24, 2 additional refinement levels (2, 4)
- Simulation uses $\sim 18 \,\mathrm{M}$ cells instead of $\sim 118 \,\mathrm{M}$ (unigrid)
- ~ 51,000 h CPU on 128 CPU Compaq Alpha.
 H: 37.6 %, S: 25.1 %

Schlieren and isosurface of $Y_{\rm OH}$

omplex geometry	Combustion	Fluid-structure interaction	References

Outline

Complex geometry

Boundary aligned meshes Cartesian techniques Implicit geometry representation Accuracy / verification

Combustion

Equations and FV schemes Shock-induced combustion examples

Fluid-structure interaction

Coupling to a solid mechanics solver Rigid body motion Thin elastic structures Deforming thin structures

Turbulence

Large-eddy simulation

ion Flu

Fluid-structure interaction

Turbulence 0000 References 000000

Coupling to a solid mechanics solver

Construction of coupling data

 Moving boundary/interface is treated as a moving contact discontinuity and represented by level set [Fedkiw, 2002][Arienti et al., 2003]

Combustion

Fluid-structure interaction

Turbulence 0000 References 000000

Coupling to a solid mechanics solver

Construction of coupling data

- Moving boundary/interface is treated as a moving contact discontinuity and represented by level set [Fedkiw, 2002][Arienti et al., 2003]
- One-sided construction of mirrored ghost cell and new FEM nodal point values

Combustion

Fluid-structure interaction

Turbulence

References 0000<u>00</u>

Coupling to a solid mechanics solver

Construction of coupling data

- Moving boundary/interface is treated as a moving contact discontinuity and represented by level set [Fedkiw, 2002][Arienti et al., 2003]
- One-sided construction of mirrored ghost cell and new FEM nodal point values
- FEM ansatz-function interpolation to obtain intermediate surface values

Combustion

Fluid-structure interaction

Turbulence

References 0000<u>00</u>

Coupling to a solid mechanics solver

Construction of coupling data

- Moving boundary/interface is treated as a moving contact discontinuity and represented by level set [Fedkiw, 2002][Arienti et al., 2003]
- One-sided construction of mirrored ghost cell and new FEM nodal point values
- FEM ansatz-function interpolation to obtain intermediate surface values

Coupling conditions on interface

$$\begin{array}{cccc} u_n^S &=& u_n^F \\ \sigma_{nn}^S &=& p^F \\ \sigma_{nm}^S &=& 0 \end{array} \Big|_{\mathcal{T}}$$

Combustion

Fluid-structure interaction

Turbulence

References 000000

Coupling to a solid mechanics solver

Construction of coupling data

- Moving boundary/interface is treated as a moving contact discontinuity and represented by level set [Fedkiw, 2002][Arienti et al., 2003]
- One-sided construction of mirrored ghost cell and new FEM nodal point values
- FEM ansatz-function interpolation to obtain intermediate surface values
- Explicit coupling possible if geometry and velocities are prescribed for the more compressible medium [Specht, 2000]

$$u_n^F := u_n^S(t)|_{\mathcal{I}}$$

UpdateFluid(Δt)
 $\sigma_{nn}^S := p^F(t + \Delta t)|_{\mathcal{I}}$
UpdateSolid(Δt)
 $t := t + \Delta t$

Coupling conditions on interface

$$\begin{array}{cccc} u_n^S &=& u_n^F \\ \sigma_{nn}^S &=& p^F \\ \sigma_{nm}^S &=& 0 \end{array} \Big|_{\mathcal{I}}$$

Complex geometry	Combustion	Fluid-structure interaction	Turbulence	References
		000000000000000000000000000000000000000		
Coupling to a solid mechanics s	solver			
Usage of SA	MR			

- Eulerian SAMR + non-adaptive Lagrangian FEM scheme
- ▶ Exploit SAMR time step refinement for effective coupling to solid solver

Complex geometry	Combustion	Fluid-structure interaction	Turbulence	References
		000000000000000000000000000000000000000		
Coupling to a solid mechanic	s solver			
Usage of S	AMR			

- Eulerian SAMR + non-adaptive Lagrangian FEM scheme
- ▶ Exploit SAMR time step refinement for effective coupling to solid solver
 - ▶ Lagrangian simulation is called only at level $I_c \leq I_{max}$

Complex geometry	Combustion	Fluid-structure interaction	Turbulence	References
		000000000000000000000000000000000000000		
Coupling to a solid mechanic	s solver			
Usage of S	AMR			

- Eulerian SAMR + non-adaptive Lagrangian FEM scheme
- ▶ Exploit SAMR time step refinement for effective coupling to solid solver
 - ▶ Lagrangian simulation is called only at level $I_c \leq I_{max}$
 - SAMR refines solid boundary at least at level I_c
 - Additional levels can be used resolve geometric ambiguities

Complex geometry	Combustion	Fluid-structure interaction	Turbulence	References
		000000000000000000000000000000000000000		
Coupling to a solid mechanics	solver			
Usage of SA	AMR			

- Eulerian SAMR + non-adaptive Lagrangian FEM scheme
- ▶ Exploit SAMR time step refinement for effective coupling to solid solver
 - ▶ Lagrangian simulation is called only at level $I_c \leq I_{max}$
 - SAMR refines solid boundary at least at level I_c
 - Additional levels can be used resolve geometric ambiguities
- Nevertheless: Inserting sub-steps accommodates for time step reduction from the solid solver within an SAMR cycle

Complex geometry	Combustion	Fluid-structure interaction	Turbulence	References
		000000000000000000000000000000000000000		
Coupling to a solid mechanic	s solver			
Usage of S	AMR			

- Eulerian SAMR + non-adaptive Lagrangian FEM scheme
- ▶ Exploit SAMR time step refinement for effective coupling to solid solver
 - ▶ Lagrangian simulation is called only at level $I_c \leq I_{max}$
 - SAMR refines solid boundary at least at level I_c
 - Additional levels can be used resolve geometric ambiguities
- Nevertheless: Inserting sub-steps accommodates for time step reduction from the solid solver within an SAMR cycle
- Communication strategy:
 - Updated boundary info from solid solver must be received before regridding operation
 - Boundary data is sent to solid when highest level available

Complex geometry	Combustion	Fluid-structure interaction	References
		000000000000000000000000000000000000000	
Coupling to a solid mechanics	solver		
Usage of SA	AMR		

- Eulerian SAMR + non-adaptive Lagrangian FEM scheme
- ▶ Exploit SAMR time step refinement for effective coupling to solid solver
 - ▶ Lagrangian simulation is called only at level $I_c \leq I_{max}$
 - SAMR refines solid boundary at least at level I_c
 - Additional levels can be used resolve geometric ambiguities
- Nevertheless: Inserting sub-steps accommodates for time step reduction from the solid solver within an SAMR cycle
- Communication strategy:
 - Updated boundary info from solid solver must be received before regridding operation
 - Boundary data is sent to solid when highest level available
- Inter-solver communication (point-to-point or globally) managed on the fly special coupling module

Combustion

Fluid-structure interaction

Turbulence 0000 References 000000

Coupling to a solid mechanics solver

SAMR algorithm for FSI coupling

```
AdvanceLevel(/)
```

```
Repeat r_l times

Set ghost cells of \mathbf{Q}^l(t)

If time to regrid?

Regrid(l)

UpdateLevel(l)

If level l + 1 exists?

Set ghost cells of \mathbf{Q}^l(t + \Delta t_l)

AdvanceLevel(l + 1)

Average \mathbf{Q}^{l+1}(t + \Delta t_l) onto \mathbf{Q}^l(t + \Delta t_l)
```

 $t := t + \Delta t_l$

Combustion

Fluid-structure interaction

Turbulence 0000 References 000000

Coupling to a solid mechanics solver

SAMR algorithm for FSI coupling

```
AdvanceLevel(/)
```

```
Repeat r_l times

Set ghost cells of \mathbf{Q}^l(t)

CPT(\varphi^l, C^l, \mathcal{I}, \delta_l)

If time to regrid?

Regrid(l)

UpdateLevel(\mathbf{Q}^l, \varphi^l, C^l, \mathbf{u}^S|_{\mathcal{I}}, \Delta t_l)

If level l + 1 exists?

Set ghost cells of \mathbf{Q}^l(t + \Delta t_l)

AdvanceLevel(l + 1)

Average \mathbf{Q}^{l+1}(t + \Delta t_l) onto \mathbf{Q}^l(t + \Delta t_l)
```

- Call CPT algorithm before Regrid(1)
- Include also call to CPT(·) into
 Recompose(1) to ensure consistent level set data on levels that have changed

 $t := t + \Delta t_l$

Combustion

Fluid-structure interaction

Turbulence 0000 References 000000

Coupling to a solid mechanics solver

SAMR algorithm for FSI coupling

```
AdvanceLevel(/)
```

```
Repeat r_l times
   Set ghost cells of \mathbf{Q}'(t)
   CPT(\varphi', C', \mathcal{I}, \delta_l)
   If time to regrid?
          Regrid(/)
   UpdateLevel(\mathbf{Q}', \varphi', C', \mathbf{u}^{S}|_{\tau}, \Delta t_{l})
   If level l+1 exists?
          Set ghost cells of \mathbf{Q}^{\prime}(t + \Delta t_{l})
          AdvanceLevel(l+1)
          Average \mathbf{Q}^{l+1}(t + \Delta t_l) onto \mathbf{Q}^{l}(t + \Delta t_l)
   If l = l_c?
          SendInterfaceData(p^{F}(t + \Delta t_{l})|_{\tau})
          If (t + \Delta t_l) < (t_0 + \Delta t_0)?
                 ReceiveInterfaceData(\mathcal{I}, \mathbf{u}^{\mathsf{S}}|_{\tau})
   t := t + \Delta t_{l}
```

- Call CPT algorithm before Regrid(1)
- Include also call to CPT(·) into
 Recompose(1) to ensure consistent level set data on levels that have changed
- Communicate boundary data on coupling level *I_c*

SAMR algorithm for FSI coupling

AdvanceLevel(/) Repeat r_l times Set ghost cells of $\mathbf{Q}'(t)$ $CPT(\varphi', C', \mathcal{I}, \delta_l)$ If time to regrid? Regrid(/) UpdateLevel($\mathbf{Q}', \varphi', C', \mathbf{u}^{S}|_{\tau}, \Delta t_{l}$) If level l+1 exists? Set ghost cells of $\mathbf{Q}^{\prime}(t + \Delta t_{l})$ AdvanceLevel(l+1)Average $\mathbf{Q}^{l+1}(t + \Delta t_l)$ onto $\mathbf{Q}^{l}(t + \Delta t_l)$ If $l = l_c?$ SendInterfaceData($p^{F}(t + \Delta t_{l})|_{\tau}$) If $(t + \Delta t_l) < (t_0 + \Delta t_0)$? ReceiveInterfaceData($\mathcal{I}, \mathbf{u}^{\mathsf{S}}|_{\tau}$) $t := t + \Delta t_{l}$

- Call CPT algorithm before Regrid(1)
 - Include also call to CPT(·) into
 Recompose(1) to ensure consistent level set data on levels that have changed
- Communicate boundary data on coupling level *I_c*

Complex geometry	Combustion	Fluid-structure interaction	References
		000000000000000000000000000000000000000	
Coupling to a solid mechanics solver			

FluidStep()

 $\begin{array}{l} \Delta \tau_{F} := \min_{l=0,\cdots,l_{\max}} \left(R_{l} \cdot \text{ StableFluidTimeStep}(l) \,, \, \Delta \tau_{S} \right) \\ \Delta t_{l} := \Delta \tau_{F} / R_{l} \text{ for } l = 0, \cdots, L \\ \text{ReceiveInterfaceData}(\mathcal{I}, \, \mathbf{u}^{S}|_{\mathcal{I}}) \\ \text{AdvanceLevel}(0) \end{array}$

with
$$R_l = \prod_{\iota=0}^l r_{\iota}$$

Complex geometry	Combustion	Fluid-structure interaction	References
		000000000000000000000000000000000000000	
Coupling to a solid mechanics solver			

FluidStep()

$$\begin{array}{l} \Delta\tau_{F} := \min_{l=0,\cdots,l_{\max}} \left(R_{l} \cdot \text{ StableFluidTimeStep}(l) \,, \,\, \Delta\tau_{S} \right) \\ \Delta t_{l} := \Delta\tau_{F}/R_{l} \,\,\, \text{for} \,\, l=0,\cdots,L \\ \text{ReceiveInterfaceData}(\mathcal{I}, \,\, \mathbf{u}^{S}|_{\mathcal{I}}) \\ \text{AdvanceLevel}(0) \end{array}$$

SolidStep()

$$\Delta \tau_{_{S}} := \min(\textit{K} \cdot \textit{R}_{\textit{l}_{c}} \cdot \texttt{StableSolidTimeStep(), } \Delta \tau_{_{F}})$$

with
$$R_l = \prod_{\iota=0}^l r_\iota$$

Complex geometry	Combustion	Fluid-structure interaction	References
		000000000000000000000000000000000000000	
Coupling to a solid mechanics solver			

FluidStep()

 $\begin{array}{l} \Delta \tau_{F} := \min_{l=0,\cdots,l_{\max}} \left(R_{l} \cdot \text{ StableFluidTimeStep}(l) \,, \, \Delta \tau_{S} \right) \\ \Delta t_{l} := \Delta \tau_{F} / R_{l} \text{ for } l = 0, \cdots, L \\ \text{ReceiveInterfaceData}(\mathcal{I}, \, \mathbf{u}^{S} |_{\mathcal{I}}) \\ \text{AdvanceLevel}(0) \end{array}$

SolidStep()

$$\begin{array}{l} \Delta \tau_{S} := \min\left(\mathcal{K} \cdot \mathcal{R}_{l_{c}} \cdot \text{ StableSolidTimeStep}() \text{, } \Delta \tau_{F} \right) \\ \text{Repeat } \mathcal{R}_{l_{c}} \text{ times} \\ t_{\text{end}} := t + \Delta \tau_{S} / \mathcal{R}_{l_{c}} \text{, } \Delta t := \Delta \tau_{S} / (\mathcal{K} \mathcal{R}_{l_{c}}) \end{array}$$

 Time step stays constant for R_{lc} steps, which correponds to one fluid step at level 0

with
$$R_l = \prod_{\iota=0}^l r_{\iota}$$

Complex geometry	Combustion	Fluid-structure interaction	References
		000000000000000000000000000000000000000	
Coupling to a solid mechanics solver			

FluidStep()

 $\begin{array}{l} \Delta \tau_{F} := \min_{l=0,\cdots,l_{\max}} \left(R_{l} \cdot \text{ StableFluidTimeStep}(l) \,, \, \Delta \tau_{S} \right) \\ \Delta t_{l} := \Delta \tau_{F} / R_{l} \text{ for } l = 0, \cdots, L \\ \text{ReceiveInterfaceData}(\mathcal{I}, \, \left. \mathbf{u}^{S} \right|_{\mathcal{I}}) \\ \text{AdvanceLevel}(0) \end{array}$

SolidStep()

$$\begin{split} \Delta \tau_{s} &:= \min\left(K \cdot R_{l_{c}} \cdot \text{StableSolidTimeStep}(), \ \Delta \tau_{F}\right) \\ \text{Repeat } R_{l_{c}} \text{ times} \\ t_{\text{end}} &:= t + \Delta \tau_{s} / R_{l_{c}}, \ \Delta t := \Delta \tau_{s} / (KR_{l_{c}}) \\ \text{While } t &< t_{\text{end}} \\ \text{SendInterfaceData}(\mathcal{I}(t), \ \vec{u}^{s}|_{\mathcal{I}}(t)) \\ \text{ReceiveInterfaceData}(p^{F}|_{\mathcal{I}}) \\ \text{UpdateSolid}(p^{F}|_{\mathcal{I}}, \ \Delta t) \\ t := t + \Delta t \\ \Delta t := \min(\text{StableSolidTimeStep}(), \ t_{\text{end}} - t) \end{split}$$

 Time step stays constant for R_{lc} steps, which correponds to one fluid step at level 0

with
$$R_l = \prod_{\iota=0}^l r_\iota$$

Combustion

Fluid-structure interaction

Turbulence 0000 References 000000

Coupling to a solid mechanics solver

Parallelization strategy for coupled simulations

Coupling to a solid mechanics solver

Parallelization strategy for coupled simulations

- Distribute both meshes seperately and copy necessary nodal values and geometry data to fluid nodes
- Setting of ghost cell values becomes strictly local operation

Combustion

Coupling to a solid mechanics solver

Parallelization strategy for coupled simulations

- Distribute both meshes seperately and copy necessary nodal values and geometry data to fluid nodes
- Setting of ghost cell values becomes strictly local operation
- Construct new nodal values strictly local on fluid nodes and transfer them back to solid nodes
- Only surface data is transfered

Combustion

Coupling to a solid mechanics solver

Parallelization strategy for coupled simulations

- Distribute both meshes seperately and copy necessary nodal values and geometry data to fluid nodes
- Setting of ghost cell values becomes strictly local operation
- Construct new nodal values strictly local on fluid nodes and transfer them back to solid nodes
- Only surface data is transfered
- Asynchronous communication ensures scalability
- Generic encapsulated implementation guarantees reusability

Combustion

Fluid-structure interaction

Turbulence

References 000000

Coupling to a solid mechanics solver

Eulerian/Lagrangian communication module

1. Put bounding boxes around each solid processors piece of the boundary and around each fluid processors grid

Combustion

Fluid-structure interaction

Turbulence

References 000000

Coupling to a solid mechanics solver

Eulerian/Lagrangian communication module

- Put bounding boxes around each solid processors piece of the boundary and around each fluid processors grid
- 2. Gather, exchange and broadcast of bounding box information

Combustion

Fluid-structure interaction

Turbulence

References 000000

Coupling to a solid mechanics solver

Eulerian/Lagrangian communication module

- Put bounding boxes around each solid processors piece of the boundary and around each fluid processors grid
- 2. Gather, exchange and broadcast of bounding box information
- Optimal point-to-point communication pattern, non-blocking

	97777777777777777777777		
	2 10000000		20000000
	0.00000000		100200000000
	00000000		0000000
	120-120-120-120-12		141111111111
derer deren	0.000000000		
	(Anna Anna Anna A	+ + - + +	Cherner and the
	Contraction of the Contraction o		Villing and
annun annu		01111110/0111110	
0.000000000	TTTTTT	Second	
0.0000000000	IIIIIIII	0.0000000000	IIIIIII
0.0000000000	IIIIIII	0.000000000	IIIIIIII
0.000000000		0.000000000	
		Charles and Charles	
		0.0000000000000000000000000000000000000	

Complex geometry 00000000000 Rigid body motion

Fluid-structure interaction

Turbulence 0000 References 000000

Lift-up of a spherical body

Cylindrical body hit by Mach 3 shockwave, 2D test case by [Falcovitz et al., 1997]

Schlieren plot of density

Refinement levels

Treatment of thin structures

 Thin boundary structures or lower-dimensional shells require "thickening" to apply embedded boundary method

- Thin boundary structures or lower-dimensional shells require "thickening" to apply embedded boundary method
- \blacktriangleright Unsigned distance level set function φ

Combustion

Fluid-structure interaction

Turbulence

References 000000

- Thin boundary structures or lower-dimensional shells require "thickening" to apply embedded boundary method
- \blacktriangleright Unsigned distance level set function φ
- ► Treat cells with 0 < φ < d as ghost fluid cells</p>

Combustion

Fluid-structure interaction

Turbulence

References 000000

- Thin boundary structures or lower-dimensional shells require "thickening" to apply embedded boundary method
- \blacktriangleright Unsigned distance level set function φ
- ► Treat cells with 0 < φ < d as ghost fluid cells</p>
- Leaving φ unmodified ensures correctness of $\nabla \varphi$

Combustion 000000000000 Fluid-structure interaction

Turbulence

References 000000

- Thin boundary structures or lower-dimensional shells require "thickening" to apply embedded boundary method
- \blacktriangleright Unsigned distance level set function φ
- ► Treat cells with 0 < φ < d as ghost fluid cells</p>

- \blacktriangleright Leaving φ unmodified ensures correctness of $\nabla\varphi$
- ▶ Use face normal in shell element to evaluate in $\Delta p = p^+ p^-$

Combustion

Fluid-structure interaction

Turbulence

References 000000

Treatment of thin structures

- Thin boundary structures or lower-dimensional shells require "thickening" to apply embedded boundary method
- \blacktriangleright Unsigned distance level set function φ
- ► Treat cells with 0 < φ < d as ghost fluid cells</p>

- \blacktriangleright Leaving φ unmodified ensures correctness of $\nabla\varphi$
- ▶ Use face normal in shell element to evaluate in $\Delta p = p^+ p^-$
- Utilize finite difference solver using the beam equation

$$\rho_s h \frac{\partial^2 w}{\partial t^2} + E I \frac{\partial^4 w}{\partial \bar{x}^4} = \rho^F$$

to verify FSI algorithms

 Complex geometry
 Combustion
 Fluid-structure interaction
 Turbulence
 References

 0000000000
 0000000000
 000000000
 000000000
 000000000

 Thin elastic structures

FSI verification by elastic vibration

- ▶ Thin steel plate (thickness h = 1 mm, length 50 mm), clamped at lower end
- ▶ $\rho_s = 7600 \, \text{kg/m}^3$, $E = 220 \, \text{GPa}$, $I = h^3/12$, $\nu = 0.3$
- Modeled with beam solver (101 points) and thin-shell FEM solver (325 triangles) by F. Cirak

 Complex geometry
 Combustion
 Fluid-structure interaction
 Turbulence
 References

 0000000000
 0000000000
 0000000000
 0000
 00000
 000000000

 Thin elastic structures

FSI verification by elastic vibration

- Thin steel plate (thickness h = 1 mm, length 50 mm), clamped at lower end
- ▶ $\rho_s = 7600 \, \text{kg/m}^3$, $E = 220 \, \text{GPa}$, $I = h^3/12$, $\nu = 0.3$
- Modeled with beam solver (101 points) and thin-shell FEM solver (325 triangles) by F. Cirak
- \blacktriangleright Left: Coupling verification with constant instantenous loading by $\Delta p = 100 \, \rm kPa$

 Complex geometry
 Combustion
 Fluid-structure interaction
 Turbulence
 References

 0000000000
 0000000000
 0000000000
 000000000
 000000000

 Thin elastic structures

FSI verification by elastic vibration

- Thin steel plate (thickness h = 1 mm, length 50 mm), clamped at lower end
- $\rho_s = 7600 \text{ kg/m}^3$, E = 220 GPa, $I = h^3/12$, $\nu = 0.3$
- Modeled with beam solver (101 points) and thin-shell FEM solver (325 triangles) by F. Cirak
- \blacktriangleright Left: Coupling verification with constant instantenous loading by $\Delta p = 100 \, \rm kPa$
- Right: FSI verification with Mach 1.21 shockwave in air ($\gamma = 1.4$)

Shock-driven elastic panel motion

Test case suggested by [Giordano et al., 2005]

Forward facing step geometry, fixed walls everywhere except at inflow

► SAMR base mesh 320 × 64(×2), r_{1,2} = 2

Shock-driven elastic panel motion

Test case suggested by [Giordano et al., 2005]

- ► SAMR base mesh 320 × 64(×2), r_{1,2} = 2
- Intel 3.4GHz Xeon dual processors, GB Ethernet interconnect
 - ▶ Beam-FSI: 12.25 h CPU on 3 fluid CPU + 1 solid CPU
 - ▶ FEM-FSI: 322 h CPU on 14 fluid CPU + 2 solid CPU

Shock-driven elastic panel motion

Test case suggested by [Giordano et al., 2005]

- ► SAMR base mesh 320 × 64(×2), r_{1,2} = 2
- Intel 3.4GHz Xeon dual processors, GB Ethernet interconnect
 - ▶ Beam-FSI: 12.25 h CPU on 3 fluid CPU + 1 solid CPU
 - ► FEM-FSI: 322 h CPU on 14 fluid CPU + 2 solid CPU

Shock-driven elastic panel motion

Test case suggested by [Giordano et al., 2005]

- ► SAMR base mesh 320 × 64(×2), r_{1,2} = 2
- Intel 3.4GHz Xeon dual processors, GB Ethernet interconnect
 - ▶ Beam-FSI: 12.25 h CPU on 3 fluid CPU + 1 solid CPU
 - ▶ FEM-FSI: 322 h CPU on 14 fluid CPU + 2 solid CPU

Shock-driven elastic panel motion

Test case suggested by [Giordano et al., 2005]

- ► SAMR base mesh 320 × 64(×2), r_{1,2} = 2
- Intel 3.4GHz Xeon dual processors, GB Ethernet interconnect
 - ▶ Beam-FSI: 12.25 h CPU on 3 fluid CPU + 1 solid CPU
 - ▶ FEM-FSI: 322 h CPU on 14 fluid CPU + 2 solid CPU

Complex geometry	Combustion	Fluid-structure interaction	References
		000000000000000000000000000000000000000	
Deforming thin structures			

Detonation-driven plastic deformation

Chapman-Jouguet detonation in a tube filled with a stoichiometric ethylene and oxygen ($C_2H_4 + 3O_2$, 295 K) mixture. Euler equations with single exothermic reaction $A \longrightarrow B$

$$\begin{aligned} \partial_t \rho + \partial_{x_n}(\rho u_n) &= 0 , \quad \partial_t(\rho u_k) + \partial_{x_n}(\rho u_k u_n + \delta_{kn}p) = 0 , \ k = 1, \dots, d \\ \partial_t(\rho E) + \partial_{x_n}(u_n(\rho E + p)) &= 0 , \quad \partial_t(Y\rho) + \partial_{x_n}(Y\rho u_n) = \psi \end{aligned}$$

with

$$p = (\gamma - 1)(\rho E - \frac{1}{2}\rho u_n u_n - \rho Y q_0)$$
 and $\psi = -kY\rho \exp\left(\frac{-E_A\rho}{p}\right)$

Detonation-driven plastic deformation

Chapman-Jouguet detonation in a tube filled with a stoichiometric ethylene and oxygen ($C_2H_4 + 3O_2$, 295 K) mixture. Euler equations with single exothermic reaction $A \longrightarrow B$

$$\begin{aligned} \partial_t \rho + \partial_{x_n}(\rho u_n) &= 0 , \quad \partial_t(\rho u_k) + \partial_{x_n}(\rho u_k u_n + \delta_{kn}p) = 0 , k = 1, \dots, d \\ \partial_t(\rho E) + \partial_{x_n}(u_n(\rho E + p)) &= 0 , \quad \partial_t(Y\rho) + \partial_{x_n}(Y\rho u_n) = \psi \end{aligned}$$

with

$$\rho = (\gamma - 1)(
ho E - \frac{1}{2}
ho u_n u_n -
ho Yq_0) \quad \text{and} \quad \psi = -kY
ho \exp\left(\frac{-E_A
ho}{p}\right)$$

modeled with heuristic detonation model by [Mader, 1979]

$$\begin{split} &V:=\rho^{-1},\; V_0:=\rho_0^{-1},\; V_{\rm CJ}:=\rho_{\rm CJ}\\ &Y':=1-(V-V_0)/(V_{\rm CJ}-V_0)\\ &\text{If } 0\leq Y'\leq 1 \text{ and } Y>10^{-8} \text{ then}\\ &\text{If } Y$$

Detonation-driven plastic deformation

Chapman-Jouguet detonation in a tube filled with a stoichiometric ethylene and oxygen ($C_2H_4 + 3O_2$, 295 K) mixture. Euler equations with single exothermic reaction $A \longrightarrow B$

$$\begin{aligned} \partial_t \rho + \partial_{x_n}(\rho u_n) &= 0 , \quad \partial_t(\rho u_k) + \partial_{x_n}(\rho u_k u_n + \delta_{kn} p) = 0 , \ k = 1, \dots, d \\ \partial_t(\rho E) + \partial_{x_n}(u_n(\rho E + p)) &= 0 , \quad \partial_t(Y\rho) + \partial_{x_n}(Y\rho u_n) = \psi \end{aligned}$$

with

$$\rho = (\gamma - 1)(\rho E - \frac{1}{2}\rho u_n u_n - \rho Y q_0) \text{ and } \psi = -kY\rho \exp\left(\frac{-E_A\rho}{\rho}\right)$$

modeled with heuristic detonation model by [Mader, 1979]

$$\begin{split} &V:=\rho^{-1}, \ V_0:=\rho_0^{-1}, \ V_{\rm CJ}:=\rho_{\rm CJ} \\ &Y':=1-(V-V_0)/(V_{\rm CJ}-V_0) \\ &\text{If } 0\leq Y'\leq 1 \text{ and } Y>10^{-8} \text{ then} \\ &\text{If } Y$$

Comparison of the pressure traces in the experiment and in a 1d simulation

Complex geometry	Combustion	Fluid-structure interaction	Turbulence	References
		000000000000000000000000000000000000000		
Deforming thin structures				
Tube with f	laps			

- Fluid: VanLeer FVS
 - Detonation model with $\gamma = 1.24$, $p_{\rm CJ} = 3.3 \, {\rm MPa}$, $D_{\rm CJ} = 2376 \, {\rm m/s}$
 - ► AMR base level: 104 × 80 × 242, r_{1,2} = 2, r₃ = 4
 - $\blacktriangleright ~\sim 4 \cdot 10^7$ cells instead of $7.9 \cdot 10^9$ cells (uniform)
 - Tube and detonation fully refined
 - Thickening of 2D mesh: 0.81 mm on both sides (real 0.445 mm)

Complex geometry	Combustion	Fluid-structure interaction	References
		000000000000000000000000000000000000000	
Deforming thin structures			
Tube with f	laps		

- ► Fluid: VanLeer FVS
 - Detonation model with $\gamma = 1.24$, $p_{\rm CJ} = 3.3 \, {\rm MPa}$, $D_{\rm CJ} = 2376 \, {\rm m/s}$
 - ► AMR base level: 104 × 80 × 242, r_{1,2} = 2, r₃ = 4
 - $\sim 4 \cdot 10^7$ cells instead of $7.9 \cdot 10^9$ cells (uniform)
 - Tube and detonation fully refined
 - Thickening of 2D mesh: 0.81 mm on both sides (real 0.445 mm)
- Solid: thin-shell solver by F. Cirak
 - Aluminum, J2 plasticity with hardening, rate sensitivity, and thermal softening
 - Mesh: 8577 nodes, 17056 elements

Complex geometry	Combustion	Fluid-structure interaction	References
		000000000000000000000000000000000000000	
Deforming thin structures			
Tube with f	laps		

- ► Fluid: VanLeer FVS
 - Detonation model with $\gamma = 1.24$, $p_{\rm CJ} = 3.3 \, {\rm MPa}$, $D_{\rm CJ} = 2376 \, {\rm m/s}$
 - ► AMR base level: 104 × 80 × 242, r_{1,2} = 2, r₃ = 4
 - $\sim 4 \cdot 10^7$ cells instead of 7.9 $\cdot 10^9$ cells (uniform)
 - Tube and detonation fully refined
 - Thickening of 2D mesh: 0.81 mm on both sides (real 0.445 mm)
- Solid: thin-shell solver by F. Cirak
 - Aluminum, J2 plasticity with hardening, rate sensitivity, and thermal softening
 - Mesh: 8577 nodes, 17056 elements
- ▶ 16+2 nodes 2.2 GHz AMD Opteron quad processor, PCI-X 4x Infiniband network, \sim 4320 h CPU to t_{end} = 450 μ s

Complex geometry	Combustion	Fluid-structure interaction	References
		000000000000000000000000000000000000000	
Deforming thin structures			
Tuba with f	lana		

Tube with flaps

- Fluid: VanLeer FVS
 - Detonation model with $\gamma = 1.24$, $p_{\rm CJ} = 3.3 \, {\rm MPa}$, $D_{\rm CJ} = 2376 \, {\rm m/s}$
 - ► AMR base level: 104 × 80 × 242, r_{1,2} = 2, r₃ = 4
 - $\sim 4 \cdot 10^7$ cells instead of $7.9 \cdot 10^9$ cells (uniform)
 - Tube and detonation fully refined
 - Thickening of 2D mesh: 0.81 mm on both sides (real 0.445 mm)
- Solid: thin-shell solver by F. Cirak
 - Aluminum, J2 plasticity with hardening, rate sensitivity, and thermal softening
 - Mesh: 8577 nodes, 17056 elements
- ▶ 16+2 nodes 2.2 GHz AMD Opteron quad processor, PCI-X 4x Infiniband network, \sim 4320 h CPU to t_{end} = 450 μ s

 $0.032 \mathrm{\,ms}$

 $0.030 \mathrm{ms}$

Complex geometry	Combustion	Fluid-structure interaction	References
		000000000000000000000000000000000000000	
Deforming thin structures			
Tuba with	flanc		

Tube with flaps

- Fluid: VanLeer FVS
 - Detonation model with $\gamma = 1.24$, $p_{\rm CJ} = 3.3 \, {\rm MPa}$, $D_{\rm CJ} = 2376 \, {\rm m/s}$
 - ► AMR base level: 104 × 80 × 242, r_{1,2} = 2, r₃ = 4
 - $\sim 4 \cdot 10^7$ cells instead of $7.9 \cdot 10^9$ cells (uniform)
 - Tube and detonation fully refined
 - Thickening of 2D mesh: 0.81 mm on both sides (real 0.445 mm)
- Solid: thin-shell solver by F. Cirak
 - Aluminum, J2 plasticity with hardening, rate sensitivity, and thermal softening
 - Mesh: 8577 nodes, 17056 elements
- ▶ 16+2 nodes 2.2 GHz AMD Opteron quad processor, PCI-X 4x Infiniband network, \sim 4320 h CPU to $t_{end}=450\,\mu{\rm s}$

 $0.032~{
m ms}$

 $0.030 \ \mathrm{ms}$

 $0.212\ \mathrm{ms}$

 $0.210~\mathrm{ms}$

Complex geometry

Combustion

Fluid-structure interaction

Turbulence

References 000000

Deforming thin structures

Tube with flaps: results

Fluid density and diplacement in y-direction in solid

Tube with flaps: results

Fluid density and diplacement in y-direction in solid

Schlieren plot of fluid density on refinement levels

[Cirak et al., 2007]

Underwater explosion modeling

Volume fraction based two-component model with $\sum_{i=1}^m \alpha^i = \mathbf{1},$ that defines mixture quantities as

$$\rho = \sum_{i=1}^{m} \alpha^{i} \rho^{i} , \quad \rho u_{n} = \sum_{i=1}^{m} \alpha^{i} \rho^{i} u_{n}^{i} , \quad \rho e = \sum_{i=1}^{m} \alpha^{i} \rho^{i} e^{i}$$

Underwater explosion modeling

Volume fraction based two-component model with $\sum_{i=1}^m \alpha^i = \mathbf{1},$ that defines mixture quantities as

$$\rho = \sum_{i=1}^{m} \alpha^{i} \rho^{i} , \quad \rho u_{n} = \sum_{i=1}^{m} \alpha^{i} \rho^{i} u_{n}^{i} , \quad \rho e = \sum_{i=1}^{m} \alpha^{i} \rho^{i} e^{i}$$

Assuming total pressure $p = (\gamma - 1) \rho e - \gamma p_{\infty}$ and speed of sound $c = (\gamma (p + p_{\infty})/\rho)^{1/2}$ yields

$$\frac{p}{\gamma-1} = \sum_{i=1}^{m} \frac{\alpha^{i} p^{i}}{\gamma^{i}-1} , \quad \frac{\gamma p_{\infty}}{\gamma-1} = \sum_{i=1}^{m} \frac{\alpha^{i} \gamma^{i} p_{\infty}^{i}}{\gamma^{i}-1}$$

Underwater explosion modeling

Volume fraction based two-component model with $\sum_{i=1}^{m} \alpha^{i} = 1$, that defines mixture quantities as

$$\rho = \sum_{i=1}^{m} \alpha^{i} \rho^{i} , \quad \rho u_{n} = \sum_{i=1}^{m} \alpha^{i} \rho^{i} u_{n}^{i} , \quad \rho e = \sum_{i=1}^{m} \alpha^{i} \rho^{i} e^{i}$$

Assuming total pressure $p = (\gamma - 1) \rho e - \gamma p_{\infty}$ and speed of sound $c = (\gamma (p + p_{\infty})/\rho)^{1/2}$ yields

$$\frac{p}{\gamma-1} = \sum_{i=1}^{m} \frac{\alpha^{i} p^{i}}{\gamma^{i}-1} , \quad \frac{\gamma p_{\infty}}{\gamma-1} = \sum_{i=1}^{m} \frac{\alpha^{i} \gamma^{i} p_{\infty}^{i}}{\gamma^{i}-1}$$

and the overall set of equations [Shyue, 1998]

 $\partial_t \rho + \partial_{x_n}(\rho u_n) = 0 , \quad \partial_t(\rho u_k) + \partial_{x_n}(\rho u_k u_n + \delta_{k_n} \rho) = 0 , \quad \partial_t(\rho E) + \partial_{x_n}(u_n(\rho E + \rho)) = 0$ $\frac{\partial}{\partial t} \left(\frac{1}{\gamma - 1}\right) + u_n \frac{\partial}{\partial x_n} \left(\frac{1}{\gamma - 1}\right) = 0 , \quad \frac{\partial}{\partial t} \left(\frac{\gamma p_\infty}{\gamma - 1}\right) + u_n \frac{\partial}{\partial x_n} \left(\frac{\gamma p_\infty}{\gamma - 1}\right) = 0$

Underwater explosion modeling

Volume fraction based two-component model with $\sum_{i=1}^{m} \alpha^{i} = 1$, that defines mixture quantities as

$$\rho = \sum_{i=1}^{m} \alpha^{i} \rho^{i} , \quad \rho u_{n} = \sum_{i=1}^{m} \alpha^{i} \rho^{i} u_{n}^{i} , \quad \rho e = \sum_{i=1}^{m} \alpha^{i} \rho^{i} e^{i}$$

Assuming total pressure $p = (\gamma - 1) \rho e - \gamma p_{\infty}$ and speed of sound $c = (\gamma (p + p_{\infty})/\rho)^{1/2}$ yields

$$\frac{p}{\gamma-1} = \sum_{i=1}^{m} \frac{\alpha^{i} p^{i}}{\gamma^{i}-1} , \quad \frac{\gamma p_{\infty}}{\gamma-1} = \sum_{i=1}^{m} \frac{\alpha^{i} \gamma^{i} p_{\infty}^{i}}{\gamma^{i}-1}$$

and the overall set of equations [Shyue, 1998]

 $\partial_t \rho + \partial_{x_n}(\rho u_n) = 0 , \quad \partial_t(\rho u_k) + \partial_{x_n}(\rho u_k u_n + \delta_{k_n} p) = 0 , \quad \partial_t(\rho E) + \partial_{x_n}(u_n(\rho E + p)) = 0$

$$\frac{\partial}{\partial t}\left(\frac{1}{\gamma-1}\right)+u_n\frac{\partial}{\partial x_n}\left(\frac{1}{\gamma-1}\right)=0\;,\quad \frac{\partial}{\partial t}\left(\frac{\gamma p_{\infty}}{\gamma-1}\right)+u_n\frac{\partial}{\partial x_n}\left(\frac{\gamma p_{\infty}}{\gamma-1}\right)=0$$

Oscillation free at contacts: [Abgrall and Karni, 2001][Shyue, 2006]

Complex geometry	Combustion	Fluid-structure interaction	References
		000000000000000000000000000000000000000	
Deforming thin structures			

Use HLLC approach because of robustness and positivity preservation

$$\mathbf{q}^{HLLC}(x_{1},t) = \begin{cases} \mathbf{q}_{L}, & x_{1} < s_{L}t, \\ \mathbf{q}_{L}^{\star}, & s_{L}t \leq x_{1} < s^{\star}t, \\ \mathbf{q}_{R}^{\star}, & s^{\star}t \leq x_{1} \leq s_{R}t, \\ \mathbf{q}_{R}, & x_{1} > s_{R}t, \end{cases} \qquad s_{L}^{t} \mathbf{q}_{L}^{\star} \mathbf{q}_{R}^{\star} \mathbf{s}_{R}t$$

Wave speed estimates [Davis, 1988] $s_L = \min\{u_{1,L} - c_L, u_{1,R} - c_R\}, s_R = \max\{u_{1,L} + c_L, u_{1,R} + c_R\}$

Complex geometry	Combustion	Fluid-structure interaction	References
		000000000000000000000000000000000000000	
Deforming thin structures			

Use HLLC approach because of robustness and positivity preservation

$$\mathbf{q}^{HLLC}(x_{1},t) = \begin{cases} \mathbf{q}_{L}, & x_{1} < s_{L}t, \\ \mathbf{q}_{L}^{\star}, & s_{L}t \leq x_{1} < s^{\star}t, \\ \mathbf{q}_{R}^{\star}, & s^{\star}t \leq x_{1} \leq s_{R}t, \\ \mathbf{q}_{R}, & x_{1} > s_{R}t, \end{cases} \qquad s_{L}^{t} \mathbf{q}_{L}^{\star} \qquad s_{L}^{s^{\star}t} \mathbf{q}_{R}^{\star} \mathbf{q}_{R}^{\star$$

Wave speed estimates [Davis, 1988] $s_L = \min\{u_{1,L} - c_L, u_{1,R} - c_R\}, s_R = \max\{u_{1,L} + c_L, u_{1,R} + c_R\}$ Unkown state [Toro et al., 1994]

$$s^{\star} = \frac{p_R - p_L + s_L u_{1,L}(s_L - u_{1,L}) - \rho_R u_{1,R}(s_R - u_{1,R})}{\rho_L(s_L - u_{1,L}) - \rho_R(s_R - u_{1,R})}$$

Complex geometry	Combustion	Fluid-structure interaction	References
		000000000000000000000000000000000000000	
Deforming thin structures			

Use HLLC approach because of robustness and positivity preservation

$$\mathbf{q}^{HLLC}(x_{1},t) = \begin{cases} \mathbf{q}_{L}, & x_{1} < s_{L}t, \\ \mathbf{q}_{L}^{\star}, & s_{L}t \leq x_{1} < s^{\star}t, \\ \mathbf{q}_{R}^{\star}, & s^{\star}t \leq x_{1} \leq s_{R}t, \\ \mathbf{q}_{R}, & x_{1} > s_{R}t, \end{cases} \qquad s_{L}^{t} \mathbf{q}_{L}^{\star} \qquad s_{R}^{s^{\star}} \mathbf{q}_{R}^{\star} \mathbf{q}_{R}^{\star}$$

Wave speed estimates [Davis, 1988] $\textbf{s}_L = \min\{u_{1,L} - c_L, u_{1,R} - c_R\},$ $\textbf{s}_R = \max\{u_{1,L} + c_L, u_{1,R} + c_R\}$ Unkown state [Toro et al., 1994]

$$s^{\star} = \frac{p_{R} - p_{L} + s_{L}u_{1,L}(s_{L} - u_{1,L}) - \rho_{R}u_{1,R}(s_{R} - u_{1,R})}{\rho_{L}(s_{L} - u_{1,L}) - \rho_{R}(s_{R} - u_{1,R})}$$
$$\mathbf{q}_{\tau}^{\star} = \left[\eta, \eta s^{\star}, \eta u_{2}, \eta \left[\frac{(\rho E)_{\tau}}{\rho_{\tau}} + (s^{\star} - u_{1,\tau})\left(s_{\tau} + \frac{p_{\tau}}{\rho_{\tau}(s_{\tau} - u_{1,\tau})}\right)\right], \frac{1}{\gamma_{\tau} - 1}, \frac{\gamma_{\tau} p_{\infty,\tau}}{\gamma_{\tau} - 1}\right]^{T}$$
$$\eta = \rho_{\tau} \frac{s_{\tau} - u_{1,\tau}}{s_{\tau} - s^{\star}}, \quad \tau = \{L, R\}$$

Complex geometry	Combustion	Fluid-structure interaction	Turbulence	References
		000000000000000000000000000000000000000		
Deforming thin structures				
-				

Use HLLC approach because of robustness and positivity preservation

$$\mathbf{q}^{HLLC}(x_{1},t) = \begin{cases} \mathbf{q}_{L}, & x_{1} < s_{L}t, \\ \mathbf{q}_{L}^{\star}, & s_{L}t \leq x_{1} < s^{\star}t, \\ \mathbf{q}_{R}^{\star}, & s^{\star}t \leq x_{1} \leq s_{R}t, \\ \mathbf{q}_{R}, & x_{1} > s_{R}t, \end{cases} \qquad s_{L}^{t} \mathbf{q}_{L}^{\star} \qquad s_{L}^{s^{\star}t} \mathbf{q}_{R}^{\star} \mathbf{s}_{R}t$$

Wave speed estimates [Davis, 1988] $s_L = \min\{u_{1,L} - c_L, u_{1,R} - c_R\}, s_R = \max\{u_{1,L} + c_L, u_{1,R} + c_R\}$ Unkown state [Toro et al., 1994]

$$s^{\star} = \frac{p_{R} - p_{L} + s_{L}u_{1,L}(s_{L} - u_{1,L}) - \rho_{R}u_{1,R}(s_{R} - u_{1,R})}{\rho_{L}(s_{L} - u_{1,L}) - \rho_{R}(s_{R} - u_{1,R})}$$

$$\mathbf{q}_{\tau}^{\star} = \left[\eta, \eta \mathbf{s}^{\star}, \eta u_{2}, \eta \left[\frac{(\rho E)_{\tau}}{\rho_{\tau}} + (\mathbf{s}^{\star} - u_{1,\tau})\left(\mathbf{s}_{\tau} + \frac{p_{\tau}}{\rho_{\tau}(\mathbf{s}_{\tau} - u_{1,\tau})}\right)\right], \frac{1}{\gamma_{\tau} - 1}, \frac{\gamma_{\tau} p_{\infty,\tau}}{\gamma_{\tau} - 1}\right]^{\prime}$$
$$\eta = \rho_{\tau} \frac{\mathbf{s}_{\tau} - u_{1,\tau}}{\mathbf{s}_{\tau} - \mathbf{s}^{\star}}, \quad \tau = \{L, R\}$$

Evaluate waves as $\mathcal{W}_1 = \mathbf{q}_L^{\star} - \mathbf{q}_L$, $\mathcal{W}_2 = \mathbf{q}_R^{\star} - \mathbf{q}_L^{\star}$, $\mathcal{W}_3 = \mathbf{q}_R - \mathbf{q}_R^{\star}$ and $\lambda_1 = \mathbf{s}_L$, $\lambda_2 = \mathbf{s}^{\star}$, $\lambda_3 = \mathbf{s}_R$ to compute the fluctuations $\mathcal{A}^-\Delta = \sum_{\lambda_\nu < 0} \lambda_\nu \mathcal{W}_\nu$, $\mathcal{A}^+\Delta = \sum_{\lambda_\nu \geq 0} \lambda_\nu \mathcal{W}_\nu$ for $\nu = \{1, 2, 3\}$

Overall scheme: Wave Propagation method [Shyue, 2006] Complex hyperbolic applications

Complex geometry	Combustion	Fluid-structure interaction	References
		000000000000000000000000000000000000000	
Deforming thin structures			

Underwater explosion FSI simulations

• Air:
$$\gamma^A = 1.4$$
, $p_{\infty}^A = 0$, $\rho^A = 1.29 \, \text{kg/m}^3$

• Water:
$$\gamma^W = 7.415$$
, $p_{\infty}^W = 296.2 \text{ MPa}$, $\rho^W = 1027 \text{ kg/m}^3$

Complex geometry	Combustion	Fluid-structure interaction	References
		000000000000000000000000000000000000000	
Deforming thin structures			

Underwater explosion FSI simulations

• Air:
$$\gamma^{A} = 1.4$$
, $p_{\infty}^{A} = 0$, $\rho^{A} = 1.29 \, \text{kg}/\text{m}^{3}$

- $\blacktriangleright\,$ Water: $\gamma^W=$ 7.415, $\textit{p}_{\infty}^W=$ 296.2 MPa, $\rho^W=1027\,{\rm kg/m^3}$
- Cavitation modeling with pressure cut-off model at $p = -1 \,\mathrm{MPa}$

Complex geometry	Combustion	Fluid-structure interaction	References
		000000000000000000000000000000000000000	
Deforming thin structures			

Underwater explosion FSI simulations

• Air:
$$\gamma^A = 1.4$$
, $p^A_{\infty} = 0$, $\rho^A = 1.29 \, \mathrm{kg} / \mathrm{m}^3$

- \blacktriangleright Water: $\gamma^W=$ 7.415, $\rho_\infty^W=$ 296.2 MPa, $\rho^W=$ 1027 $\rm kg/m^3$
- Cavitation modeling with pressure cut-off model at $p = -1 \, \text{MPa}$
- ▶ 3D simulation of deformation of air backed aluminum plate with r = 85 mm, h = 3 mm from underwater explosion
 - \blacktriangleright Water basin [Ashani and Ghamsari, 2008] $2\,m\times1.6\,m\times2\,m$
 - Explosion modeled as energy increase $(m_{\rm C4} \cdot 6.06 \, {\rm MJ/kg})$ in sphere with r=5mm
 - ▶ $\rho_s = 2719 \text{ kg/m3}$, E = 69 GPa, $\nu = 0.33$, J2 plasticity model, yield stress $\sigma_{\gamma} = 217.6 \text{ MPa}$
| omplex geometry | Combustion | Fluid-structure interaction | References |
|--------------------------|------------|---|------------|
| | | 000000000000000000000000000000000000000 | |
| eforming thin structures | | | |

Underwater explosion FSI simulations

• Air:
$$\gamma^{A} = 1.4$$
, $p_{\infty}^{A} = 0$, $\rho^{A} = 1.29 \, \text{kg/m}^{3}$

- Water: $\gamma^W =$ 7.415, $p_{\infty}^W =$ 296.2 MPa, $\rho^W = 1027 \, \text{kg}/\text{m}^3$
- ▶ Cavitation modeling with pressure cut-off model at $p = -1 \, \text{MPa}$
- ▶ 3D simulation of deformation of air backed aluminum plate with r = 85 mm, h = 3 mm from underwater explosion
 - \blacktriangleright Water basin [Ashani and Ghamsari, 2008] $2\,m\times1.6\,m\times2\,m$
 - > Explosion modeled as energy increase ($m_{\rm C4} \cdot 6.06 \, {\rm MJ/kg}$) in sphere with r=5mm
 - ▶ $\rho_s = 2719 \text{ kg/m3}$, E = 69 GPa, $\nu = 0.33$, J2 plasticity model, yield stress $\sigma_y = 217.6 \text{ MPa}$
- ▶ 3D simulation of copper plate r = 32 mm, h = 0.25 mm rupturing due to water hammer
 - Water-filled shocktube 1.3 m with driver piston [Deshpande et al., 2006]
 - Piston simulated with separate level set, see [Deiterding et al., 2009] for pressure wave
 - ► $\rho_s = 8920 \text{ kg/m3}$, E = 130 GPa, $\nu = 0.31$, J2 plasticity model, $\sigma_y = 38.5 \text{ MPa}$, cohesive interface model, max. tensile stress $\sigma_c = 525 \text{ MPa}$

Underwater explosion simulation

- AMR base grid $50 \times 40 \times 50$, $r_{1,2,3} = 2$, $r_4 = 4$, $l_c = 3$, highest level restricted to initial explosion center, 3rd and 4th level to plate vicinity
- Triangular mesh with 8148 elements
- Computations of 1296 coupled time steps to t_{end} = 1 ms
- 10+2 nodes 3.4 GHz Intel Xeon dual processor, ~ 130 h CPU

Maximal deflection [mm]

	-	-
	Exp.	Sim.
$20{ m g}, d = 25{ m cm}$	28.83	25.88
$30\mathrm{g}, d=30\mathrm{cm}$	30.09	27.31

Underwater explosion simulation

- AMR base grid $50 \times 40 \times 50$, $r_{1,2,3} = 2$, $r_4 = 4$, $l_c = 3$, highest level restricted to initial explosion center, 3rd and 4th level to plate vicinity
- Triangular mesh with 8148 elements
- Computations of 1296 coupled time steps to t_{end} = 1 ms
- 10+2 nodes 3.4 GHz Intel Xeon dual processor, ~ 130 h CPU

Maximal deflection [mm]

	-	-
	Exp.	Sim.
20 g, <i>d</i> = 25 cm	28.83	25.88
$30\mathrm{g}, d=30\mathrm{cm}$	30.09	27.31

- AMR base mesh $374 \times 20 \times 20$, $r_{1,2} = 2$, $l_c = 2$, solid mesh: 8896 triangles
- ~ 1250 coupled time steps to $t_{end} = 1 \, {
 m ms}$
- $\blacktriangleright\,$ 6+6 nodes 3.4 GHz Intel Xeon dual processor, \sim 800 ${\rm h}$ CPU

$$p_0 = 64 \text{ MPa}$$

Complex geometry	Combustion	Fluid-structure interaction	References
		000000000000000000000000000000000000000	
Deforming thin structures			

- ▶ AMR base mesh 374 × 20 × 20, $r_{1,2} = 2$, $l_c = 2$, solid mesh: 8896 triangles
- ~ 1250 coupled time steps to $t_{end} = 1 \, {
 m ms}$
- $\blacktriangleright\,$ 6+6 nodes 3.4 GHz Intel Xeon dual processor, \sim 800 ${\rm h}$ CPU

Complex geometry	Combustion	Fluid-structure interaction	References
		000000000000000000000000000000000000000	
Deforming thin structures			

- ▶ AMR base mesh 374 × 20 × 20, $r_{1,2} = 2$, $l_c = 2$, solid mesh: 8896 triangles
- ~ 1250 coupled time steps to $t_{end} = 1 \, {
 m ms}$
- $\blacktriangleright\,$ 6+6 nodes 3.4 GHz Intel Xeon dual processor, \sim 800 ${\rm h}$ CPU

Complex geometry	Combustion	Fluid-structure interaction	References
		0000000000000000000	
Deforming thin structures			

- ▶ AMR base mesh 374 × 20 × 20, $r_{1,2} = 2$, $l_c = 2$, solid mesh: 8896 triangles
- ~ 1250 coupled time steps to $t_{end} = 1 \, {
 m ms}$
- $\blacktriangleright\,$ 6+6 nodes 3.4 GHz Intel Xeon dual processor, \sim 800 ${\rm h}$ CPU

 $p_0 = 64 \,\mathrm{MPa}$

Complex geometry	Combustion	Fluid-structure interaction	Turbulence	References
0000000000	0000000000000	00000000000000000	0000	000000

Outline

Complex geometry

Boundary aligned meshes Cartesian techniques Implicit geometry representation Accuracy / verification

Combustion

Equations and FV schemes Shock-induced combustion examples

Fluid-structure interaction

Coupling to a solid mechanics solver Rigid body motion Thin elastic structures Deforming thin structures

Turbulence

Large-eddy simulation

Favre-averaged Navier-Stokes equations

$$\begin{split} \frac{\partial \bar{\rho}}{\partial t} &+ \frac{\partial}{\partial x_n} (\bar{\rho} \tilde{u}_n) = 0\\ \frac{\partial}{\partial t} (\bar{\rho} \tilde{u}_k) &+ \frac{\partial}{\partial x_n} (\bar{\rho} \tilde{u}_k \tilde{u}_n + \delta_{kn} \bar{p} - \tilde{\tau}_{kn} + \sigma_{kn}) = 0\\ \frac{\partial \bar{\rho} \bar{E}}{\partial t} &+ \frac{\partial}{\partial x_n} (\tilde{u}_n (\bar{\rho} \bar{E} + \bar{p}) + \tilde{q}_n - \tilde{\tau}_{nj} \tilde{u}_j + \sigma_n^e) = 0\\ \frac{\partial}{\partial t} (\bar{\rho} \tilde{Y}_i) &+ \frac{\partial}{\partial x_n} (\bar{\rho} \tilde{Y}_i \tilde{u}_n + \tilde{J}_n^i + \sigma_n^i) = 0 \end{split}$$

with stress tensor

$$\tilde{\tau}_{kn} = \tilde{\mu} \big(\frac{\partial \tilde{u}_n}{\partial x_k} + \frac{\partial \tilde{u}_k}{\partial x_n} \big) - \frac{2}{3} \tilde{\mu} \frac{\partial \tilde{u}_j}{\partial x_j} \delta_{in} \,,$$

heat conduction

$$\tilde{q}_n = -\tilde{\lambda} \frac{\partial \tilde{T}}{\partial x_n}$$

Favre-averaged Navier-Stokes equations

$$\begin{split} \frac{\partial \bar{\rho}}{\partial t} &+ \frac{\partial}{\partial x_n} (\bar{\rho} \tilde{u}_n) = 0\\ \frac{\partial}{\partial t} (\bar{\rho} \tilde{u}_k) &+ \frac{\partial}{\partial x_n} (\bar{\rho} \tilde{u}_k \tilde{u}_n + \delta_{kn} \bar{p} - \tilde{\tau}_{kn} + \sigma_{kn}) = 0\\ \frac{\partial \bar{\rho} \bar{E}}{\partial t} &+ \frac{\partial}{\partial x_n} (\tilde{u}_n (\bar{\rho} \bar{E} + \bar{p}) + \tilde{q}_n - \tilde{\tau}_{nj} \tilde{u}_j + \sigma_n^e) = 0\\ \frac{\partial}{\partial t} (\bar{\rho} \tilde{Y}_i) &+ \frac{\partial}{\partial x_n} (\bar{\rho} \tilde{Y}_i \tilde{u}_n + \tilde{J}_n^i + \sigma_n^i) = 0 \end{split}$$

with stress tensor

$$ilde{ au}_{kn} = ilde{\mu} igg(rac{\partial ilde{u}_n}{\partial x_k} + rac{\partial ilde{u}_k}{\partial x_n} igg) - rac{2}{3} ilde{\mu} rac{\partial ilde{u}_j}{\partial x_j} \delta_{in} \ ,$$

heat conduction

$$ilde{q}_n = - ilde{\lambda} rac{\partial ilde{T}}{\partial x_n} \; ,$$

and inter-species diffusion

$$\tilde{J}_n^i = -\bar{\rho}\tilde{D}_i\frac{\partial\tilde{Y}_i}{\partial x_n}$$

Favre-averaged Navier-Stokes equations

$$\begin{split} \frac{\partial \bar{\rho}}{\partial t} &+ \frac{\partial}{\partial x_n} \left(\bar{\rho} \tilde{u}_n \right) = 0 \\ \frac{\partial}{\partial t} \left(\bar{\rho} \tilde{u}_k \right) &+ \frac{\partial}{\partial x_n} \left(\bar{\rho} \tilde{u}_k \tilde{u}_n + \delta_{kn} \bar{p} - \tilde{\tau}_{kn} + \sigma_{kn} \right) = 0 \\ \frac{\partial \bar{\rho} \bar{E}}{\partial t} &+ \frac{\partial}{\partial x_n} \left(\tilde{u}_n (\bar{\rho} \bar{E} + \bar{p}) + \tilde{q}_n - \tilde{\tau}_{nj} \tilde{u}_j + \sigma_n^e \right) = 0 \\ &\frac{\partial}{\partial t} \left(\bar{\rho} \tilde{Y}_i \right) + \frac{\partial}{\partial x_n} \left(\bar{\rho} \tilde{Y}_i \tilde{u}_n + \tilde{J}_n^i + \sigma_n^i \right) = 0 \end{split}$$

with stress tensor

$$ilde{ au}_{kn} = ilde{\mu} igg(rac{\partial ilde{u}_n}{\partial x_k} + rac{\partial ilde{u}_k}{\partial x_n} igg) - rac{2}{3} ilde{\mu} rac{\partial ilde{u}_j}{\partial x_j} \delta_{in} \ ,$$

heat conduction

$$ilde{q}_n = - ilde{\lambda} rac{\partial ilde{T}}{\partial x_n}$$

and inter-species diffusion

$$\tilde{J}_n^i = -\bar{\rho}\tilde{D}_i\frac{\partial\tilde{Y}_i}{\partial x_n}$$

Favre-filtering

$$ilde{\phi} = rac{
ho\phi}{ar{
ho}} \quad ext{with} \quad ar{\phi}(\mathbf{x},t;\Delta_c) = \int_{\Omega} G(\mathbf{x}-\mathbf{x}^{'};\Delta_c)\phi(\mathbf{x}^{'},t)d\mathbf{x}^{'}$$

Complex geometry	Combustion	Fluid-structure interaction	Turbulence	References
			0000	
Large-eddy simulation				

Subgrid terms σ_{kn} , σ_n^e , σ_n^i are computed by Pullin's stretched-vortex model

Complex geometry	Combustion	Turbulence	References
		0000	
Large-eddy simulation			

- Subgrid terms σ_{kn} , σ_n^e , σ_n^i are computed by Pullin's stretched-vortex model
- Cutoff Δ_c is set to local SAMR resolution Δx_l

Complex geometry	Combustion	Turbulence	References
		0000	
Large-eddy simulation			

- Subgrid terms σ_{kn} , σ_n^e , σ_n^i are computed by Pullin's stretched-vortex model
- Cutoff Δ_c is set to local SAMR resolution Δx_l
- It remains to solve the Navier-Stokes equations in the hyperbolic regime
 - 3rd order WENO method (hybridized with a tuned centered difference stencil) for convection
 - > 2nd order conservative centered differences for diffusion

Complex geometry	Combustion	Turbulence	References
		0000	
Large-eddy simulation			

- Subgrid terms σ_{kn} , σ_n^e , σ_n^i are computed by Pullin's stretched-vortex model
- Cutoff Δ_c is set to local SAMR resolution Δx_l
- It remains to solve the Navier-Stokes equations in the hyperbolic regime
 - 3rd order WENO method (hybridized with a tuned centered difference stencil) for convection
 - 2nd order conservative centered differences for diffusion

Example: Cylindrical Richtmyer-Meshkov instability

- Sinusoidal interface between two gases hit by shock wave
- Objective is correctly predict turbulent mixing
- Embedded boundary method used to regularize apex
- AMR base grid $95 \times 95 \times 64$ cells, $r_{1,2,3} = 2$
- $\blacktriangleright~\sim$ 70,000 h CPU on 32 AMD 2.5GHZ-quad-core nodes

Complex geometry	Combustion	Turbulence	References
		0000	
Large-eddy simulation			

Planar Richtmyer-Meshkov instability

- Perturbed Air-SF6 interface shocked and re-shocked by Mach 1.5 shock
- Containment of turbulence in refined zones
- 96 CPUs IBM SP2-Power3
- WENO-TCD scheme with LES model
- AMR base grid 172 × 56 × 56, r_{1,2} = 2, 10 M cells in average instead of 3 M (uniform)

Task	2ms (%)	5ms (%)	10ms (%)
Integration	45.3	65.9	52.0
Boundary setting	44.3	28.6	41.9
Flux correction	7.2	3.4	4.1
Interpolation	0.9	0.4	0.3
Reorganization	1.6	1.2	1.2
Misc.	0.6	0.5	0.5
Max. imbalance	1.25	1.23	1.30

Complex geometry	Combustion	Turbulence	References
		0000	
Large-eddy simulation			

Planar Richtmyer-Meshkov instability

- Perturbed Air-SF6 interface shocked and re-shocked by Mach 1.5 shock
- Containment of turbulence in refined zones
- 96 CPUs IBM SP2-Power3
- WENO-TCD scheme with LES model
- AMR base grid 172 × 56 × 56, r_{1,2} = 2, 10 M cells in average instead of 3 M (uniform)

Task	2ms (%)	5ms (%)	10ms (%)
Integration	45.3	65.9	52.0
Boundary setting	44.3	28.6	41.9
Flux correction	7.2	3.4	4.1
Interpolation	0.9	0.4	0.3
Reorganization	1.6	1.2	1.2
Misc.	0.6	0.5	0.5
Max. imbalance	1.25	1.23	1.30

Complex geometry	Combustion	Fluid-structure interaction	Turbulence	References
			0000	
Large-eddy simulation				

Flux correction for Runge-Kutta method

Recall Runge-Kutta temporal update

$$\tilde{\mathbf{Q}}_{j}^{\upsilon} = \alpha_{\upsilon} \mathbf{Q}_{j}^{n} + \beta_{\upsilon} \tilde{\mathbf{Q}}_{j}^{\upsilon-1} + \gamma_{\upsilon} \frac{\Delta t}{\Delta x_{k}} \Delta \mathbf{F}^{k} (\tilde{\mathbf{Q}}^{\upsilon-1})$$

Flux correction for Runge-Kutta method

Recall Runge-Kutta temporal update

$$\tilde{\mathbf{Q}}_{j}^{\upsilon} = \alpha_{\upsilon} \mathbf{Q}_{j}^{n} + \beta_{\upsilon} \tilde{\mathbf{Q}}_{j}^{\upsilon-1} + \gamma_{\upsilon} \frac{\Delta t}{\Delta x_{k}} \Delta \mathbf{F}^{k}(\tilde{\mathbf{Q}}^{\upsilon-1})$$

rewrite scheme as

$$\mathbf{Q}^{n+1} = \mathbf{Q}^n - \sum_{\upsilon=1}^{\Upsilon} \varphi_\upsilon \frac{\Delta t}{\Delta x_k} \Delta \mathbf{F}^k (\tilde{\mathbf{Q}}^{\upsilon-1}) \quad \text{with} \quad \varphi_\upsilon = \gamma_\upsilon \prod_{\nu=\upsilon+1}^{\Upsilon} \beta_\nu$$

Flux correction for Runge-Kutta method

Recall Runge-Kutta temporal update

$$\tilde{\mathbf{Q}}_{j}^{\upsilon} = \alpha_{\upsilon} \mathbf{Q}_{j}^{n} + \beta_{\upsilon} \tilde{\mathbf{Q}}_{j}^{\upsilon-1} + \gamma_{\upsilon} \frac{\Delta t}{\Delta x_{k}} \Delta \mathbf{F}^{k} (\tilde{\mathbf{Q}}^{\upsilon-1})$$

rewrite scheme as

$$\mathbf{Q}^{n+1} = \mathbf{Q}^n - \sum_{\upsilon=1}^{\Upsilon} \varphi_{\upsilon} \frac{\Delta t}{\Delta x_k} \Delta \mathbf{F}^k(\tilde{\mathbf{Q}}^{\upsilon-1}) \quad \text{with} \quad \varphi_{\upsilon} = \gamma_{\upsilon} \prod_{\nu=\upsilon+1}^{\Upsilon} \beta_{\nu}$$

Flux correction to be used [Pantano et al., 2007]

1.
$$\delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} := -\varphi_1 \mathbf{F}_{i-\frac{1}{2},j}^{1,l}(\mathbf{\tilde{Q}}^0), \qquad \delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} := \delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} - \sum_{\upsilon=2}^{\Upsilon} \varphi_{\upsilon} \mathbf{F}_{i-\frac{1}{2},j}^{1,l}(\mathbf{\tilde{Q}}^{\upsilon-1})$$

2.
$$\delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} := \delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} + \frac{1}{r_{l+1}^2} \sum_{m=0}^{r_{l+1}-1} \sum_{\upsilon=1}^{\Upsilon} \varphi_{\upsilon} \mathbf{F}_{\upsilon+\frac{1}{2},w+m}^{1,l+1} \left(\tilde{\mathbf{Q}}^{\upsilon-1}(t+\kappa\Delta t_{l+1}) \right)$$

Turbulence 0000 Large-eddy simulation

Flux correction for Runge-Kutta method

Recall Runge-Kutta temporal update

$$\tilde{\mathbf{Q}}_{j}^{\upsilon} = \alpha_{\upsilon} \mathbf{Q}_{j}^{n} + \beta_{\upsilon} \tilde{\mathbf{Q}}_{j}^{\upsilon-1} + \gamma_{\upsilon} \frac{\Delta t}{\Delta x_{k}} \Delta \mathbf{F}^{k} (\tilde{\mathbf{Q}}^{\upsilon-1})$$

rewrite scheme as

$$\mathbf{Q}^{n+1} = \mathbf{Q}^n - \sum_{\upsilon=1}^{\Upsilon} \varphi_{\upsilon} \frac{\Delta t}{\Delta x_k} \Delta \mathbf{F}^k(\tilde{\mathbf{Q}}^{\upsilon-1}) \quad \text{with} \quad \varphi_{\upsilon} = \gamma_{\upsilon} \prod_{\nu=\upsilon+1}^{\Upsilon} \beta_{\nu}$$

Flux correction to be used [Pantano et al., 2007]

1.
$$\delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} := -\varphi_1 \mathbf{F}_{i-\frac{1}{2},j}^{1,l}(\tilde{\mathbf{Q}}^0), \qquad \delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} := \delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} - \sum_{\nu=2}^{\Upsilon} \varphi_{\nu} \mathbf{F}_{i-\frac{1}{2},j}^{1,l}(\tilde{\mathbf{Q}}^{\nu-1})$$

2.
$$\delta \mathbf{F}_{l-\frac{1}{2},j}^{1,l+1} := \delta \mathbf{F}_{l-\frac{1}{2},j}^{1,l+1} + \frac{1}{r_{l+1}^2} \sum_{m=0}^{r_{l+1}-1} \sum_{\upsilon=1}^{\Upsilon} \varphi_{\upsilon} \mathbf{F}_{\nu+\frac{1}{2},w+m}^{1,l+1} \left(\mathbf{\tilde{Q}}^{\upsilon-1}(t+\kappa\Delta t_{l+1}) \right)$$

Storage-efficient SSPRK(3,3):

Complex geometry	Combustion		References
References			
References			

- [Abgrall and Karni, 2001] Abgrall, R. and Karni, S. (2001). Computations of compressible multifluids. J. Comput. Phys., 169:594–523.
- [Aftosmis, 1997] Aftosmis, M. J. (1997). Solution adaptive Ccartesian grid methods for aerodynamic flows with complex geometries. Technical Report Lecture Series 1997-2, von Karman Institute for Fluid Dynamics.
- [Arienti et al., 2003] Arienti, M., Hung, P., Morano, E., and Shepherd, J. E. (2003). A level set approach to Eulerian-Lagrangian coupling. J. Comput. Phys., 185:213–251.
- [Ashani and Ghamsari, 2008] Ashani, J. Z. and Ghamsari, A. K. (2008). Theoretical and experimental analysis of plastic response of isotropic circular plates subjected to underwater explosion loading. *Mat.-wiss. u. Werkstofftechn.*, 39(2):171–175.
- [Berger and Helzel, 2002] Berger, M. J. and Helzel, C. (2002). Grid aligned h-box methods for conservation laws in complex geometries. In *Proc. 3rd Intl. Symp. Finite Volumes for Complex Applications*, Porquerolles.
- [Cirak et al., 2007] Cirak, F., Deiterding, R., and Mauch, S. P. (2007). Large-scale fluid-structure interaction simulation of viscoplastic and fracturing thin shells subjected to shocks and detonations. *Computers & Structures*, 85(11-14):1049–1065.

Complex geometry	Combustion		References
References			
References			

[Davis, 1988] Davis, S. F. (1988). Simplified second-order Godunov-type methods. SIAM J. Sci. Stat. Comp., 9:445–473.

[Deiterding, 2003] Deiterding, R. (2003). *Parallel adaptive simulation of multi-dimensional detonation structures*. PhD thesis, Brandenburgische Technische Universität Cottbus.

[Deiterding et al., 2009] Deiterding, R., Cirak, F., and Mauch, S. P. (2009). Efficient fluid-structure interaction simulation of viscoplastic and fracturing thin-shells subjected to underwater shock loading. In Hartmann, S., Meister, A., Schäfer, M., and Turek, S., editors, Int. Workshop on Fluid-Structure Interaction. Theory, Numerics and Applications, Herrsching am Ammersee 2008, pages 65–80. kassel university press GmbH.

[Deiterding et al., 2006] Deiterding, R., Radovitzky, R., Mauch, S. P., Noels, L., Cummings, J. C., and Meiron, D. I. (2006). A virtual test facility for the efficient simulation of solid materials under high energy shock-wave loading. *Engineering* with Computers, 22(3-4):325–347.

[Deshpande et al., 2006] Deshpande, V. S., Heaver, A., and Fleck, N. A. (2006). An underwater shock simulator. *Royal Society of London Proceedings Series A*, 462(2067):1021–1041.

Complex geometry	Combustion	Fluid-structure interaction	References
References			
References	111		

- [Falcovitz et al., 1997] Falcovitz, J., Alfandary, G., and Hanoch, G. (1997). A
 - two-dimensional conservation laws scheme for compressible flows with moving boundaries. J. Comput. Phys., 138:83-102.
 - [Fedkiw, 2002] Fedkiw, R. P. (2002). Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method. *J. Comput. Phys.*, 175:200–224.
 - [Giordano et al., 2005] Giordano, J., Jourdan, G., Burtschell, Y., Medale, M., Zeitoun, D. E., and Houas, L. (2005). Shock wave impacts on deforming panel, an application of fluid-structure interaction. *Shock Waves*, 14(1-2):103–110.
 - [Harten, 1983] Harten, A. (1983). High resolution schemes for hyperbolic conservation laws. J. Comput. Phys., 49:357–393.
 - [Harten and Hyman, 1983] Harten, A. and Hyman, J. M. (1983). Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys., 50:235–269.
 - [Henshaw and Schwendeman, 2003] Henshaw, W. D. and Schwendeman, D. W. (2003). An adaptive numerical scheme for high-speed reactive flow on overlapping grids. J. Comput. Phys., 191:420–447.

Complex geometry	Combustion	Fluid-structure interaction	References
References			
References	IV		

- [Mader, 1979] Mader, C. L. (1979). *Numerical modeling of detonations*. University of California Press, Berkeley and Los Angeles, California.
- [Mauch, 2003] Mauch, S. P. (2003). Efficient Algorithms for Solving Static Hamilton-Jacobi Equations. PhD thesis, California Institute of Technology.
- [Meakin, 1995] Meakin, R. L. (1995). An efficient means of adaptive refinement within systems of overset grids. In 12th AIAA Computational Fluid Dynamics Conference, San Diego, AIAA-95-1722-CP.
- [Mittal and Iaccarino, 2005] Mittal, R. and Iaccarino, G. (2005). Immersed boundary methods. *Annu. Rev. Fluid Mech.*, 37:239–261.
- [Murman et al., 2003] Murman, S. M., Aftosmis, M. J., and Berger, M. J. (2003). Implicit approaches for moving boundaries in a 3-d Cartesian method. In *41st AIAA Aerospace Science Meeting*, AIAA 2003-1119.
- [Nourgaliev et al., 2003] Nourgaliev, R. R., Dinh, T. N., and Theofanus, T. G. (2003). On capturing of interfaces in multimaterial compressible flows using a level-set-based Cartesian grid method. Technical Report 05/03-1, Center for Risk Studies and Safety, UC Santa Barbara.

Complex geometry	Combustion	Fluid-structure interaction	References
References			
References	V		

- [Pantano et al., 2007] Pantano, C., Deiterding, R., Hill, D. J., and Pullin, D. I. (2007). A low-numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation of compressible flows. J. Comput. Phys., 221(1):63–87.
- [Pember et al., 1999] Pember, R. B., Bell, J. B., Colella, P., Crutchfield, W. Y., and Welcome, M. L. (1999). An adaptive Cartesian grid method for unsteady compressible flows in irregular regions. J. Comput. Phys., 120:287–304.
- [Quirk, 1994a] Quirk, J. J. (1994a). An alternative to unstructured grids for computing gas dynamics flows around arbitrarily complex two-dimensional bodies. *Computers Fluids*, 23:125–142.
- [Quirk, 1994b] Quirk, J. J. (1994b). A contribution to the great Riemann solver debate. Int. J. Numer. Meth. Fluids, 18:555–574.
- [Roma et al., 1999] Roma, A. M., Perskin, C. S., and Berger, M. J. (1999). An adaptive version of the immersed boundary method. *J. Comput. Phys.*, 153:509–534.
- [Sanders et al., 1998] Sanders, R., Morano, E., and Druguett, M.-C. (1998). Multidimensional dissipation for upwind schemes: Stability and applications to gas dynamics. J. Comput. Phys., 145:511–537.

Complex geometry	Combustion	Fluid-structure interaction	References
References			
References	VI		

[Sethian, 1999] Sethian, J. A. (1999). *Level set methods and fast marching methods*. Cambridge University Press, Cambridge, New York.

[Shyue, 1998] Shyue, K.-M. (1998). An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys., 142:208–242.

[Shyue, 2006] Shyue, K.-M. (2006). A volume-fraction based algorithm for hybrid barotropic and non-barotropic two-fluid flow problems. *Shock Waves*, 15:407–423.

- [Specht, 2000] Specht, U. (2000). Numerische Simulation mechanischer Wellen an Fluid-Festkörper-Mediengrenzen. Number 398 in VDI Reihe 7. VDU Verlag, Düsseldorf.
- [Toro et al., 1994] Toro, E. F., Spruce, M., and Speares, W. (1994). Restoration of the contact surface in the HLL-Riemann solver. *Shock Waves*, 4:25–34.
- [Tseng and Ferziger, 2003] Tseng, Y.-H. and Ferziger, J. H. (2003). A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys., 192:593–623.
- [Yamaleev and Carpenter, 2002] Yamaleev, N. K. and Carpenter, M. H. (2002). On accuracy of adaptive grid methods for captured shocks. J. Comput. Phys., 181:280–316.