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Block-based data structures

The mth refinement grid on level /

Notations:
Boundary: 9G/,m Complete grid
] with ghost
Aul cells - G/,

G/,m = Gl,m @] aG/,m

(jhost cell reg_ion:
GI(,Tm = G/?m\G/ sm

Interior grid with buffer cells - G
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Refinement data

. At Ax,
Resolution: At := 2771 and Ax, = =it
r : r
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Block-based data structures

Refinement data

: At Axp -
Resolution: At := —=L and Axn )= 2Xn,1—1
1] n

Refinement factor: n € N,y >2for/ >0and =1
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Serial SAMR method
oe
Block-based data structures

Refinement data

: At Axp -
Resolution: Atj := —— and Ax, = —2/—1
h n

Refinement factor: n € N,y >2for/>0and n=1

Integer coordinate system for internal organization [Bell et al., 1994]:

Imax

Ax, = H re

r=I+1
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Block-based data structures

Refinement data

: At Axp -
Resolution: Atj := —— and Ax, = —2/—1
h n

Refinement factor: n € N,y >2for/>0and n=1

Integer coordinate system for internal organization [Bell et al., 1994]:

Imax

Ax, ) = H re

r=I+1

Computational Domain: Gy = [JY°, Go,m
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Serial SAMR method
oe
Block-based data structures

Refinement data

At AXp -1
and Ax, = ==
r r

Refinement factor: n € N,y >2for/>0and n=1

Resolution: At :=

Integer coordinate system for internal organization [Bell et al., 1994]:

Imax

Ax, ) = H re

r=I+1
. . M
Computational Domain: Go = J,,2; Go,m

Domain of level I: G := Ug’ﬂ Gi,m with G mNG,=0frm#n
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Serial SAMR method
oe
Block-based data structures

Refinement data

At AXp -1
and Ax, = ==
r r

Refinement factor: n € N,y >2for/>0and n=1

Resolution: At :=

Integer coordinate system for internal organization [Bell et al., 1994]:

Imax

Ax, ) = H re

r=I+1
Computational Domain: Gy = Ug":l Go,m
Domain of level I: G, := Un’\:”zl Gi,m with G wNG,=0form#n

Refinements are properly nested: G} C G/_;
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Serial SAMR method
oe
Block-based data structures

Refinement data

At AXp -1
and Ax, = ==
r r

Refinement factor: n € N,y >2for/>0and n=1

Resolution: At :=

Integer coordinate system for internal organization [Bell et al., 1994]:

Imax

Ax, ) = H re

K=I+1

Computational Domain: Gy = Ug":l Go,m

Domain of level I: G, := Un’\:”zl Gi,m with G mNG,=0form+#n
Refinements are properly nested: G} C G,_1

Assume a FD scheme with stencil radius s. Necessary data:
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oe
Block-based data structures

Refinement data

At AXp -1
and Ax, = ==
r r

Refinement factor: n € N,y >2for/>0and n=1

Resolution: At :=

Integer coordinate system for internal organization [Bell et al., 1994]:

Imax

Ax, ) = H re

r=I+1
Computational Domain: Gy = Ug":l Go,m
Domain of level I: G, := Un’\:”zl Gi,m with G wNG,=0form#n
Refinements are properly nested: G! C G/_;
Assume a FD scheme with stencil radius s. Necessary data:
Vector of state: Q' :=J,, Q(G; )
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Refinement data

At AXp -1
and Ax, = ==
r r

Refinement factor: n € N,y >2for/>0and n=1

Resolution: At :=

Integer coordinate system for internal organization [Bell et al., 1994]:

Imax

Ax, ) = H re

r=I+1

Computational Domain: Gy = Ug":l Go,m

Domain of level I: G, := Un’\:”zl Gi,m with G wNG,=0form#n
Refinements are properly nested: G! C G/_;

Assume a FD scheme with stencil radius s. Necessary data:

Vector of state: Q' :=J,, Q(G; )
Numerical fluxes: F™' :=J, F"(G},m)
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Serial SAMR method
oe
Block-based data structures

Refinement data

At AXp -1
and Ax, = ==
r r

Refinement factor: n € N,y >2for/>0and n=1

Resolution: At :=

Integer coordinate system for internal organization [Bell et al., 1994]:

Imax

Ax, ) = H re

r=I+1
Computational Domain: Gy = Ug":l Go,m
Domain of level I: G, := Un’\:”zl Gi,m with G wNG,=0form#n
Refinements are properly nested: G! C G/_;
Assume a FD scheme with stencil radius s. Necessary data:
Vector of state: Q' :=J,, Q(G; )
Numerical fluxes: F™' :=J,, F"(G,m)
Flux corrections: 0F™ :=J,_0F"(0G/,m)
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@00
Numerical update

Setting of ghost cells
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Serial SAMR method
@00
Numerical update

Setting of ghost cells

= Synchronization with G, - 5, m= G, m NG
[ Physical boundary conditions - P, m= G, m\Go
[ Interpolation from Gj_1 - I, m= G, m\(S/ mU P, m)
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Serial SAMR method
oeo
Numerical update

Numerical update

Time-explicit conservative finite volume scheme

A 1 1 At 2 2
HAO s Qu(t+At) = Qu(t)— o (Floz, — FJ._%ﬁk)—A—X2 (FM% - FM_%)

s (
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Serial SAMR method
oeo
Numerical update

Numerical update

Time-explicit conservative finite volume scheme

At
HED: Qu(t+At) = Qi(t) =A%, (F}+%,k - F}—%,k)

_At (e — F?
Axy \ ikt3 Jok—3
UpdateLevel (/)

For all m=1 To M, Do
(Aty) —
QG t) "= Q(Grm, t + At)) ,F(Gim, )

The SAMR method for hyperbolic problems 7



Serial SAMR method
oeo
Numerical update

Numerical update

Time-explicit conservative finite volume scheme

At
HED: Qu(t+At) = Qi(t) =A%, (F}+%,k - F}—%,k)

_At (e — F?
Axy \ ikt3 Jok—3
UpdateLevel (/)

For all m=1 To M, Do
(Aty) —
QG t) "= Q(Grm, t + At)) ,F(Gim, )

If level /+ 1 exists
Init 6F"*! with F(G)nNOG1,t)
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Serial SAMR method
oeo
Numerical update

Numerical update

Time-explicit conservative finite volume scheme

At
HED: Qu(t+At) = Qi(t) =A%, (F}+%,k - F}—%,k)

_At (e — F?
Axy \ ikt3 Jok—3
UpdateLevel (/)

For all m=1 To M, Do

Q(Gim 1) "2V Q(Grmi t + A1) ,F" (G, 1)
If level />0

Add F"(8Gjm,t) to SF™
If level /+ 1 exists

Init 6F"*! with F(G)nNOG1,t)
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Serial SAMR method
ooe
Numerical update

Conservative flux correction

Example: Cell j, k

fy—1rp—1

I Al At 1, 1 141
Qe+ 20) = Qu(e) = T = | Fly o= 20 D R, (e mlnn)
’ I+1 k=0 =0
Ay (Fz,/ _ g2 )
Axyy \ ikt3 k=3
Correction pass:
W -

v(v+l
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Serial SAMR method
ooe
Numerical update

Conservative flux correction

Example: Cell j, k

fy—1rp—1

At 1
lek(t + At/) = lek(t) ! Fly, - Z FI’H—1 +L(t + HAtH,l)

T Ax ik v+3w
1,0 3 8 B Sl 2
At (Fz,/ g2/ )
- : 1 : 1
Axpy \ Jkts Jik—35

Correction pass:
1,141 1,0
5F,’+1 =—F",

J-g»k J—jak

v(v+l
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Serial SAMR method
ooe
Numerical update

Conservative flux correction

Example: Cell j, k

fy—1rp—1

At 1
I I / 1,0 1,041
w(t+ At) = Qi(t) — F> - 5 F> t + kAL
ij( ) ij() Axy itk r/2+1 et ; v+%,w+b( + 141)
At
RN
sz_’, Jk+5 J k=35
Correction pass:
1,1+ _ _pll <
5FJ_7 (= F._%,k . :
1 ry1—1
L+l . gpli+l 1/+1
5FJ—— KT 5Fj—%,k+ 2 > F, W+L(t+“At/+1)
+1 o T
v|v+l
T T
J=1
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Serial SAMR method
ooe
Numerical update

Conservative flux correction

Example: Cell j, k

fy—1rp—1
1

At

! — 0 _ IV 1,/+1
Qe +80) = Qu(t) = 0 = | Fly o~ D Py (t 4 rAtn)
’ I+1 k=0 =0
Ay (Fz,/ _ g2 )
Axyy \ Jk+3 Jrk—3
Correction pass:
LI+l . gl p
5Fj—%,k '_ Fj—%,k
W q
1 rp1—1
L4l opl,lf1 1,141
5Fj—%,k = 5Fj—%,k+ 2 Z FV+%,W+L(t+HAt/+1)
+1  ,—o TTT
oy I Aty 141 viv+l
w(t+ At) == Qi (t + Aty oF>
Qj(t + At) Qi (t + I)+AX1/ i1k | |
Jj—1

The SAMR method for hyperbolic problems 8



Serial SAMR method
L]
Conservative flux correction

Conservative flux correction Il
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Conservative flux correction

Conservative flux correction Il

Level I cells needing

correction (G,rfll\G/H) NG

N\

N\
N\

[ Cells to correct
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Serial SAMR method
L]
Conservative flux correction

Conservative flux correction Il

Level I cells needing

correction (G,rfll\G/H) NG

Corrections §F™/*1 stored on
level I + 1 along 9G41
(lower-dimensional data
coarsened by r11)

R\

R\
N\

[ Cells to correct o GEMI+L

The SAMR method for hyperbolic problems 9



Serial SAMR method
L]
Conservative flux correction

Conservative flux correction Il

Level I cells needing

correction (G,rfll\G/H) NG

Corrections §F™/*1 stored on
level I + 1 along 9G41
(lower-dimensional data
coarsened by r11)

M\

Init F™/*1 with level / fluxes
F/(G N OG1)

R\
N\

[ Cells to correct = F™/ o gFmI+1
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Serial SAMR method
L]
Conservative flux correction

Conservative flux correction Il

Level / cells needing /

correction (G,rfll\G/H) NG

Corrections §F™/+1 stored on / /
level | + 1 along 0G41 % /
(lower-dimensional data
coarsened by r11)

IFnlt/ fg[";*(;Gv;/Jirtlf; level / fluxes // / / / %

Add level | 4+ 1 fluxes
F"/*1(9Gp4) to F™!

Z Cells to correct . Fn.,l . Fn.,l+1 ° 5Fn,l+1
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Serial SAMR method
Level transfer operators

Conservative averaging (restriction):
Replace cells on level | covered by level [ + 1, i.e
G N Gpy1, by

fp1—=1lrp1— . k

A . 141
Qji == ) > Z Qb we v .

I’/+1 k=0 =0

(XJ/ 7X2/ )
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Serial SAMR method
Level transfer operators

Conservative averaging (restriction):
Replace cells on level | covered by level [ + 1, i.e

—1
G Grsa, by - T
rp1—1rp1— . k
QJI'k = 2 Z Z Q(/JTFIN,WJM v °
/’/+1
Bilinear interpolation (prolongation): 47 7X2, b 1
Q.= 1-h)1- fz)QJ 1h—1+ A(l— fZ)ka 1+
w

(1-A)HaQj 14+ A Qj

v j—1 w k—1
X1,0+1 — X{,/ X241 — Xy . .
———= f:= ———= derived from the spatial

Axq Axy

. -1 k-1
coordinates of the cell centers (x’, ,x2, ) and (X7 /51, %7141)-

with factors f; :=
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Serial SAMR method
Level transfer operators

Conservative averaging (restriction):
Replace cells on level | covered by level [ + 1, i.e

—1
G Grsa, by - T
rp1—1rp1— . k
QJI'k = 2 Z Z Q(/JTFIN,WJM v °
/’/+1
Bilinear interpolation (prolongation): 47 7X2, b 1
Q.= 1-h)1- fz)QJ 1h—1+ A(l— fZ)ka 1+
w

(1-A)HaQj 14+ A Qj

v j—1 w k—1
X1,0+1 — X{,/ X241 — Xy . .
———= f:= ———= derived from the spatial
Axq Axy

. -1 k-1
coordinates of the cell centers (x’, ,x2, ) and (X7 /51, %7141)-

with factors f; :=

For boundary conditions on 7,5: linear time interpolation

QM (t+rAt) = (1— 2 ) Q)+ QM (t+At) fork=0,... 14
Fi+1 Fi+1
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Serial SAMR method
@000
The basic recursive algorithm

Recursive integration order

Root Level
n=1 1

Level 1
n=4a 2 5 8 11

Level 2 ——t—t
=2 3 4 6 7 9 10 12 13

.
_
Time

— — > Regridding of finer levels.
Base level (@) stays fixed.
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The basic recursive algorithm

Recursive integration order

Space-time interpolation of coarse data to set I,/ >0

Root Level
n=1 1

Level 1
n=4a 2 5 8 11

Level 2 ——t—t
=2 3 4 6 7 9 10 12 13

.
_
Time

— — > Regridding of finer levels.
Base level (@) stays fixed.
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Serial SAMR method
@000
The basic recursive algorithm

Recursive integration order

Space-time interpolation of coarse data to set I,/ >0
Regridding:
Creation of new grids, copy existing cells on level / > 0

Root Level @

Q@

n=1 | 1 |

I I

Level 1 Y @ @ @ Y

n=4 P2 7 5 7 8 11

I I I I I

level2 Y ¥ 4+ ¥ 1 ¥ ¥
ry = 3 4 6 7 9 10 12 13

.
_
Time

— — > Regridding of finer levels.
Base level (@) stays fixed.
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Serial SAMR method
@000
The basic recursive algorithm

Recursive integration order

Space-time interpolation of coarse data to set I,/ >0
Regridding:
Creation of new grids, copy existing cells on level / > 0
Spatial interpolation to initialize new cells on level / > 0

Root Level @ @

I‘[):].

n==4 2 5 8

|
|
Level 1 Y @ @ @
|
|
Y

I
I
Y
I I 11
I I I I

Level 2 IY'Y'Y'Y

T T T
=2 3 4 6 7 9 10 12 13

.
_
Time

— — > Regridding of finer levels.
Base level (@) stays fixed.
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Serial SAMR method
0e00
The basic recursive algorithm

The basic recursive algorithm

AdvanceLevel (/)

Repeat r times
Set ghost cells of Q'(t)

UpdateLevel(/)

t:=t+ At

The SAMR method for hyperbolic problems 12



Serial SAMR method
0e00
The basic recursive algorithm

The basic recursive algorithm

AdvanceLevel (/)

Repeat r times
Set ghost cells of Q'(t)

UpdateLevel(/)

If level /+ 1 exists?
Set ghost cells of Q'(t+ At)
AdvanceLevel (/ + 1)

Recursion

t:=t+ At
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Serial SAMR method
0e00
The basic recursive algorithm

The basic recursive algorithm

AdvanceLevel (/)

Repeat r times
Set ghost cells of Q'(t)

UpdateLevel(/)

If level /+ 1 exists? Recursion
Set ghost cells of Q'(t+ At) Restriction and flux
AdvanceLevel (/ 4+ 1) correction

Average Q’“(tJrAt/) onto Q’(t+At/)
Correct Q/(t+At/) with OF!
t:=t+ At
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Serial SAMR method
0e00
The basic recursive algorithm

The basic recursive algorithm

AdvanceLevel (/)

Repeat r times

Set ghost cells of Q'(t)

If time to regrid?
Regrid(/)

UpdateLevel(/)

If level /+ 1 exists?
Set ghost cells of Q'(t+ At)
AdvanceLevel (/ + 1)
Average Q’“(tJrAt/) onto Q’(t+At/)
Correct Q/(t+At/) with OF!

t:=t+ At

The SAMR method for hyperbolic problems

Recursion
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Re-organization of
hierarchical data
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0e00
The basic recursive algorithm

The basic recursive algorithm

AdvanceLevel (/)

Repeat r times

Set ghost cells of Q'(t)

If time to regrid?
Regrid(/)

UpdateLevel(/)

If level /+ 1 exists?
Set ghost cells of Q'(t+ At)
AdvanceLevel (/ + 1)
Average Q’“(tJrAt/) onto Q’(t+At/)
Correct Q/(t+At1) with OF!

t:=t+ At

Start - Start integration on level O

/::0, n = 1
AdvanceLevel (/)

The SAMR method for hyperbolic problems

Recursion

Restriction and flux
correction

Re-organization of
hierarchical data



Serial SAMR method
0e00
The basic recursive algorithm

The basic recursive algorithm

AdvanceLevel (/)

Repeat r times

Set ghost cells of Q'(t)

If time to regrid?
Regrid(/)

UpdateLevel(/)

If level /+ 1 exists?
Set ghost cells of Q'(t+ At)
AdvanceLevel (/ + 1)
Average Q’“(tJrAt/) onto Q’(t+At/)
Correct Q/(t+At1) with OF!

t:=t+ At

Start - Start integration on level O

/::0, n = 1
AdvanceLevel (/)

[Berger and Colella, 1988][Berger and Oliger, 1984]

The SAMR method for hyperbolic problems
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Restriction and flux
correction

Re-organization of
hierarchical data



Serial SAMR method
[e]e] o)
The basic recursive algorithm

Regridding algorithm

Regrid(/) - Regrid all levels ¢ >/

For ¢ = Il Downto / Do
Flag N* according to Q‘(t)
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Serial SAMR method
[e]e] o)
The basic recursive algorithm

Regridding algorithm

Regrid(/) - Regrid all levels ¢ >/

For ¢ = lf Downto / Do Refinement flags:
Flag N* according to Q‘(t) N =, N(Gi.m)
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Serial SAMR method
[e]e] o)
The basic recursive algorithm

Regridding algorithm

Regrid(/) - Regrid all levels ¢ >/

For ¢ = Ir Downto / Do Refinement flags:
Flag N* according to Q‘(t) N =, N(Gi.m)
If level ¢+ 1 exists? " '

o Activate flags below highe
Flag N below G'+2 e Tiags beloW TIgner

levels
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Serial SAMR method
[e]e] o)
The basic recursive algorithm

Regridding algorithm

Regrid(/) - Regrid all levels ¢ >/

For ¢ = Ir Downto / Do Refinement flags:
Flag N* according to Q‘(t) N =, N(Gi.m)
If level ¢+ 1 exists? " '

o Activate flags below higher
Flag N‘ below G'*2 levels

Flag buffer zone on N*
Flag buffer cells of b > &, cells,

Kr steps between calls of
Regrid(/)
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Serial SAMR method
[e]e] o)
The basic recursive algorithm

Regridding algorithm

Regrid(/) - Regrid all levels ¢ >/

For ¢ = Ir Downto / Do Refinement flags:

Flag N* according to Q‘(t) N =, N(Gi.m)

If level ¢+ 1 exists? " ’
evel ¢+ exists 5 Activate flags below higher
Flag N' below G'T levels

Flag buffer zone on N*

Generate Gl from N Flag buffer cells of b > k, cells,

Kr steps between calls of

Regrid(/)

Special cluster algorithm
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Serial SAMR method
[e]e] o)
The basic recursive algorithm

Regridding algorithm

Regrid(/) - Regrid all levels ¢ >/

For ¢ = I¢ Downto / Do Refinement flags:
Flag N* according to Q‘(t) N':= U, N(9G1.m)
If level ¢+ 1 exists? " '
Flag N‘ below G'*2
Flag buffer zone on N* Flag buff s of b > |
“11 . ag buffer cells o Ky cells,
o Generate G from N K, steps between calls of
G = G Regrid(/)
For « =1/ To Ir Do

CG, = Go\G, :
o o o1 Use complement operation to
Gi1 = G\ CG, ensure proper nesting condition

Activate flags below higher
levels

Special cluster algorithm

The SAMR method for hyperbolic problems



Serial SAMR method
[e]e] o)
The basic recursive algorithm

Regridding algorithm

Regrid(/) - Regrid all levels ¢ >/

For ¢ = Il Downto / Do
Flag N* according to Q‘(t)
If level t+ 1 exists?

Flag N below G''2

Flag buffer zone on N*
Generate G'™! from N*

C/ = G/

For « =1/ To Ir Do
CG, = G\G,
Gt = G\ CE

Recompose (/)

The SAMR method for hyperbolic problems

Refinement flags:

N = U, N(OGr,m)
Activate flags below higher
levels

Flag buffer cells of b > &, cells,
K, steps between calls of
Regrid(/)

Special cluster algorithm

Use complement operation to
ensure proper nesting condition




Serial SAMR method
oooe
The basic recursive algorithm

Recomposition of data

Recompose(/) - Reorganize all levels ¢ >/

For t=1/+1 To lf+1 Do

Creates max. 1 level above /¢, but can remove multiple level if éL
empty (no coarsening!)
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oooe
The basic recursive algorithm

Recomposition of data

Recompose(/) - Reorganize all levels ¢ >/

For t=1/+1 To lf+1 Do
Interpolate Q‘~(t) onto Q(t)

Creates max. 1 level above /¢, but can remove multiple level if éL
empty (no coarsening!)

Use spatial interpolation on entire data Q*(t)
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Serial SAMR method
oooe
The basic recursive algorithm

Recomposition of data

Recompose(/) - Reorganize all levels ¢ >/

For t=1/+1 To lf+1 Do
Interpolate Q‘~(t) onto Q(t)
Copy Q‘(t) onto Q'(t)

Creates max. 1 level above /¢, but can remove multiple level if éL
empty (no coarsening!)

Use spatial interpolation on entire data Q*(t)

Overwrite where old data exists
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oooe
The basic recursive algorithm

Recomposition of data

Recompose(/) - Reorganize all levels ¢ >/

For t=1/+1 To lf+1 Do
Interpolate Q‘~(t) onto Q(t)
Copy Q*(t) onto C)L(t)

Set ghost cells of Q'(t)

Creates max. 1 level above /¢, but can remove multiple level if éL
empty (no coarsening!)

Use spatial interpolation on entire data Q*(t)
Overwrite where old data exists
Synchronization and physical boundary conditions
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Serial SAMR method
oooe
The basic recursive algorithm

Recomposition of data

Recompose(/) - Reorganize all levels ¢ >/

For t=1/+1 To lf+1 Do
Interpolate Q‘~(t) onto Q(t)
Copy Q‘(t) onto C)L(t)

Set ghost cells of Q'(t)
Q'(t) .= Q“(t), G, =G,

Creates max. 1 level above /¢, but can remove multiple level if éL
empty (no coarsening!)

Use spatial interpolation on entire data Q*(t)

Overwrite where old data exists

Synchronization and physical boundary conditions

The SAMR method for hyperbolic problems



Serial SAMR method
e0
Cluster algorithm

Clustering by signatures

X X X X X X|6

X X X X X X|[|6

X X X 3

X X X 3
X X 2
X X 2
X X 2
0

X X 2
2

T 6 6 2 3 2 2 2 2 2

T Flagged cells per row/column

A Second derivative of T, A =T,11 — 2T, +T,1
Technique from image detection: [Bell et al., 1994], see also
[Berger and Rigoutsos, 1991], [Berger, 1986]
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Cluster algorithm

Clustering by signatures

X X X X X X|[|6 X X X X X X|6
X X X X X X|[|6 X X X X X x|6 -3
X X X 3 X X X 3 3
X X X 3 X X X 3 -1
X X 2 X X 2 1
X X 2 X X 2 0
X X 2 X X 2
0
X X 2 /
2 %
™Y 6 6 2 3 2 2 2 2 2 T 4 4 2 3 2 2 2 22
A -23-21000
T Flagged cells per row/column

A Second derivative of T, A =T, 41 —27T, +T,_1
Technique from image detection: [Bell et al., 1994], see also
[Berger and Rigoutsos, 1991], [Berger, 1986]
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Serial SAMR method
(o] J
Cluster algorithm

0077,

X 3
X X X 3 -1
X X 2 1
X X 2
X X 2

T 4 4 2 11
A 21
Recursive generation of G,m
0inT

Largest difference in A
Stop if ratio between flagged and unflagged cell > 7o
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Cluster algorithm

%5%% 4%
X X X 3 X X X 3
) - % 1
X X 2
X X 2 %
7 Y
T 4 4 2 11 T 2 11
A 21 § A 1
Recursive generation of Gjm
0inT

Largest difference in A
Stop if ratio between flagged and unflagged cell > 7o
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Cluster algorithm

%5%% 4%
X X X 3 X X X 3
) - % 1
X X 2
X X 2 %
7 Y
T 4 4 2 11 T 2 11
A 21 § A 1
Recursive generation of Gjm
0inT

Largest difference in A
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Serial SAMR method
@00
Refinement criteria

Refinement criteria

Scaled gradient of scalar quantity w

IW(Qjr1,6)—w(Qu)| > €w, W(Qjk+1)=w(Qi)| > ew s [W(Qjr1h+1)—wW(Qii)| > €w
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Serial SAMR method
@00
Refinement criteria

Refinement criteria

Scaled gradient of scalar quantity w

IW(Qjr1,6)—w(Qu)| > €w, W(Qjk+1)=w(Qi)| > ew s [W(Qjr1h+1)—wW(Qii)| > €w

Heuristic error estimation [Berger, 1982]:
Local truncation error of scheme of order o

a(x, t + At) — HA(q(-, 1)) = CAL™ + O(AE**?)
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Refinement criteria

Scaled gradient of scalar quantity w

IW(Qjr1,6)—w(Qu)| > €w, W(Qjk+1)=w(Qi)| > ew s [W(Qjr1h+1)—wW(Qii)| > €w

Heuristic error estimation [Berger, 1982]:
Local truncation error of scheme of order o

a(x, t+ At) - H(q(-, 1) = CAL* + O(At*?)
For q smooth after 2 steps At
a(x, t + At) — HL(q(-, t — At)) = 2CAT + O(A°T?)
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Serial SAMR method
@00
Refinement criteria

Refinement criteria

Scaled gradient of scalar quantity w

IW(Qjr1,6)—w(Qu)| > €w, W(Qjk+1)=w(Qi)| > ew s [W(Qjr1h+1)—wW(Qii)| > €w

Heuristic error estimation [Berger, 1982]:
Local truncation error of scheme of order o

a(x, t + At) — HA(q(-, 1)) = CAt™ + O(At°T?)
For q smooth after 2 steps At
a(x, t + At) — HL(q(-, t — At)) = 2CAT + O(A°T?)
and after 1 step with 2At
a(x, t + At) — HPA(q(-, t — At)) = 2°TICAt° T + O(At°™?)
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Serial SAMR method
@00
Refinement criteria

Refinement criteria

Scaled gradient of scalar quantity w

IW(Qjr1,6)—w(Qu)| > €w, W(Qjk+1)=w(Qi)| > ew s [W(Qjr1h+1)—wW(Qii)| > €w

Heuristic error estimation [Berger, 1982]:
Local truncation error of scheme of order o

a(x, t + At) — HA(q(-, 1)) = CAt™ + O(At°T?)
For q smooth after 2 steps At
a(x, t + At) — HL(q(-, t — At)) = 2CAT + O(A°T?)
and after 1 step with 2At
a(x, t + At) — HPA(q(-, t — At)) = 2°TICAt° T + O(At°™?)
Gives

HEN (-, t — At)) — HPA)(q(-, t — At)) = (2°7 — 2)CAt°H + O(A°H?)

The SAMR method for hyperbolic problems 17
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Refinement criteria

Heuristic error estimation for FV methods

1. Error estimation on
interior cells
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oeo
Refinement criteria

Heuristic error estimation for FV methods

1. Error estimation on
interior cells

N -
\‘——-/

HAI’/ Ql(tl _ At/) HAt/(HAt, Ql(tl _ Atl))
= 'HzAt/ Ql(t/ 7At/)
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Serial SAMR method
oeo
Refinement criteria

Heuristic error estimation for FV methods

2. Create temporary Grid
coarsened by factor 2
Initialize with fine-grid-

values of preceding 1. Error estimation on
time step interior cells
7 X S G
<
N -

S ="

HAI’/ Ql(tl _ At/) HAt/(HAt, Ql(tl _ Atl))
= 'HzAt/ Ql(t/ 7At/)
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Serial SAMR method
oeo
Refinement criteria

Heuristic error estimation for FV methods

2. Create temporary Grid
coarsened by factor 2
Initialize with fine-grid-

values of preceding 1. Error estimation on
time step interior cells

7 X NS G

& A N
ay,
\\ > S -~ - //
S At -,
S HATQ(G - Ay) HAUHAY Q! (4 - AY)) L7
~ -,
~ At ~/ -
\\\ = 'H2 Q(tlfAt/)’,’
— -~ - - -

-~
—— - ——

H2A Q’(t/ — At/)
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Serial SAMR method
oeo
Refinement criteria

Heuristic error estimation for FV methods

2. Create temporary Grid
coarsened by factor 2
Initialize with fine-grid-

values of preceding 1. Error estimation on 3. Compare tempo-
time step interior cells rary solutions
A% R AN
: g
ay,
\\ N ~—__~- s //
S At o s
\\'H b Q'(t) — Ay) HAt,(HAt, Ql(t, — At) e
~ -,
~ At; A1 -
Seo = H,'Q(H—-Ay) -
— -~ — - -

-~
—— - ——

H2A Q’(t/ — At/)
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Serial SAMR method
ooce
Refinement criteria

Usage of heuristic error estimation

Current solution integrated tentatively 1 step with At; and coarsened

Q(t; + At;) := Restrict (H?f’ Q’(t, — At/))
Previous solution coarsened and integrated 1 step with 2At¢

Oty + Aty) := H>A! Restrict (Q'(t — Aty))
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Refinement criteria

Usage of heuristic error estimation

Current solution integrated tentatively 1 step with At; and coarsened

O(t; + Aty) := Restrict (H?f’ Q'(t — At/))
Previous solution coarsened and integrated 1 step with 2At¢

Oty + Aty) := H>A! Restrict (Q'(t — Aty))
Local error estimation of scalar quantity w

w(Qy(t + At)) — w(Qu(t + At))|
2o+l _ 9

w o.__
Tik =
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Serial SAMR method
ooce
Refinement criteria

Usage of heuristic error estimation

Current solution integrated tentatively 1 step with At; and coarsened

O(t; + Aty) := Restrict (H?f’ Q'(t — At/))
Previous solution coarsened and integrated 1 step with 2At¢

Oty + Aty) := H>A! Restrict (Q'(t — Aty))
Local error estimation of scalar quantity w

w(Q(t + At)) — w(Qu(t + At))|

7.JV;(/ = 2o+l _ 9
In practice [Deiterding, 2003] use
Tik .
>
max([w(Qu(t + AD)[.5,) ~ ™
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Parallel SAMR method

Outline

Parallel SAMR method
Domain decomposition
A parallel SAMR algorithm
Partitioning
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Domain decomposition

Parallelization strategies

Decomposition of the hierarchical data

Distribution of each grid
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[Rendleman et al., 2000]
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Parallelization strategies

Decomposition of the hierarchical data
Distribution of each grid

Separate distribution of each level, cf.
[Rendleman et al., 2000]

Rigorous domain decomposition
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Parallel SAMR method
@000

Domain decomposition

Parallelization strategies

Decomposition of the hierarchical data
Distribution of each grid

Separate distribution of each level, cf. Processor 1 Processor 2
[Rendleman et al., 2000]

Rigorous domain decomposition

Data of all levels resides on same
node

L L LLL L L LLLY
DT IO
v L L)/
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Domain decomposition

Parallelization strategies

Decomposition of the hierarchical data
Distribution of each grid

Separate distribution of each level, cf. Processor 1 Processor 2
[Rendleman et al., 2000]

Rigorous domain decomposition

Data of all levels resides on same

node
Grid hierarchy defines unique
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Parallel SAMR method
@000

Domain decomposition

Parallelization strategies

Decomposition of the hierarchical data
Distribution of each grid

Separate distribution of each level, cf. Processor 1 Processor 2
[Rendleman et al., 2000]

Rigorous domain decomposition

Data of all levels resides on same

node
Grid hierarchy defines unique
i ” L L L LY, L LLLLY
floor-plan (2227777
yr 777

Redistribution of data blocks
during reorganization of
hierarchical data

The SAMR method for hyperbolic problems



Parallel SAMR method
@000
Domain decomposition

Parallelization strategies

Decomposition of the hierarchical data
Distribution of each grid

Separate distribution of each level, cf. Processor 1 Processor 2
[Rendleman et al., 2000]

Rigorous domain decomposition

Data of all levels resides on same
node

Grid hierarchy defines unique

" floor-plan”

Redistribution of data blocks
during reorganization of
hierarchical data

Synchronization when setting
ghost cells

L L LLL L L LLLY

The SAMR method for hyperbolic problems 21



Parallel SAMR method
0e00

Domain decomposition

Rigorous domain decomposition formalized

Parallel machine with P identical nodes. P non-overlapping portions GJ,
p=1,...,Pas

P
Go:UGOP with Gf NG =0 for p#q

p=1

22
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Rigorous domain decomposition formalized

Parallel machine with P identical nodes. P non-overlapping portions GJ,
p=1,...,Pas

P
Go:UGOP with Gf NG =0 for p#q
p=1
Higher level domains G, follow decomposition of root level

GP =G NG
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Parallel SAMR method
0e00

Domain decomposition

Rigorous domain decomposition formalized

Parallel machine with P identical nodes. P non-overlapping portions GJ,
p=1,...,Pas

P
Go:UGOP with Gf NG =0 for p#q
p=1
Higher level domains G, follow decomposition of root level
G’ =GnNGy
With N(-) denoting number of cells, we estimate the workload as

W(Q) = Z [M(G, nQ) ﬁ r&}

1=0 ~=0

22

The SAMR method for hyperbolic problems



Parallel SAMR method
0e00

Domain decomposition

Rigorous domain decomposition formalized

Parallel machine with P identical nodes. P non-overlapping portions GJ,
p=1,...,Pas

P
Go:UGOP with Gf NG =0 for p#q

p=1
Higher level domains G, follow decomposition of root level
G’ =GnNGy

With N(-) denoting number of cells, we estimate the workload as

W(Q) = Z [M(G, nQ) ﬁ r&}

1=0 ~k=0
Equal work distribution necessitates

_ P-W(&)

LP = ~1 forallp=1,...,P
W(Go) orall p ’ ’

[Deiterding, 2005]

The SAMR method for hyperbolic problems
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Parallel SAMR method
[e]e] o)

Domain decomposition

Ghost cell setting

Processor 1 Processor 2

Ghost cell values:

[ Interpolation I Parallel synchronization
[ Local synchronization [ Physical boundary
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Parallel SAMR method
[e]e] o)

Domain decomposition

Ghost cell setting

Local synchronization

o= Grnn G
,

I,m

Processor 1 Processor 2

Ghost cell values:

[ Interpolation I Parallel synchronization
[ Local synchronization [ Physical boundary

The SAMR method for h
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Parallel SAMR method
[e]e] o)

Domain decomposition

Ghost cell setting

Local synchronization

E5,p _ 5P p
SI,m - Gl,m n GI

Processor 1 Processor 2

Parallel synchronization

ST =GPNGla#p

Ghost cell values:

[ Interpolation Il Parallel synchronization
[ Local synchronization [ Physical boundary
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erbolic problems 23



Parallel SAMR method
[e]e] o)
Domain decomposition

Ghost cell setting

Local synchronization

E5,p _ 5P p
SI,m - Gl,m n GI

Processor 1 Processor 2
Parallel synchronization

Interpolation and physi-

cal boundary conditions
remain strictly local

Scheme H(At) —
L L Ll L
evaluated locally 22222228
77777772
Restriction a.nd 22222772
propolongation
local

Ghost cell values:

[ Interpolation Il Parallel synchronization
[ Local synchronization [ Physical boundary

The SAMR method for hyperbolic problems pxj
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Domain decomposition

Parallel flux correction
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Domain decomposition

Parallel flux correction

Strictly local: Init SF™/*1 with F"(G; , N 0G41, t)

Node q

- 14’1.0.1010’. tc.ciO.rc g
= =7
° Fn,l
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Parallel SAMR method
[e]e]e] )

Domain decomposition

Parallel flux correction

Strictly local: Init SF™/*1 with F"(G; , N 0G41, t)

Node q

c,c.o.aocﬂ. lc.c.o.rc
=7 =7
. F"J O5Fn,l+1
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Parallel SAMR method
[e]e]e] )
Domain decomposition

Parallel flux correction

Strictly local: Init SF™/*1 with F"(G; , N 0G41, t)
Strictly local: Add F"(0G) m,t) to §F™/
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Parallel SAMR method
[e]e]e] )
Domain decomposition

Parallel flux correction

Strictly local: Init SF™/*1 with F"(G; , N 0G41, t)
Strictly local: Add F"(0G) m,t) to §F™/

Parallel communication: Correct Q/(t + At;) with §F/+1

Node p Node q

The SAMR method for hyperbolic problems 24



Parallel SAMR method
@00
A parallel SAMR algorithm

The recursive algorithm in parallel

AdvanceLevel (/)

Repeat r; times

Set ghost cells of Q/(t)

If time to regrid?
Regrid(/)

UpdateLevel (/)

If level [+ 1 exists?
Set ghost cells of Q’(t—i—At,)
AdvanceLevel(/ 4 1)
Average Q/*l(t + At)) onto Q'(t+ At))
Correct Ql(t—l—At,) with oF/+1

t:=t+ At

UpdateLevel(/)

For all m=1 To M, Do

H(Bt) _
Q(Gﬁm,t) — Q(G;,m, t+ At)) ,F(Gj,m, t)
If level />0

Add F"(0G) m,t) to SF™!
If level /+ 1 exists
Init 6F™/*1 with F(G)m N 0G4, t)

The SAMR method for hyperbolic problems



Parallel SAMR method
@00

A parallel SAMR algorithm

The recursive algorithm in parallel

AdvanceLevel (/)

Repeat r; times
Set ghost cells of Q/(t)
If time to regrid?

Regrid(/)

If level [+ 1 exists? .
Set ghost cells of Q’(t—i—At,) Nu'mer'cal update
Advancelevel(/ + 1) strictly local

Average Q/*l(t + At)) onto Q'(t+ At))
Correct Ql(t—l—At,) with oF/+1
ti=t+ At
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Repeat r; times
Set ghost cells of Q/(t)
If time to regrid?

Regrid(/)

If level [+ 1 exists? .
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Parallel SAMR method
@00
A parallel SAMR algorithm

The recursive algorithm in parallel

AdvanceLevel (/)

Repeat r; times

If time to regrid?
Regrid(/)

If level [+ 1 exists? .
Numerical update

Advancelevel(/ + 1) strictly local

Inter-level transfer local
Correct Ql(t—l— At)) with SFH1

t:=t+ At Parallel synchronization
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Parallel SAMR method
@00

A parallel SAMR algorithm

The recursive algorithm in parallel

AdvanceLevel (/)

Repeat r; times

If time to regrid?
Regrid(/)

If level [+ 1 exists? .
Numerical update

Advancelevel(/ + 1) strictly local
Inter-level transfer local

t:=t+ At Parallel synchronization

Application of 5F'*! on
oG}
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Parallel SAMR method
@00

A parallel SAMR algorithm

The recursive algorithm in parallel

Regrid(/)

Numerical update
strictly local

Inter-level transfer local
Parallel synchronization

Application of 5F'*! on
oG}
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Parallel SAMR method
oeo

Regridding algorithm in parallel

A parallel SAMR algorithm

Regrid(/) - Regrid all levels ¢ >/

For ¢+ = If Downto / Do
Flag N‘ according to Q‘(t)
If level ¢+ 1 exists?
Flag N* below G+2
Flag buffer zone on N*
Generate G't! from N*
G =G
For v+ =1/ To If Do
CG, == Go\G,
él,+1 = UL+1\CC&
Recompose (/)

The SAMR method for hyperbolic problems




Parallel SAMR method
oeo

Regridding algorithm in parallel

A parallel SAMR algorithm

Regrid(/) - Regrid all levels ¢ >/

For ¢+ = If Downto / Do

Flag buffer zone on N*
Generate G'tl from N
G = G
For v+ =1/ To If Do
CG, := Gp\G,
v v v 1
GL+1 = 1,+1\CGL
Recompose (/)
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Parallel SAMR method
oeo

Regridding algorithm in parallel

A parallel SAMR algorithm

Regrid(/) - Regrid all levels ¢ >/

For .= I; Downto / Do Need a ghost cell overlap of b
cells to ensure correct setting
of refinement flags in parallel
Generate G'tl from N
G = G
For ¢+ =1/ To If Do
CG, := Go\G,
o o o1
GL+1 = 1,+1\CGL
Recompose (/)
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Parallel SAMR method

oeo
A parallel SAMR algorithm

Regridding algorithm in parallel

Regrid(/) - Regrid all levels ¢ >/

For ¢ = Iy Downto | Do Need a ghost cell overlap 9f b
cells to ensure correct setting
of refinement flags in parallel

Two options exist (we choose
the latter):
G =G
For v+ =1/ To If Do
gén = GUO\GL 1 Local clustering algorithm
Go41: +1\CG, and cvoncatenation of new
Recompose (/) lists G

Global clustering
algorithm
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A parallel SAMR algorithm

Regridding algorithm in parallel

Regrid(/) - Regrid all levels ¢ >/

Need a ghost cell overlap of b
cells to ensure correct setting
of refinement flags in parallel

For ¢+ = If Downto / Do

Two options exist (we choose
the latter):

Global clustering
algorithm

Local clustering algorithm
and concatenation of new

; ;etl
Recompose (/) lists G*
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A parallel SAMR algorithm

Regridding algorithm in parallel

Need a ghost cell overlap of b
cells to ensure correct setting
of refinement flags in parallel

Two options exist (we choose
the latter):

Global clustering
algorithm

Local clustering algorithm
and concatenation of new

; ;etl
Recompose (/) lists G*
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Parallel SAMR method
[e]o] J

A parallel SAMR algorithm

Recomposition algorithm in parallel

Recompose(/) - Reorganize all levels

For t=/+1 To It +1 Do

Interpolate Q‘~1(t) onto Q(t)

Copy Q“(t) onto Q‘(t)

Set ghost cells of Q‘(t)
Q! (1) == Q'(1)
G =G,
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Parallel SAMR method
[e]o] J

A parallel SAMR algorithm

Recomposition algorithm in parallel

Recompose(/) - Reorganize all levels

Generate G§ from {Go,..., G/, Giit, o) élf+1}
For t+ =0 To I+ 1 Do . .
f Global redistribution can also

be required when regridding
Interpolate Q“~1() onto Q'(t) higher levels and Go, ..., G, do

not change (drawback of

domain decomposition)

Copy Q‘(t) onto GL(t)
Set ghost cells of Q‘(t)
Q' (1) == Q(1)

GP =GP, G :=U,GP
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A parallel SAMR algorithm

Recomposition algorithm in parallel

Recompose(/) - Reorganize all levels

Generate Gé’ from {Go, ..., G, é/_H, e élf+1}

For t =0 To Ir+1 Do .. .
f Global redistribution can also

If v> 1 . A
&P =¢.n GP b.e required when regridding
Interpolate Q‘~1(t) onto Q'(t) higher levels and Gy, ..., G; do

not change (drawback of
domain decomposition)

When ¢ > [ do nothing special
For + </, redistribute
additionally

Copy Q‘(t) onto QL(t)
Set ghost cells of Q‘(t)
Q' (1) == Q(1)

GP =GP, G :=U,GP
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Parallel SAMR method
[e]o] J

A parallel SAMR algorithm

Recomposition algorithm in parallel

Recompose(/) - Reorganize all levels

Generate Gé’ from {Go, ..., G, é/_H, e élf+1}
For ¢+ =0 To I+ 1 Do

£ 0> | Global redistribution can also
&P =¢.n GP be required when regridding
Interpolate Q“~(t) onto Q'(t) higher levels and Gy, ..., G; do
else not change (drawback of
GP=G6nGE domain decomposition)
£ >0 . When ¢ > [ do nothing special
Copy O6F™* onto JF™*
SFme = §Fne For « </, redistribute
additionally
Copy Q(t) onto Q¢(¢) Flux corrections 6F™*

Set ghost cells of Q‘(t)
Q'(r) = A'(1)
GP =GP, G, = Up GP
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Parallel SAMR method
[e]o] J

A parallel SAMR algorithm

Recomposition algorithm in parallel

Recompose(/) - Reorganize all levels

Generate Gé’ from {Go, ..., G, é/_H, e élf+1}
For ¢+ =0 To I+ 1 Do

£ 0> | Global redistribution can also
&P =¢.n GP be required when regridding
Interpolate Q‘~1(t) onto Q'(t) higher levels and Go, ..., G; do

else not change (drawback of
GP=G6nGE domain decomposition)
It iogy SE™ onto SEM When ¢ > | do nothing special

SFme = §Fne For v </, redistribute

If >/ then Kk, =0 else K, =1 additionally

For k =0 To k, Do Fl ) SE™
Copy Q'(t+ kAt,) onto Q(t + kAt,) ux corrections .
Set ghost cells of Q'(t+ kAt,) Alreadyl’ updated time
QL(t+ KAtL) — QL(t+ HAtL) level Q (t + IiAtL)

.

GP =GP, G, = Up GP
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Parallel SAMR method
[e]o] J

A parallel SAMR algorithm

Recomposition algorithm in parallel

Global redistribution can also
be required when regridding
higher levels and G, ..., G; do
not change (drawback of
domain decomposition)

When ¢ > [ do nothing special

For + </, redistribute
additionally

Flux corrections 0F™*
Already updated time
level Q“(t + kAt,)
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Parallel SAMR method
(]
Partitioning

Space-filling curve algorithm - ! CE
: JIC) a5

N
C

Calculation
domain

B High Workload

Y] Medium Workload
[ Low Workload
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Parallel SAMR method
(]
Partitioning

Space-filling curve algorithm - [ gﬂgg
o[ 1] [2C] F2Es

N
C

Necessary domain of
Space-Filling Curve

Calculation
domain

-

[ Proc. 1 BB High Workload
B Proc. 2 Y] Medium Workload

I Proc. 3 7] Low Workload

N
@
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Euler equations

SAMR accuracy verification

Gaussian density shape

R

B ( \ /x§+xg>2
px,x)=1+e
is advected with constant velocities u; = u, = 1,
p=1 R=1/4
Domain [—1,1] x [—1, 1], periodic
boundary conditions, tenqg = 2
Two levels of adaptation with r» = 2,
finest level corresponds to N x N uniform
grid
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Examples
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Euler equations

SAMR accuracy verification

Gaussian density shape

R

B ( \ /x§+xg>2
plxi,x)=1+e
is advected with constant velocities u; = u, = 1,
p=1 R=1/4

Domain [—1,1] x [—1, 1], periodic
boundary conditions, tenqg = 2

Two levels of adaptation with r» = 2,
finest level corresponds to N x N uniform
grid
Use locally conservative interpolation
5/ I I / I I
Quw = Qj + Ai(Qisr; — Qicry) + £(Qiji1 — Qiy—1)

w
X241 — Xé

x{ X1
1,041 — X1, NI .
=L 13 fh = to also test flux correction

2AX1J ’ 2AX2,/
This prolongation operator is not monotonicity preserving! Only applicable to

with factor fi =

smooth problems.
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Euler equations

SAMR accuracy verification: results

Examples
0O®0000

VanlLeer flux vector splitting with dimensional splitting, Minmod limiter

N Unigrid SAMR - fixup SAMR - no fixup
Error Order Error Order | Ap Error Order Ap
20 0.10946400
40 0.04239430 1.369
80 0.01408160 1.590 | 0.01594820 0 0.01595980 2e-5
160 | 0.00492945 1.514 | 0.00526693 | 1.598 0 0.00530538 1.589 2e-5
320 | 0.00146132 1.754 | 0.00156516 | 1.751 0 0.00163837 1.695 | -le-5
640 | 0.00041809 1.805 | 0.00051513 | 1.603 0 0.00060021 1.449 | -6e-5
Fully two-dimensional Wave Propagation Method, Minmod limiter
N Unigrid SAMR - fixup SAMR - no fixup
Error Order Error Order | Ap Error Order Ap
20 0.10620000
40 0.04079600 1.380
80 0.01348250 1.598 | 0.01536580 0 0.01538820 2e-5
160 | 0.00472301 1.513 | 0.00505406 | 1.604 0 0.00510499 1.592 | 5e-5
320 | 0.00139611 1.758 | 0.00147218 | 1.779 0 0.00152387 1.744 | 7e-5
640 | 0.00039904 | 1.807 | 0.00044500 | 1.726 0 0.00046587 1.710 | 6e-5
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Euler equations

Benchmark run: blast wave in 2D

2D-Wave-Propagation
Method with Roe’s
approximate solver

Base grid 150 x 150

2 levels: factor 2, 4

Examples
[e]o] le]ele}

Task [%] P=1 | P=2 | P=4 | P=8 | P=16
Update by H() 86.6 | 83.4 | 76.7 | 64.1 51.9
Flux correction 1.2 1.6 3.0 7.9 10.7
Boundary setting 3.5 5.7 10.1 15.6 18.3
Recomposition 5.5 6.1 7.4 9.9 14.0
Misc. 4.9 3.2 2.8 2.5 5.1
Time [min] 151.9 79.2 43.4 23.3 13.9
Efficiency [%] 100.0 95.9 87.5 81.5 68.3

After 38 time steps

The SAMR method for hyperbolic problems
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Examples
[e]o]e] lele}
Euler equations

Benchmark run 2: point-explosion in 3D

Benchmark from the Chicago
workshop on AMR methods,
September 2003

Sedov explosion - energy
deposition in sphere of radius 4
finest cells

3D-Wave-Prop. Method with
hybrid Roe-HLL scheme

Base grid 323
Refinement factor r, = 2

Effective resolutions: 1283,
256%, 5123, 10243

Grid generation efficiency
MNtol = 85%

Proper nesting enforced

Buffer of 1 cell
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Euler equations

Benchmark run 2: point-explosion in 3D

Benchmark from the Chicago Imax = 4 solution
workshop on AMR methods, N
September 2003 |

Sedov explosion - energy B |
deposition in sphere of radius 4 . | ‘
finest cells - ]
3D-Wave-Prop. Method with
hybrid Roe-HLL scheme

Base grid 323

Refinement factor r, = 2

Effective resolutions: 1283,
256%, 5123, 10243

Grid generation efficiency
MNtol = 85%

Proper nesting enforced
Buffer of 1 cell
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Euler equations

Examples
[e]o]e] lele}

Benchmark run 2: point-explosion in 3D

Benchmark from the Chicago
workshop on AMR methods,
September 2003

Sedov explosion - energy

deposition in sphere of radius 4

finest cells

3D-Wave-Prop. Method with
hybrid Roe-HLL scheme

Base grid 323
Refinement factor r, = 2

Effective resolutions: 1283,
256%, 5123, 10243

Grid generation efficiency
MNtol = 85%

Proper nesting enforced

Buffer of 1 cell

The SAMR method for hyperbolic problems
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[e]o]e}

Euler equations

Benchmark run 2: visualization of refinement

I=0
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Euler equations

Examples
[e]o]e]e]e] J

Benchmark run 2: performance results

Number of grids and cells

/ Imax = 2 Inax =3 Inax = 4 Inax =5
Grids Cells | Grids Cells | Grids Cells Grids Cells
0 28 32,768 28 32,768 33 32,768 34 32,768
1 8 32,768 14 32,768 20 32,768 20 32,768
2 63 | 115,408 49 | 116,920 43 125,680 50 125,144
3 324 | 398,112 420 555,744 193 572,768
4 1405 | 1,487,312 | 1,498 | 1,795,048
5 5,266 | 5,871,128
> 180,944 580,568 2,234,272 8,429,624

The SAMR method for hyperbolic problems




Examples
[e]o]e]e]e] J

Euler equations

Benchmark run 2: performance results

Number of grids and cells

/ Imax = 2 Inax =3 Inax = 4 Inax =5
Grids Cells | Grids Cells | Grids Cells Grids Cells
0 28 32,768 28 32,768 33 32,768 34 32,768
1 8 32,768 14 32,768 20 32,768 20 32,768
2 63 | 115,408 49 | 116,920 43 125,680 50 125,144
3 324 | 398,112 420 555,744 193 572,768
4 1405 | 1,487,312 | 1,498 | 1,795,048
5 5,266 | 5,871,128
> 180,944 580,568 2,234,272 8,429,624

Breakdown of CPU time on 8 nodes SGI Altix 3000 (Linux-based shared memory system)

Task [%] fnax = 2 Inax = 3 Imax = 4 Imax = 5
Integration 73.7 77.2 72.9 37.8

Fixup 26 | 46 3.1 | 58 26 | 42 22 | 45
Boundary 10.1 79 6.3 | 78 51 | 56 69 | 78
Recomposition 7.4 8.0 15.1 50.4
Clustering 0.5 0.6 0.7 1.0
Output/Misc 5.7 4.0 3.6 1.7

Time [min] 0.5 5.1 73.0 2100.0
Uniform [min] 5.4 160 ~5,000 ~180,000
Factor of AMR savings 11 31 69 86

Time steps 15 27 52 115
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