
Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Lecture 1
Fundamentals: Used schemes and mesh

adaptation

Course Block-structured Adaptive Mesh Refinement Methods for
Conservation Laws
Theory, Implementation and Application

Ralf Deiterding
Computer Science and Mathematics Division

Oak Ridge National Laboratory
P.O. Box 2008 MS6367, Oak Ridge, TN 37831, USA

E-mail: deiterdingr@ornl.gov

Fundamentals: Used schemes and mesh adaptation 1

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Outline

Conservation laws
Mathematical background
Examples

Finite volume methods
Basics of finite difference methods
Splitting methods, second derivatives

Upwind schemes
Flux-difference splitting
Flux-vector splitting
High-resolution methods

Meshes and adaptation
Elements of adaptive algorithms
Adaptivity on unstructured meshes
Structured mesh refinement techniques

Fundamentals: Used schemes and mesh adaptation 2

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Outline

Conservation laws
Mathematical background
Examples

Finite volume methods
Basics of finite difference methods
Splitting methods, second derivatives

Upwind schemes
Flux-difference splitting
Flux-vector splitting
High-resolution methods

Meshes and adaptation
Elements of adaptive algorithms
Adaptivity on unstructured meshes
Structured mesh refinement techniques

Fundamentals: Used schemes and mesh adaptation 2

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Outline

Conservation laws
Mathematical background
Examples

Finite volume methods
Basics of finite difference methods
Splitting methods, second derivatives

Upwind schemes
Flux-difference splitting
Flux-vector splitting
High-resolution methods

Meshes and adaptation
Elements of adaptive algorithms
Adaptivity on unstructured meshes
Structured mesh refinement techniques

Fundamentals: Used schemes and mesh adaptation 2

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Outline

Conservation laws
Mathematical background
Examples

Finite volume methods
Basics of finite difference methods
Splitting methods, second derivatives

Upwind schemes
Flux-difference splitting
Flux-vector splitting
High-resolution methods

Meshes and adaptation
Elements of adaptive algorithms
Adaptivity on unstructured meshes
Structured mesh refinement techniques

Fundamentals: Used schemes and mesh adaptation 2

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Outline

Conservation laws
Mathematical background
Examples

Finite volume methods
Basics of finite difference methods
Splitting methods, second derivatives

Upwind schemes
Flux-difference splitting
Flux-vector splitting
High-resolution methods

Meshes and adaptation
Elements of adaptive algorithms
Adaptivity on unstructured meshes
Structured mesh refinement techniques

Fundamentals: Used schemes and mesh adaptation 3

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Mathematical background

Hyperbolic Conservation Laws

∂

∂t
q(x, t) +

dX
n=1

∂

∂xn
fn(q(x, t)) = 0 , D ⊂ {(x, t) ∈ Rd × R+

0 }

q = q(x, t) ∈ S ⊂ RM - vector of state, fn(q) ∈ C1(S ,RM) - flux functions,
s(q) ∈ C1(S ,RM) - source term

Definition (Hyperbolicity)

A(q, ν) = ν1A1(q) + · · ·+ νd Ad (q) with An(q) = ∂fn(q)/∂q has M real
eigenvalues λ1(q, ν) ≤ ... ≤ λM (q, ν) and M linear independent right
eigenvectors rm(q, ν).

If fn(q) is nonlinear, classical solutions
q(x, t) ∈ C1(D, S) do not generally exist, not
even for q0(x) ∈ C1(Rd , S) [Majda, 1984],
[Godlewski and Raviart, 1996],
[Kröner, 1997]

Example: Euler equations

Fundamentals: Used schemes and mesh adaptation 4

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Mathematical background

Hyperbolic Conservation Laws

∂

∂t
q(x, t) +

dX
n=1

∂

∂xn
fn(q(x, t)) = 0 , D ⊂ {(x, t) ∈ Rd × R+

0 }

q = q(x, t) ∈ S ⊂ RM - vector of state, fn(q) ∈ C1(S ,RM) - flux functions,

s(q) ∈ C1(S ,RM) - source term

Definition (Hyperbolicity)

A(q, ν) = ν1A1(q) + · · ·+ νd Ad (q) with An(q) = ∂fn(q)/∂q has M real
eigenvalues λ1(q, ν) ≤ ... ≤ λM (q, ν) and M linear independent right
eigenvectors rm(q, ν).

If fn(q) is nonlinear, classical solutions
q(x, t) ∈ C1(D, S) do not generally exist, not
even for q0(x) ∈ C1(Rd , S) [Majda, 1984],
[Godlewski and Raviart, 1996],
[Kröner, 1997]

Example: Euler equations

Fundamentals: Used schemes and mesh adaptation 4

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Mathematical background

Hyperbolic Conservation Laws

∂

∂t
q(x, t) +

dX
n=1

∂

∂xn
fn(q(x, t)) = s(q(x, t)) , D ⊂ {(x, t) ∈ Rd × R+

0 }

q = q(x, t) ∈ S ⊂ RM - vector of state, fn(q) ∈ C1(S ,RM) - flux functions,
s(q) ∈ C1(S ,RM) - source term

Definition (Hyperbolicity)

A(q, ν) = ν1A1(q) + · · ·+ νd Ad (q) with An(q) = ∂fn(q)/∂q has M real
eigenvalues λ1(q, ν) ≤ ... ≤ λM (q, ν) and M linear independent right
eigenvectors rm(q, ν).

If fn(q) is nonlinear, classical solutions
q(x, t) ∈ C1(D, S) do not generally exist, not
even for q0(x) ∈ C1(Rd , S) [Majda, 1984],
[Godlewski and Raviart, 1996],
[Kröner, 1997]

Example: Euler equations

Fundamentals: Used schemes and mesh adaptation 4

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Mathematical background

Hyperbolic Conservation Laws

∂

∂t
q(x, t) +

dX
n=1

∂

∂xn
fn(q(x, t)) = s(q(x, t)) , D ⊂ {(x, t) ∈ Rd × R+

0 }

q = q(x, t) ∈ S ⊂ RM - vector of state, fn(q) ∈ C1(S ,RM) - flux functions,
s(q) ∈ C1(S ,RM) - source term

Definition (Hyperbolicity)

A(q, ν) = ν1A1(q) + · · ·+ νd Ad (q) with An(q) = ∂fn(q)/∂q has M real
eigenvalues λ1(q, ν) ≤ ... ≤ λM (q, ν) and M linear independent right
eigenvectors rm(q, ν).

If fn(q) is nonlinear, classical solutions
q(x, t) ∈ C1(D, S) do not generally exist, not
even for q0(x) ∈ C1(Rd , S) [Majda, 1984],
[Godlewski and Raviart, 1996],
[Kröner, 1997]

Example: Euler equations

Fundamentals: Used schemes and mesh adaptation 4

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Mathematical background

Hyperbolic Conservation Laws

∂

∂t
q(x, t) +

dX
n=1

∂

∂xn
fn(q(x, t)) = s(q(x, t)) , D ⊂ {(x, t) ∈ Rd × R+

0 }

q = q(x, t) ∈ S ⊂ RM - vector of state, fn(q) ∈ C1(S ,RM) - flux functions,
s(q) ∈ C1(S ,RM) - source term

Definition (Hyperbolicity)

A(q, ν) = ν1A1(q) + · · ·+ νd Ad (q) with An(q) = ∂fn(q)/∂q has M real
eigenvalues λ1(q, ν) ≤ ... ≤ λM (q, ν) and M linear independent right
eigenvectors rm(q, ν).

If fn(q) is nonlinear, classical solutions
q(x, t) ∈ C1(D, S) do not generally exist, not
even for q0(x) ∈ C1(Rd , S) [Majda, 1984],
[Godlewski and Raviart, 1996],
[Kröner, 1997]

Example: Euler equations

Fundamentals: Used schemes and mesh adaptation 4

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Mathematical background

Weak solutions

Integral form (Gauss’s theorem):Z
Ω

q(x, t + ∆t) dx−
Z
Ω

q(x, t) dx

+
dX

n=1

t+∆tZ
t

Z
∂Ω

fn(q(o, t))σn(o) do dt =

t+∆tZ
t

Z
Ω

s(q(x, t)) dx

Theorem (Weak solution)

q0 ∈ L∞loc (Rd ,S). q ∈ L∞loc (D, S) is weak solution if q satisfies

∞Z
0

Z
Rd

"
∂ϕ

∂t
· q +

dX
n=1

∂ϕ

∂xn
· fn(q)− ϕ · s(q)

#
dx dt+

Z
Rd

ϕ(x, 0)·q0(x) dx = 0

for any test function ϕ ∈ C1
0(D,S)

Fundamentals: Used schemes and mesh adaptation 5

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Mathematical background

Weak solutions

Integral form (Gauss’s theorem):Z
Ω

q(x, t + ∆t) dx−
Z
Ω

q(x, t) dx

+
dX

n=1

t+∆tZ
t

Z
∂Ω

fn(q(o, t))σn(o) do dt =

t+∆tZ
t

Z
Ω

s(q(x, t)) dx

Theorem (Weak solution)

q0 ∈ L∞loc (Rd , S). q ∈ L∞loc (D, S) is weak solution if q satisfies

∞Z
0

Z
Rd

"
∂ϕ

∂t
· q +

dX
n=1

∂ϕ

∂xn
· fn(q)− ϕ · s(q)

#
dx dt+

Z
Rd

ϕ(x, 0)·q0(x) dx = 0

for any test function ϕ ∈ C1
0(D, S)

Fundamentals: Used schemes and mesh adaptation 5

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Mathematical background

Weak solutions

Integral form (Gauss’s theorem):Z
Ω

q(x, t + ∆t) dx−
Z
Ω

q(x, t) dx

+
dX

n=1

t+∆tZ
t

Z
∂Ω

fn(q(o, t))σn(o) do dt =

t+∆tZ
t

Z
Ω

s(q(x, t)) dx

Theorem (Weak solution)

q0 ∈ L∞loc (Rd , S). q ∈ L∞loc (D, S) is weak solution if q satisfies

∞Z
0

Z
Rd

"
∂ϕ

∂t
· q +

dX
n=1

∂ϕ

∂xn
· fn(q)− ϕ · s(q)

#
dx dt+

Z
Rd

ϕ(x, 0)·q0(x) dx = 0

for any test function ϕ ∈ C1
0(D, S)

Fundamentals: Used schemes and mesh adaptation 5

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Mathematical background

Entropy solutions

Select physical weak solution as lim
ε→0

qε = q almost everywhere in D of

∂qε
∂t

+
dX

n=1

∂fn(qε)

∂xn
− ε

dX
n=1

∂2qε
∂x2

n
= s(qε) , x ∈ Rd , t > 0

Theorem (Entropy condition)

Assume existence of entropy η ∈ C2(S ,R) and entropy fluxes ψn ∈ C1(S ,R)
that satisfy

∂η(q)

∂q

T

· ∂fn(q)

∂q
=
∂ψn(q)

∂q

T

, n = 1, . . . , d

then lim
ε→0

qε = q almost everywhere in D is weak solution and satisfies

∂η(q)

∂t
+

dX
n=1

∂ψn(q)

∂xn
≤ ∂η(q)

∂q

T

· s(q)

in the sense of distributions. Proof: [Godlewski and Raviart, 1996]

Fundamentals: Used schemes and mesh adaptation 6

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Mathematical background

Entropy solutions

Select physical weak solution as lim
ε→0

qε = q almost everywhere in D of

∂qε
∂t

+
dX

n=1

∂fn(qε)

∂xn
− ε

dX
n=1

∂2qε
∂x2

n
= s(qε) , x ∈ Rd , t > 0

Theorem (Entropy condition)

Assume existence of entropy η ∈ C2(S ,R) and entropy fluxes ψn ∈ C1(S ,R)
that satisfy

∂η(q)

∂q

T

· ∂fn(q)

∂q
=
∂ψn(q)

∂q

T

, n = 1, . . . , d

then lim
ε→0

qε = q almost everywhere in D is weak solution and satisfies

∂η(q)

∂t
+

dX
n=1

∂ψn(q)

∂xn
≤ ∂η(q)

∂q

T

· s(q)

in the sense of distributions. Proof: [Godlewski and Raviart, 1996]

Fundamentals: Used schemes and mesh adaptation 6

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Mathematical background

Entropy solutions

Select physical weak solution as lim
ε→0

qε = q almost everywhere in D of

∂qε
∂t

+
dX

n=1

∂fn(qε)

∂xn
− ε

dX
n=1

∂2qε
∂x2

n
= s(qε) , x ∈ Rd , t > 0

Theorem (Entropy condition)

Assume existence of entropy η ∈ C2(S ,R) and entropy fluxes ψn ∈ C1(S ,R)
that satisfy

∂η(q)

∂q

T

· ∂fn(q)

∂q
=
∂ψn(q)

∂q

T

, n = 1, . . . , d

then lim
ε→0

qε = q almost everywhere in D is weak solution and satisfies

∂η(q)

∂t
+

dX
n=1

∂ψn(q)

∂xn
≤ ∂η(q)

∂q

T

· s(q)

in the sense of distributions. Proof: [Godlewski and Raviart, 1996]

Fundamentals: Used schemes and mesh adaptation 6

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Mathematical background

Entropy solutions

Select physical weak solution as lim
ε→0

qε = q almost everywhere in D of

∂qε
∂t

+
dX

n=1

∂fn(qε)

∂xn
− ε

dX
n=1

∂2qε
∂x2

n
= s(qε) , x ∈ Rd , t > 0

Theorem (Entropy condition)

Assume existence of entropy η ∈ C2(S ,R) and entropy fluxes ψn ∈ C1(S ,R)
that satisfy

∂η(q)

∂q

T

· ∂fn(q)

∂q
=
∂ψn(q)

∂q

T

, n = 1, . . . , d

then lim
ε→0

qε = q almost everywhere in D is weak solution and satisfies

∂η(q)

∂t
+

dX
n=1

∂ψn(q)

∂xn
≤ ∂η(q)

∂q

T

· s(q)

in the sense of distributions. Proof: [Godlewski and Raviart, 1996]

Fundamentals: Used schemes and mesh adaptation 6

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Mathematical background

Entropy solutions II

Definition (Entropy solution)

Weak solution q is called an entropy solution if q satisfies

∞Z
0

Z
Rd

"
∂ϕ

∂t
η(q) +

dX
n=1

∂ϕ

∂xn
ψn(q)− ϕ

∂η(q)

∂q

T

· s(q)

#
dx dt +

Z
Rd

ϕ(x, 0) η(q0(x)) dx ≥ 0

for all entropy functions η(q) and all test functions ϕ ∈ C1
0(D,R+

0), ϕ ≥ 0

Theorem (Jump conditions)

An entropy solution q is a classical solution q ∈ C1(D,S) almost everywhere and
satisfies the Rankine-Hugoniot (RH) jump condition

(q+ − q−)σt +
dX

n=1

`
fn(q+)− fn(q−)

´
σn = 0

and the jump inequality

(η(q+)− η(q−))σt +
dX

n=1

`
ψn(q+)− ψn(q−)

´
σn ≤ 0

along discontinuities. Proof: [Godlewski and Raviart, 1996]

Fundamentals: Used schemes and mesh adaptation 7

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Mathematical background

Entropy solutions II

Definition (Entropy solution)

Weak solution q is called an entropy solution if q satisfies

∞Z
0

Z
Rd

"
∂ϕ

∂t
η(q) +

dX
n=1

∂ϕ

∂xn
ψn(q)− ϕ

∂η(q)

∂q

T

· s(q)

#
dx dt +

Z
Rd

ϕ(x, 0) η(q0(x)) dx ≥ 0

for all entropy functions η(q) and all test functions ϕ ∈ C1
0(D,R+

0), ϕ ≥ 0

Theorem (Jump conditions)

An entropy solution q is a classical solution q ∈ C1(D,S) almost everywhere and
satisfies the Rankine-Hugoniot (RH) jump condition

(q+ − q−)σt +
dX

n=1

`
fn(q+)− fn(q−)

´
σn = 0

and the jump inequality

(η(q+)− η(q−))σt +
dX

n=1

`
ψn(q+)− ψn(q−)

´
σn ≤ 0

along discontinuities. Proof: [Godlewski and Raviart, 1996]

Fundamentals: Used schemes and mesh adaptation 7

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Mathematical background

Entropy solutions II

Definition (Entropy solution)

Weak solution q is called an entropy solution if q satisfies

∞Z
0

Z
Rd

"
∂ϕ

∂t
η(q) +

dX
n=1

∂ϕ

∂xn
ψn(q)− ϕ

∂η(q)

∂q

T

· s(q)

#
dx dt +

Z
Rd

ϕ(x, 0) η(q0(x)) dx ≥ 0

for all entropy functions η(q) and all test functions ϕ ∈ C1
0(D,R+

0), ϕ ≥ 0

Theorem (Jump conditions)

An entropy solution q is a classical solution q ∈ C1(D,S) almost everywhere and
satisfies the Rankine-Hugoniot (RH) jump condition

(q+ − q−)σt +
dX

n=1

`
fn(q+)− fn(q−)

´
σn = 0

and the jump inequality

(η(q+)− η(q−))σt +
dX

n=1

`
ψn(q+)− ψn(q−)

´
σn ≤ 0

along discontinuities. Proof: [Godlewski and Raviart, 1996]

Fundamentals: Used schemes and mesh adaptation 7

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Mathematical background

Entropy solutions II

Definition (Entropy solution)

Weak solution q is called an entropy solution if q satisfies

∞Z
0

Z
Rd

"
∂ϕ

∂t
η(q) +

dX
n=1

∂ϕ

∂xn
ψn(q)− ϕ

∂η(q)

∂q

T

· s(q)

#
dx dt +

Z
Rd

ϕ(x, 0) η(q0(x)) dx ≥ 0

for all entropy functions η(q) and all test functions ϕ ∈ C1
0(D,R+

0), ϕ ≥ 0

Theorem (Jump conditions)

An entropy solution q is a classical solution q ∈ C1(D,S) almost everywhere and
satisfies the Rankine-Hugoniot (RH) jump condition

(q+ − q−)σt +
dX

n=1

`
fn(q+)− fn(q−)

´
σn = 0

and the jump inequality

(η(q+)− η(q−))σt +
dX

n=1

`
ψn(q+)− ψn(q−)

´
σn ≤ 0

along discontinuities. Proof: [Godlewski and Raviart, 1996]

Fundamentals: Used schemes and mesh adaptation 7

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Examples

Examples

Euler equations
∂ρ

∂t
+

∂

∂xn

(
ρun

)
= 0

∂

∂t

(
ρuk

)
+

∂

∂xn

(
ρuk un + δknp

)
= 0 , k = 1, . . . , d

∂

∂t

(
ρE

)
+

∂

∂xn

(
un(ρE + p)

)
= 0

with polytrope gas equation of state

p = (γ − 1)
(
ρE − 1

2
ρunun

)
have structure

∂tq(x, t) +∇ · f(q(x, t)) = 0

Fundamentals: Used schemes and mesh adaptation 8

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Examples

Examples

Euler equations
∂ρ

∂t
+

∂

∂xn

(
ρun

)
= 0

∂

∂t

(
ρuk

)
+

∂

∂xn

(
ρuk un + δknp

)
= 0 , k = 1, . . . , d

∂

∂t

(
ρE

)
+

∂

∂xn

(
un(ρE + p)

)
= 0

with polytrope gas equation of state

p = (γ − 1)
(
ρE − 1

2
ρunun

)

have structure
∂tq(x, t) +∇ · f(q(x, t)) = 0

Fundamentals: Used schemes and mesh adaptation 8

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Examples

Examples

Euler equations
∂ρ

∂t
+

∂

∂xn

(
ρun

)
= 0

∂

∂t

(
ρuk

)
+

∂

∂xn

(
ρuk un + δknp

)
= 0 , k = 1, . . . , d

∂

∂t

(
ρE

)
+

∂

∂xn

(
un(ρE + p)

)
= 0

with polytrope gas equation of state

p = (γ − 1)
(
ρE − 1

2
ρunun

)
have structure

∂tq(x, t) +∇ · f(q(x, t)) = 0

Fundamentals: Used schemes and mesh adaptation 8

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Examples

Examples II

Navier-Stokes equations
∂ρ

∂t
+

∂

∂xn

`
ρun

´
= 0

∂

∂t

`
ρuk

´
+

∂

∂xn

`
ρuk un + δknp − τkn

´
= 0 , k = 1, . . . , d

∂

∂t

`
ρE
´

+
∂

∂xn

`
un(ρE + p) + qn − τnj uj

´
= 0

with stress tensor

τkn = µ
`∂un

∂xk
+
∂uk

∂xn

´
− 2

3
µ
∂uj

∂xj
δkn

and heat conduction

qn = −λ∂T

∂xn

have structure

∂tq(x, t) +∇ · f(q(x, t)) +∇ · h(q(x, t),∇q(x, t)) = 0

Type can be either hyperbolic or parabolic

Fundamentals: Used schemes and mesh adaptation 9

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Examples

Examples II

Navier-Stokes equations
∂ρ

∂t
+

∂

∂xn

`
ρun

´
= 0

∂

∂t

`
ρuk

´
+

∂

∂xn

`
ρuk un + δknp − τkn

´
= 0 , k = 1, . . . , d

∂

∂t

`
ρE
´

+
∂

∂xn

`
un(ρE + p) + qn − τnj uj

´
= 0

with stress tensor

τkn = µ
`∂un

∂xk
+
∂uk

∂xn

´
− 2

3
µ
∂uj

∂xj
δkn

and heat conduction

qn = −λ∂T

∂xn

have structure

∂tq(x, t) +∇ · f(q(x, t)) +∇ · h(q(x, t),∇q(x, t)) = 0

Type can be either hyperbolic or parabolic

Fundamentals: Used schemes and mesh adaptation 9

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Examples

Examples II

Navier-Stokes equations
∂ρ

∂t
+

∂

∂xn

`
ρun

´
= 0

∂

∂t

`
ρuk

´
+

∂

∂xn

`
ρuk un + δknp − τkn

´
= 0 , k = 1, . . . , d

∂

∂t

`
ρE
´

+
∂

∂xn

`
un(ρE + p) + qn − τnj uj

´
= 0

with stress tensor

τkn = µ
`∂un

∂xk
+
∂uk

∂xn

´
− 2

3
µ
∂uj

∂xj
δkn

and heat conduction

qn = −λ∂T

∂xn

have structure

∂tq(x, t) +∇ · f(q(x, t)) +∇ · h(q(x, t),∇q(x, t)) = 0

Type can be either hyperbolic or parabolic

Fundamentals: Used schemes and mesh adaptation 9

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Examples

Examples II

Navier-Stokes equations
∂ρ

∂t
+

∂

∂xn

`
ρun

´
= 0

∂

∂t

`
ρuk

´
+

∂

∂xn

`
ρuk un + δknp − τkn

´
= 0 , k = 1, . . . , d

∂

∂t

`
ρE
´

+
∂

∂xn

`
un(ρE + p) + qn − τnj uj

´
= 0

with stress tensor

τkn = µ
`∂un

∂xk
+
∂uk

∂xn

´
− 2

3
µ
∂uj

∂xj
δkn

and heat conduction

qn = −λ∂T

∂xn

have structure

∂tq(x, t) +∇ · f(q(x, t)) +∇ · h(q(x, t),∇q(x, t)) = 0

Type can be either hyperbolic or parabolic

Fundamentals: Used schemes and mesh adaptation 9

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Outline

Conservation laws
Mathematical background
Examples

Finite volume methods
Basics of finite difference methods
Splitting methods, second derivatives

Upwind schemes
Flux-difference splitting
Flux-vector splitting
High-resolution methods

Meshes and adaptation
Elements of adaptive algorithms
Adaptivity on unstructured meshes
Structured mesh refinement techniques

Fundamentals: Used schemes and mesh adaptation 10

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Basics of finite difference methods

Derivation

Assume ∂t q + ∂x f(q) + ∂x h(q(·, ∂x q)) = s(q)

Time discretization tn = n∆t, discrete volumes
Ij = [xj − 1

2
∆x , xj + 1

2
∆x[=: [xj−1/2, xj+1/2[

Using approximations Qj (t) ≈
1

|Ij |

Z
Ij

q(x, t) dx , s(Qj (t)) ≈
1

|Ij |

Z
Ij

s(q(x, t)) dx

and numerical fluxes

F
`
Qj (t),Qj+1(t)

´
≈ f(q(xj+1/2, t)), H

`
Qj (t),Qj+1(t)

´
≈ h(q(xj+1/2, t),∇q(xj+1/2, t))

yields after integration (Gauss theorem)

Qj (tn+1) = Qj (tn)−
1

∆x

tn+1Z
tn

[F (Qj (t), Qj+1(t))− F (Qj−1(t), Qj (t))] dt−

1

∆x

tn+1Z
tn

[H (Qj (t), Qj+1(t))− H (Qj−1(t), Qj (t))] dt +

tn+1Z
tn

s(Qj (t)) dt

For instance:

Qn+1
j = Qn

j −
∆t

∆x

h
F
“

Qn
j , Qn

j+1

”
− F

“
Qn

j−1, Qn
j

”i
−

∆t

∆x

h
H
“

Qn
j , Qn

j+1

”
− H

“
Qn

j−1, Qn
j

”i
+ ∆ts(Qn

j) dt

Fundamentals: Used schemes and mesh adaptation 11

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Basics of finite difference methods

Derivation

Assume ∂t q + ∂x f(q) + ∂x h(q(·, ∂x q)) = s(q)

Time discretization tn = n∆t, discrete volumes
Ij = [xj − 1

2
∆x , xj + 1

2
∆x[=: [xj−1/2, xj+1/2[

Using approximations Qj (t) ≈
1

|Ij |

Z
Ij

q(x, t) dx , s(Qj (t)) ≈
1

|Ij |

Z
Ij

s(q(x, t)) dx

and numerical fluxes

F
`
Qj (t),Qj+1(t)

´
≈ f(q(xj+1/2, t)), H

`
Qj (t),Qj+1(t)

´
≈ h(q(xj+1/2, t),∇q(xj+1/2, t))

yields after integration (Gauss theorem)

Qj (tn+1) = Qj (tn)−
1

∆x

tn+1Z
tn

[F (Qj (t), Qj+1(t))− F (Qj−1(t), Qj (t))] dt−

1

∆x

tn+1Z
tn

[H (Qj (t), Qj+1(t))− H (Qj−1(t), Qj (t))] dt +

tn+1Z
tn

s(Qj (t)) dt

For instance:

Qn+1
j = Qn

j −
∆t

∆x

h
F
“

Qn
j , Qn

j+1

”
− F

“
Qn

j−1, Qn
j

”i
−

∆t

∆x

h
H
“

Qn
j , Qn

j+1

”
− H

“
Qn

j−1, Qn
j

”i
+ ∆ts(Qn

j) dt

Fundamentals: Used schemes and mesh adaptation 11

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Basics of finite difference methods

Derivation

Assume ∂t q + ∂x f(q) + ∂x h(q(·, ∂x q)) = s(q)

Time discretization tn = n∆t, discrete volumes
Ij = [xj − 1

2
∆x , xj + 1

2
∆x[=: [xj−1/2, xj+1/2[

Using approximations Qj (t) ≈
1

|Ij |

Z
Ij

q(x, t) dx , s(Qj (t)) ≈
1

|Ij |

Z
Ij

s(q(x, t)) dx

and numerical fluxes

F
`
Qj (t),Qj+1(t)

´
≈ f(q(xj+1/2, t)), H

`
Qj (t),Qj+1(t)

´
≈ h(q(xj+1/2, t),∇q(xj+1/2, t))

yields after integration (Gauss theorem)

Qj (tn+1) = Qj (tn)−
1

∆x

tn+1Z
tn

[F (Qj (t), Qj+1(t))− F (Qj−1(t), Qj (t))] dt−

1

∆x

tn+1Z
tn

[H (Qj (t), Qj+1(t))− H (Qj−1(t), Qj (t))] dt +

tn+1Z
tn

s(Qj (t)) dt

For instance:

Qn+1
j = Qn

j −
∆t

∆x

h
F
“

Qn
j , Qn

j+1

”
− F

“
Qn

j−1, Qn
j

”i
−

∆t

∆x

h
H
“

Qn
j , Qn

j+1

”
− H

“
Qn

j−1, Qn
j

”i
+ ∆ts(Qn

j) dt

Fundamentals: Used schemes and mesh adaptation 11

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Basics of finite difference methods

Derivation

Assume ∂t q + ∂x f(q) + ∂x h(q(·, ∂x q)) = s(q)

Time discretization tn = n∆t, discrete volumes
Ij = [xj − 1

2
∆x , xj + 1

2
∆x[=: [xj−1/2, xj+1/2[

Using approximations Qj (t) ≈
1

|Ij |

Z
Ij

q(x, t) dx , s(Qj (t)) ≈
1

|Ij |

Z
Ij

s(q(x, t)) dx

and numerical fluxes

F
`
Qj (t),Qj+1(t)

´
≈ f(q(xj+1/2, t)), H

`
Qj (t),Qj+1(t)

´
≈ h(q(xj+1/2, t),∇q(xj+1/2, t))

yields after integration (Gauss theorem)

Qj (tn+1) = Qj (tn)−
1

∆x

tn+1Z
tn

[F (Qj (t), Qj+1(t))− F (Qj−1(t), Qj (t))] dt−

1

∆x

tn+1Z
tn

[H (Qj (t), Qj+1(t))− H (Qj−1(t), Qj (t))] dt +

tn+1Z
tn

s(Qj (t)) dt

For instance:

Qn+1
j = Qn

j −
∆t

∆x

h
F
“

Qn
j , Qn

j+1

”
− F

“
Qn

j−1, Qn
j

”i
−

∆t

∆x

h
H
“

Qn
j , Qn

j+1

”
− H

“
Qn

j−1, Qn
j

”i
+ ∆ts(Qn

j) dt

Fundamentals: Used schemes and mesh adaptation 11

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Basics of finite difference methods

Derivation

Assume ∂t q + ∂x f(q) + ∂x h(q(·, ∂x q)) = s(q)

Time discretization tn = n∆t, discrete volumes
Ij = [xj − 1

2
∆x , xj + 1

2
∆x[=: [xj−1/2, xj+1/2[

Using approximations Qj (t) ≈
1

|Ij |

Z
Ij

q(x, t) dx , s(Qj (t)) ≈
1

|Ij |

Z
Ij

s(q(x, t)) dx

and numerical fluxes

F
`
Qj (t),Qj+1(t)

´
≈ f(q(xj+1/2, t)), H

`
Qj (t),Qj+1(t)

´
≈ h(q(xj+1/2, t),∇q(xj+1/2, t))

yields after integration (Gauss theorem)

Qj (tn+1) = Qj (tn)−
1

∆x

tn+1Z
tn

[F (Qj (t), Qj+1(t))− F (Qj−1(t), Qj (t))] dt−

1

∆x

tn+1Z
tn

[H (Qj (t), Qj+1(t))− H (Qj−1(t), Qj (t))] dt +

tn+1Z
tn

s(Qj (t)) dt

For instance:

Qn+1
j = Qn

j −
∆t

∆x

h
F
“

Qn
j , Qn

j+1

”
− F

“
Qn

j−1, Qn
j

”i
−

∆t

∆x

h
H
“

Qn
j , Qn

j+1

”
− H

“
Qn

j−1, Qn
j

”i
+ ∆ts(Qn

j) dt

Fundamentals: Used schemes and mesh adaptation 11

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Basics of finite difference methods

Some classical definitions

(2s + 1)-point difference scheme of the form

Qn+1
j = H(∆t)(Qn

j−s , . . . ,Q
n
j+s)

Definition (Stability)

For each time τ there is a constant CS and a value n0 ∈ N such that
‖H(∆t)(Qn)‖ ≤ CS for all n∆t ≤ τ , n < n0

Definition (Consistency)

If the local truncation error

L(∆t)(x, t) :=
1

∆t

h
q(x, t + ∆t)−H(∆t)(q(·, t))

i
satisfies ‖L(∆t)(·, t)‖ → 0 as ∆t → 0

Definition (Convergence)

If the global error E (∆t)(x, t) := Q(x, t)− q(x, t) satisfies ‖E (∆t)(·, t)‖ → 0 as
∆t → 0 for all admissible initial data q0(x)

Fundamentals: Used schemes and mesh adaptation 12

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Basics of finite difference methods

Some classical definitions

(2s + 1)-point difference scheme of the form

Qn+1
j = H(∆t)(Qn

j−s , . . . ,Q
n
j+s)

Definition (Stability)

For each time τ there is a constant CS and a value n0 ∈ N such that
‖H(∆t)(Qn)‖ ≤ CS for all n∆t ≤ τ , n < n0

Definition (Consistency)

If the local truncation error

L(∆t)(x, t) :=
1

∆t

h
q(x, t + ∆t)−H(∆t)(q(·, t))

i
satisfies ‖L(∆t)(·, t)‖ → 0 as ∆t → 0

Definition (Convergence)

If the global error E (∆t)(x, t) := Q(x, t)− q(x, t) satisfies ‖E (∆t)(·, t)‖ → 0 as
∆t → 0 for all admissible initial data q0(x)

Fundamentals: Used schemes and mesh adaptation 12

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Basics of finite difference methods

Some classical definitions

(2s + 1)-point difference scheme of the form

Qn+1
j = H(∆t)(Qn

j−s , . . . ,Q
n
j+s)

Definition (Stability)

For each time τ there is a constant CS and a value n0 ∈ N such that
‖H(∆t)(Qn)‖ ≤ CS for all n∆t ≤ τ , n < n0

Definition (Consistency)

If the local truncation error

L(∆t)(x, t) :=
1

∆t

h
q(x, t + ∆t)−H(∆t)(q(·, t))

i
satisfies ‖L(∆t)(·, t)‖ → 0 as ∆t → 0

Definition (Convergence)

If the global error E (∆t)(x, t) := Q(x, t)− q(x, t) satisfies ‖E (∆t)(·, t)‖ → 0 as
∆t → 0 for all admissible initial data q0(x)

Fundamentals: Used schemes and mesh adaptation 12

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Basics of finite difference methods

Some classical definitions

(2s + 1)-point difference scheme of the form

Qn+1
j = H(∆t)(Qn

j−s , . . . ,Q
n
j+s)

Definition (Stability)

For each time τ there is a constant CS and a value n0 ∈ N such that
‖H(∆t)(Qn)‖ ≤ CS for all n∆t ≤ τ , n < n0

Definition (Consistency)

If the local truncation error

L(∆t)(x, t) :=
1

∆t

h
q(x, t + ∆t)−H(∆t)(q(·, t))

i
satisfies ‖L(∆t)(·, t)‖ → 0 as ∆t → 0

Definition (Convergence)

If the global error E (∆t)(x, t) := Q(x, t)− q(x, t) satisfies ‖E (∆t)(·, t)‖ → 0 as
∆t → 0 for all admissible initial data q0(x)

Fundamentals: Used schemes and mesh adaptation 12

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Basics of finite difference methods

Some classical definitions II

Definition (Order of accuracy)

H(·) is accurate of order o if for all sufficiently smooth initial data q0(x), there
is a constant CL, such that the local truncation error satisfies
‖L(∆t)(·, t)‖ ≤ CL∆to for all ∆t < ∆t0 , t ≤ τ

Definition (Conservative form)

If H(·) can be written in the form

Qn+1
j = Qn

j −
∆t

∆x

`
F(Qn

j−s+1, . . . ,Q
n
j+s)− F(Qn

j−s , . . . ,Q
n
j+s−1)

´
A conservative scheme satisfiesX

j ∈Z

Qn+1
j =

X
j ∈Z

Qn
j

Definition (Consistency of a conservative method)

If the numerical flux satisfies F(q, . . . , q) = f(q) for all q ∈ S

Fundamentals: Used schemes and mesh adaptation 13

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Basics of finite difference methods

Some classical definitions II

Definition (Order of accuracy)

H(·) is accurate of order o if for all sufficiently smooth initial data q0(x), there
is a constant CL, such that the local truncation error satisfies
‖L(∆t)(·, t)‖ ≤ CL∆to for all ∆t < ∆t0 , t ≤ τ

Definition (Conservative form)

If H(·) can be written in the form

Qn+1
j = Qn

j −
∆t

∆x

`
F(Qn

j−s+1, . . . ,Q
n
j+s)− F(Qn

j−s , . . . ,Q
n
j+s−1)

´

A conservative scheme satisfiesX
j ∈Z

Qn+1
j =

X
j ∈Z

Qn
j

Definition (Consistency of a conservative method)

If the numerical flux satisfies F(q, . . . , q) = f(q) for all q ∈ S

Fundamentals: Used schemes and mesh adaptation 13

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Basics of finite difference methods

Some classical definitions II

Definition (Order of accuracy)

H(·) is accurate of order o if for all sufficiently smooth initial data q0(x), there
is a constant CL, such that the local truncation error satisfies
‖L(∆t)(·, t)‖ ≤ CL∆to for all ∆t < ∆t0 , t ≤ τ

Definition (Conservative form)

If H(·) can be written in the form

Qn+1
j = Qn

j −
∆t

∆x

`
F(Qn

j−s+1, . . . ,Q
n
j+s)− F(Qn

j−s , . . . ,Q
n
j+s−1)

´
A conservative scheme satisfiesX

j ∈Z

Qn+1
j =

X
j ∈Z

Qn
j

Definition (Consistency of a conservative method)

If the numerical flux satisfies F(q, . . . , q) = f(q) for all q ∈ S

Fundamentals: Used schemes and mesh adaptation 13

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Basics of finite difference methods

Some classical definitions II

Definition (Order of accuracy)

H(·) is accurate of order o if for all sufficiently smooth initial data q0(x), there
is a constant CL, such that the local truncation error satisfies
‖L(∆t)(·, t)‖ ≤ CL∆to for all ∆t < ∆t0 , t ≤ τ

Definition (Conservative form)

If H(·) can be written in the form

Qn+1
j = Qn

j −
∆t

∆x

`
F(Qn

j−s+1, . . . ,Q
n
j+s)− F(Qn

j−s , . . . ,Q
n
j+s−1)

´
A conservative scheme satisfiesX

j ∈Z

Qn+1
j =

X
j ∈Z

Qn
j

Definition (Consistency of a conservative method)

If the numerical flux satisfies F(q, . . . , q) = f(q) for all q ∈ S

Fundamentals: Used schemes and mesh adaptation 13

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Splitting methods, second derivatives

Splitting methods

Solve homogeneous PDE and ODE successively!

H(∆t) : ∂tq +∇ · f(q) = 0 , IC: Q(tm)
∆t
=⇒ Q̃

S(∆t) : ∂tq = s(q) , IC: Q̃
∆t
=⇒ Q(tm + ∆t)

1st-order Godunov splitting: Q(tm + ∆t) = S(∆t)H(∆t)(Q(tm)),

2nd-order Strang splitting : Q(tm + ∆t) = S(1
2 ∆t)H(∆t)S(1

2 ∆t)(Q(tm))

1st-order dimensional splitting for H(·):

X (∆t)
1 : ∂tq + ∂x1 f1(q) = 0 , IC: Q(tm)

∆t
=⇒ Q̃1/2

X (∆t)
2 : ∂tq + ∂x2 f2(q) = 0 , IC: Q̃1/2 ∆t

=⇒ Q̃

[Toro, 1999]

Fundamentals: Used schemes and mesh adaptation 14

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Splitting methods, second derivatives

Splitting methods

Solve homogeneous PDE and ODE successively!

H(∆t) : ∂tq +∇ · f(q) = 0 , IC: Q(tm)
∆t
=⇒ Q̃

S(∆t) : ∂tq = s(q) , IC: Q̃
∆t
=⇒ Q(tm + ∆t)

1st-order Godunov splitting: Q(tm + ∆t) = S(∆t)H(∆t)(Q(tm)),

2nd-order Strang splitting : Q(tm + ∆t) = S(1
2 ∆t)H(∆t)S(1

2 ∆t)(Q(tm))

1st-order dimensional splitting for H(·):

X (∆t)
1 : ∂tq + ∂x1 f1(q) = 0 , IC: Q(tm)

∆t
=⇒ Q̃1/2

X (∆t)
2 : ∂tq + ∂x2 f2(q) = 0 , IC: Q̃1/2 ∆t

=⇒ Q̃

[Toro, 1999]

Fundamentals: Used schemes and mesh adaptation 14

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Splitting methods, second derivatives

Splitting methods

Solve homogeneous PDE and ODE successively!

H(∆t) : ∂tq +∇ · f(q) = 0 , IC: Q(tm)
∆t
=⇒ Q̃

S(∆t) : ∂tq = s(q) , IC: Q̃
∆t
=⇒ Q(tm + ∆t)

1st-order Godunov splitting: Q(tm + ∆t) = S(∆t)H(∆t)(Q(tm)),

2nd-order Strang splitting : Q(tm + ∆t) = S(1
2 ∆t)H(∆t)S(1

2 ∆t)(Q(tm))

1st-order dimensional splitting for H(·):

X (∆t)
1 : ∂tq + ∂x1 f1(q) = 0 , IC: Q(tm)

∆t
=⇒ Q̃1/2

X (∆t)
2 : ∂tq + ∂x2 f2(q) = 0 , IC: Q̃1/2 ∆t

=⇒ Q̃

[Toro, 1999]

Fundamentals: Used schemes and mesh adaptation 14

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Splitting methods, second derivatives

Splitting methods

Solve homogeneous PDE and ODE successively!

H(∆t) : ∂tq +∇ · f(q) = 0 , IC: Q(tm)
∆t
=⇒ Q̃

S(∆t) : ∂tq = s(q) , IC: Q̃
∆t
=⇒ Q(tm + ∆t)

1st-order Godunov splitting: Q(tm + ∆t) = S(∆t)H(∆t)(Q(tm)),

2nd-order Strang splitting : Q(tm + ∆t) = S(1
2 ∆t)H(∆t)S(1

2 ∆t)(Q(tm))

1st-order dimensional splitting for H(·):

X (∆t)
1 : ∂tq + ∂x1 f1(q) = 0 , IC: Q(tm)

∆t
=⇒ Q̃1/2

X (∆t)
2 : ∂tq + ∂x2 f2(q) = 0 , IC: Q̃1/2 ∆t

=⇒ Q̃

[Toro, 1999]

Fundamentals: Used schemes and mesh adaptation 14

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Splitting methods, second derivatives

Conservative scheme for diffusion equation

Consider ∂t q − c∆q = 0 with c ∈ R+

, which is readily discretized as

Qn+1
jk = Qn

jk + c
∆t

∆x2
1

“
Qn

j+1,k − 2Qn
jk + Qn

j−1,k

”
+ c

∆t

∆x2
2

“
Qn

j,k+1 − 2Qn
jk + Qn

j,k−1

”
or conservatively

Qn+1
jk = Qn

jk + c
∆t

∆x1

„
H1

j+ 1
2
,k
− H1

j− 1
2
,k

«
+ c

∆t

∆x2

„
H2

j,k+ 1
2

− H2
j,k− 1

2

«
Von Neumann stability analysis: Insert single eigenmode Q̂(t)e ik1x1 e ik2x2 into
discretization

Q̂n+1 = Q̂n+C1

“
Q̂ne ik1∆x1 − 2Q̂n + Q̂ne−ik1∆x1

”
+C2

“
Q̂ne ik2∆x2 − 2Q̂n + Q̂ne−ik2∆x2

”
with Cι = c ∆t

∆x2
ι
, ι = 1, 2, which gives after inserting e ikιxι = cos(kιxι) + i sin(kιxι)

Q̂n+1 = Q̂n (1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1))

Stability requires

|1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1)| ≤ 1

i.e.
|1− 4C1 − 4C2| ≤ 1

from which we derive the stability condition

0 ≤ c

„
∆t

∆x2
1

+
∆t

∆x2
2

«
≤

1

2

Fundamentals: Used schemes and mesh adaptation 15

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Splitting methods, second derivatives

Conservative scheme for diffusion equation

Consider ∂t q − c∆q = 0 with c ∈ R+ , which is readily discretized as

Qn+1
jk = Qn

jk + c
∆t

∆x2
1

“
Qn

j+1,k − 2Qn
jk + Qn

j−1,k

”
+ c

∆t

∆x2
2

“
Qn

j,k+1 − 2Qn
jk + Qn

j,k−1

”

or conservatively

Qn+1
jk = Qn

jk + c
∆t

∆x1

„
H1

j+ 1
2
,k
− H1

j− 1
2
,k

«
+ c

∆t

∆x2

„
H2

j,k+ 1
2

− H2
j,k− 1

2

«
Von Neumann stability analysis: Insert single eigenmode Q̂(t)e ik1x1 e ik2x2 into
discretization

Q̂n+1 = Q̂n+C1

“
Q̂ne ik1∆x1 − 2Q̂n + Q̂ne−ik1∆x1

”
+C2

“
Q̂ne ik2∆x2 − 2Q̂n + Q̂ne−ik2∆x2

”
with Cι = c ∆t

∆x2
ι
, ι = 1, 2, which gives after inserting e ikιxι = cos(kιxι) + i sin(kιxι)

Q̂n+1 = Q̂n (1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1))

Stability requires

|1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1)| ≤ 1

i.e.
|1− 4C1 − 4C2| ≤ 1

from which we derive the stability condition

0 ≤ c

„
∆t

∆x2
1

+
∆t

∆x2
2

«
≤

1

2

Fundamentals: Used schemes and mesh adaptation 15

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Splitting methods, second derivatives

Conservative scheme for diffusion equation

Consider ∂t q − c∆q = 0 with c ∈ R+ , which is readily discretized as

Qn+1
jk = Qn

jk + c
∆t

∆x2
1

“
Qn

j+1,k − 2Qn
jk + Qn

j−1,k

”
+ c

∆t

∆x2
2

“
Qn

j,k+1 − 2Qn
jk + Qn

j,k−1

”
or conservatively

Qn+1
jk = Qn

jk + c
∆t

∆x1

„
H1

j+ 1
2
,k
− H1

j− 1
2
,k

«
+ c

∆t

∆x2

„
H2

j,k+ 1
2

− H2
j,k− 1

2

«

Von Neumann stability analysis: Insert single eigenmode Q̂(t)e ik1x1 e ik2x2 into
discretization

Q̂n+1 = Q̂n+C1

“
Q̂ne ik1∆x1 − 2Q̂n + Q̂ne−ik1∆x1

”
+C2

“
Q̂ne ik2∆x2 − 2Q̂n + Q̂ne−ik2∆x2

”
with Cι = c ∆t

∆x2
ι
, ι = 1, 2, which gives after inserting e ikιxι = cos(kιxι) + i sin(kιxι)

Q̂n+1 = Q̂n (1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1))

Stability requires

|1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1)| ≤ 1

i.e.
|1− 4C1 − 4C2| ≤ 1

from which we derive the stability condition

0 ≤ c

„
∆t

∆x2
1

+
∆t

∆x2
2

«
≤

1

2

Fundamentals: Used schemes and mesh adaptation 15

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Splitting methods, second derivatives

Conservative scheme for diffusion equation

Consider ∂t q − c∆q = 0 with c ∈ R+ , which is readily discretized as

Qn+1
jk = Qn

jk + c
∆t

∆x2
1

“
Qn

j+1,k − 2Qn
jk + Qn

j−1,k

”
+ c

∆t

∆x2
2

“
Qn

j,k+1 − 2Qn
jk + Qn

j,k−1

”
or conservatively

Qn+1
jk = Qn

jk + c
∆t

∆x1

„
H1

j+ 1
2
,k
− H1

j− 1
2
,k

«
+ c

∆t

∆x2

„
H2

j,k+ 1
2

− H2
j,k− 1

2

«
Von Neumann stability analysis: Insert single eigenmode Q̂(t)e ik1x1 e ik2x2 into
discretization

Q̂n+1 = Q̂n+C1

“
Q̂ne ik1∆x1 − 2Q̂n + Q̂ne−ik1∆x1

”
+C2

“
Q̂ne ik2∆x2 − 2Q̂n + Q̂ne−ik2∆x2

”
with Cι = c ∆t

∆x2
ι
, ι = 1, 2,

which gives after inserting e ikιxι = cos(kιxι) + i sin(kιxι)

Q̂n+1 = Q̂n (1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1))

Stability requires

|1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1)| ≤ 1

i.e.
|1− 4C1 − 4C2| ≤ 1

from which we derive the stability condition

0 ≤ c

„
∆t

∆x2
1

+
∆t

∆x2
2

«
≤

1

2

Fundamentals: Used schemes and mesh adaptation 15

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Splitting methods, second derivatives

Conservative scheme for diffusion equation

Consider ∂t q − c∆q = 0 with c ∈ R+ , which is readily discretized as

Qn+1
jk = Qn

jk + c
∆t

∆x2
1

“
Qn

j+1,k − 2Qn
jk + Qn

j−1,k

”
+ c

∆t

∆x2
2

“
Qn

j,k+1 − 2Qn
jk + Qn

j,k−1

”
or conservatively

Qn+1
jk = Qn

jk + c
∆t

∆x1

„
H1

j+ 1
2
,k
− H1

j− 1
2
,k

«
+ c

∆t

∆x2

„
H2

j,k+ 1
2

− H2
j,k− 1

2

«
Von Neumann stability analysis: Insert single eigenmode Q̂(t)e ik1x1 e ik2x2 into
discretization

Q̂n+1 = Q̂n+C1

“
Q̂ne ik1∆x1 − 2Q̂n + Q̂ne−ik1∆x1

”
+C2

“
Q̂ne ik2∆x2 − 2Q̂n + Q̂ne−ik2∆x2

”
with Cι = c ∆t

∆x2
ι
, ι = 1, 2, which gives after inserting e ikιxι = cos(kιxι) + i sin(kιxι)

Q̂n+1 = Q̂n (1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1))

Stability requires

|1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1)| ≤ 1

i.e.
|1− 4C1 − 4C2| ≤ 1

from which we derive the stability condition

0 ≤ c

„
∆t

∆x2
1

+
∆t

∆x2
2

«
≤

1

2

Fundamentals: Used schemes and mesh adaptation 15

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Splitting methods, second derivatives

Conservative scheme for diffusion equation

Consider ∂t q − c∆q = 0 with c ∈ R+ , which is readily discretized as

Qn+1
jk = Qn

jk + c
∆t

∆x2
1

“
Qn

j+1,k − 2Qn
jk + Qn

j−1,k

”
+ c

∆t

∆x2
2

“
Qn

j,k+1 − 2Qn
jk + Qn

j,k−1

”
or conservatively

Qn+1
jk = Qn

jk + c
∆t

∆x1

„
H1

j+ 1
2
,k
− H1

j− 1
2
,k

«
+ c

∆t

∆x2

„
H2

j,k+ 1
2

− H2
j,k− 1

2

«
Von Neumann stability analysis: Insert single eigenmode Q̂(t)e ik1x1 e ik2x2 into
discretization

Q̂n+1 = Q̂n+C1

“
Q̂ne ik1∆x1 − 2Q̂n + Q̂ne−ik1∆x1

”
+C2

“
Q̂ne ik2∆x2 − 2Q̂n + Q̂ne−ik2∆x2

”
with Cι = c ∆t

∆x2
ι
, ι = 1, 2, which gives after inserting e ikιxι = cos(kιxι) + i sin(kιxι)

Q̂n+1 = Q̂n (1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1))

Stability requires

|1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1)| ≤ 1

i.e.
|1− 4C1 − 4C2| ≤ 1

from which we derive the stability condition

0 ≤ c

„
∆t

∆x2
1

+
∆t

∆x2
2

«
≤

1

2

Fundamentals: Used schemes and mesh adaptation 15

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Splitting methods, second derivatives

Conservative scheme for diffusion equation

Consider ∂t q − c∆q = 0 with c ∈ R+ , which is readily discretized as

Qn+1
jk = Qn

jk + c
∆t

∆x2
1

“
Qn

j+1,k − 2Qn
jk + Qn

j−1,k

”
+ c

∆t

∆x2
2

“
Qn

j,k+1 − 2Qn
jk + Qn

j,k−1

”
or conservatively

Qn+1
jk = Qn

jk + c
∆t

∆x1

„
H1

j+ 1
2
,k
− H1

j− 1
2
,k

«
+ c

∆t

∆x2

„
H2

j,k+ 1
2

− H2
j,k− 1

2

«
Von Neumann stability analysis: Insert single eigenmode Q̂(t)e ik1x1 e ik2x2 into
discretization

Q̂n+1 = Q̂n+C1

“
Q̂ne ik1∆x1 − 2Q̂n + Q̂ne−ik1∆x1

”
+C2

“
Q̂ne ik2∆x2 − 2Q̂n + Q̂ne−ik2∆x2

”
with Cι = c ∆t

∆x2
ι
, ι = 1, 2, which gives after inserting e ikιxι = cos(kιxι) + i sin(kιxι)

Q̂n+1 = Q̂n (1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1))

Stability requires

|1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1)| ≤ 1

i.e.
|1− 4C1 − 4C2| ≤ 1

from which we derive the stability condition

0 ≤ c

„
∆t

∆x2
1

+
∆t

∆x2
2

«
≤

1

2

Fundamentals: Used schemes and mesh adaptation 15

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-difference splitting

Linear upwind schemes

Consider Riemann problem

∂

∂t
q(x , t)+A

∂

∂x
q(x , t) = 0 , x ∈ R , t > 0

Has exact solution
x

t

0

.

q
R

=
MX

m=1

βm rmq
L

=
MX

m=1

δm rm

β1r1 +
MX

m=2

δm rm

M−1X
m=1

βm rm + δM rM

q(x , t) = q
L

+
X

λm<x/t

amrm = q
R
−

X
λm≥x/t

amrm =
X

λm≥x/t

δmrm +
X

λm<x/t

βmrm

Use Riemann problem to evaluate numerical flux F(q
L
, q

R
) := f(q(0, t)) = Aq(0, t) as

F(q
L
, q

R
) = Aq

L
+
X
λm<0

amλmrm = Aq
R
−
X
λm≥0

amλmrm =
X
λm≥0

δmλmrm+
X
λm<0

βmλmrm

Use λ+
m = max(λm, 0) , λ−m = min(λm, 0)

to define Λ+ := diag(λ+
1 , . . . , λ

+
M) , Λ− := diag(λ−1 , . . . , λ

−
M)

and A+ := R Λ+ R−1 , A− := R Λ− R−1 which gives

F(q
L
, q

R
) = Aq

L
+ A−∆q = Aq

R
− A+∆q = A+q

L
+ A−q

R

with ∆q = q
R
− q

L

Fundamentals: Used schemes and mesh adaptation 16

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-difference splitting

Linear upwind schemes

Consider Riemann problem

∂

∂t
q(x , t)+A

∂

∂x
q(x , t) = 0 , x ∈ R , t > 0

Has exact solution
x

t

0

.

q
R

=
MX

m=1

βm rmq
L

=
MX

m=1

δm rm

β1r1 +
MX

m=2

δm rm

M−1X
m=1

βm rm + δM rM

q(x , t) = q
L

+
X

λm<x/t

amrm = q
R
−

X
λm≥x/t

amrm =
X

λm≥x/t

δmrm +
X

λm<x/t

βmrm

Use Riemann problem to evaluate numerical flux F(q
L
, q

R
) := f(q(0, t)) = Aq(0, t) as

F(q
L
, q

R
) = Aq

L
+
X
λm<0

amλmrm = Aq
R
−
X
λm≥0

amλmrm =
X
λm≥0

δmλmrm+
X
λm<0

βmλmrm

Use λ+
m = max(λm, 0) , λ−m = min(λm, 0)

to define Λ+ := diag(λ+
1 , . . . , λ

+
M) , Λ− := diag(λ−1 , . . . , λ

−
M)

and A+ := R Λ+ R−1 , A− := R Λ− R−1 which gives

F(q
L
, q

R
) = Aq

L
+ A−∆q = Aq

R
− A+∆q = A+q

L
+ A−q

R

with ∆q = q
R
− q

L

Fundamentals: Used schemes and mesh adaptation 16

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-difference splitting

Linear upwind schemes

Consider Riemann problem

∂

∂t
q(x , t)+A

∂

∂x
q(x , t) = 0 , x ∈ R , t > 0

Has exact solution
x

t

0

.

q
R

=
MX

m=1

βm rmq
L

=
MX

m=1

δm rm

β1r1 +
MX

m=2

δm rm

M−1X
m=1

βm rm + δM rM

q(x , t) = q
L

+
X

λm<x/t

amrm = q
R
−

X
λm≥x/t

amrm =
X

λm≥x/t

δmrm +
X

λm<x/t

βmrm

Use Riemann problem to evaluate numerical flux F(q
L
, q

R
) := f(q(0, t)) = Aq(0, t) as

F(q
L
, q

R
) = Aq

L
+
X
λm<0

amλmrm = Aq
R
−
X
λm≥0

amλmrm =
X
λm≥0

δmλmrm+
X
λm<0

βmλmrm

Use λ+
m = max(λm, 0) , λ−m = min(λm, 0)

to define Λ+ := diag(λ+
1 , . . . , λ

+
M) , Λ− := diag(λ−1 , . . . , λ

−
M)

and A+ := R Λ+ R−1 , A− := R Λ− R−1 which gives

F(q
L
, q

R
) = Aq

L
+ A−∆q = Aq

R
− A+∆q = A+q

L
+ A−q

R

with ∆q = q
R
− q

L

Fundamentals: Used schemes and mesh adaptation 16

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-difference splitting

Linear upwind schemes

Consider Riemann problem

∂

∂t
q(x , t)+A

∂

∂x
q(x , t) = 0 , x ∈ R , t > 0

Has exact solution
x

t

0

.

q
R

=
MX

m=1

βm rmq
L

=
MX

m=1

δm rm

β1r1 +
MX

m=2

δm rm

M−1X
m=1

βm rm + δM rM

q(x , t) = q
L

+
X

λm<x/t

amrm = q
R
−

X
λm≥x/t

amrm =
X

λm≥x/t

δmrm +
X

λm<x/t

βmrm

Use Riemann problem to evaluate numerical flux F(q
L
, q

R
) := f(q(0, t)) = Aq(0, t) as

F(q
L
, q

R
) = Aq

L
+
X
λm<0

amλmrm = Aq
R
−
X
λm≥0

amλmrm =
X
λm≥0

δmλmrm+
X
λm<0

βmλmrm

Use λ+
m = max(λm, 0) , λ−m = min(λm, 0)

to define Λ+ := diag(λ+
1 , . . . , λ

+
M) , Λ− := diag(λ−1 , . . . , λ

−
M)

and A+ := R Λ+ R−1 , A− := R Λ− R−1 which gives

F(q
L
, q

R
) = Aq

L
+ A−∆q = Aq

R
− A+∆q = A+q

L
+ A−q

R

with ∆q = q
R
− q

L

Fundamentals: Used schemes and mesh adaptation 16

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-difference splitting

Linear upwind schemes

Consider Riemann problem

∂

∂t
q(x , t)+A

∂

∂x
q(x , t) = 0 , x ∈ R , t > 0

Has exact solution
x

t

0

.

q
R

=
MX

m=1

βm rmq
L

=
MX

m=1

δm rm

β1r1 +
MX

m=2

δm rm

M−1X
m=1

βm rm + δM rM

q(x , t) = q
L

+
X

λm<x/t

amrm = q
R
−

X
λm≥x/t

amrm =
X

λm≥x/t

δmrm +
X

λm<x/t

βmrm

Use Riemann problem to evaluate numerical flux F(q
L
, q

R
) := f(q(0, t)) = Aq(0, t) as

F(q
L
, q

R
) = Aq

L
+
X
λm<0

amλmrm = Aq
R
−
X
λm≥0

amλmrm =
X
λm≥0

δmλmrm+
X
λm<0

βmλmrm

Use λ+
m = max(λm, 0) , λ−m = min(λm, 0)

to define Λ+ := diag(λ+
1 , . . . , λ

+
M) , Λ− := diag(λ−1 , . . . , λ

−
M)

and A+ := R Λ+ R−1 , A− := R Λ− R−1 which gives

F(q
L
, q

R
) = Aq

L
+ A−∆q = Aq

R
− A+∆q = A+q

L
+ A−q

R

with ∆q = q
R
− q

L

Fundamentals: Used schemes and mesh adaptation 16

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-difference splitting

Flux difference splitting

Godunov-type scheme with ∆Qn
j+1/2 = Qn

j+1 −Qn
j

Qn+1
j = Qn

j −
∆t

∆x

(
A−∆Qn

j+1/2 + A+∆Qn
j−1/2

)

Use linearization f̄(q̄) = Â(q
L
,q

R
)q̄ and construct scheme for nonlinear

problem as

Qn+1
j = Qn

j −
∆t

∆x

(
Â−(Qn

j ,Q
n
j+1)∆Qn

j+ 1
2

+ Â+(Qn
j−1,Q

n
j)∆Qn

j− 1
2

)
stability condition

max
j∈Z
|λ̂m,j+ 1

2
|∆t

∆x
≤ 1 , for all m = 1, . . . ,M

[LeVeque, 1992]

Fundamentals: Used schemes and mesh adaptation 17

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-difference splitting

Flux difference splitting

Godunov-type scheme with ∆Qn
j+1/2 = Qn

j+1 −Qn
j

Qn+1
j = Qn

j −
∆t

∆x

(
A−∆Qn

j+1/2 + A+∆Qn
j−1/2

)
Use linearization f̄(q̄) = Â(q

L
,q

R
)q̄ and construct scheme for nonlinear

problem as

Qn+1
j = Qn

j −
∆t

∆x

(
Â−(Qn

j ,Q
n
j+1)∆Qn

j+ 1
2

+ Â+(Qn
j−1,Q

n
j)∆Qn

j− 1
2

)

stability condition

max
j∈Z
|λ̂m,j+ 1

2
|∆t

∆x
≤ 1 , for all m = 1, . . . ,M

[LeVeque, 1992]

Fundamentals: Used schemes and mesh adaptation 17

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-difference splitting

Flux difference splitting

Godunov-type scheme with ∆Qn
j+1/2 = Qn

j+1 −Qn
j

Qn+1
j = Qn

j −
∆t

∆x

(
A−∆Qn

j+1/2 + A+∆Qn
j−1/2

)
Use linearization f̄(q̄) = Â(q

L
,q

R
)q̄ and construct scheme for nonlinear

problem as

Qn+1
j = Qn

j −
∆t

∆x

(
Â−(Qn

j ,Q
n
j+1)∆Qn

j+ 1
2

+ Â+(Qn
j−1,Q

n
j)∆Qn

j− 1
2

)
stability condition

max
j∈Z
|λ̂m,j+ 1

2
|∆t

∆x
≤ 1 , for all m = 1, . . . ,M

[LeVeque, 1992]

Fundamentals: Used schemes and mesh adaptation 17

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-difference splitting

Roe’s approximate Riemann solver

Choosing Â(q
L
, q

R
) [Roe, 1981]:

(i) Â(q
L
, q

R
) has real eigenvalues

(ii) Â(q
L
, q

R
)→ ∂f(q)

∂q
as q

L
, q

R
→ q

(iii) Â(q
L
, q

R
)∆q = f(q

R
)− f(q

L
)

ql qr
tn

tn+1

For Euler equations:

ρ̂ =

√
ρLρR +

√
ρRρL√

ρL +
√
ρR

=
√
ρLρR and v̂ =

√
ρLvL +

√
ρR vR√

ρL +
√
ρR

for v = un,H

Wave decomposition: ∆q = qr − q
l

=
X

m

am r̂m

F(q
L
, q

R
) = f(q

L
) +

X
λ̂m<0

λ̂m am r̂m = f(q
R

)−
X
λ̂m≥0

λ̂m am r̂m

=
1

2

f(q

L
) + f(q

R
)−

X
m

|λ̂m| am r̂m

!

Fundamentals: Used schemes and mesh adaptation 18

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-difference splitting

Roe’s approximate Riemann solver

Choosing Â(q
L
, q

R
) [Roe, 1981]:

(i) Â(q
L
, q

R
) has real eigenvalues

(ii) Â(q
L
, q

R
)→ ∂f(q)

∂q
as q

L
, q

R
→ q

(iii) Â(q
L
, q

R
)∆q = f(q

R
)− f(q

L
)

ql qr
tn

tn+1

For Euler equations:

ρ̂ =

√
ρLρR +

√
ρRρL√

ρL +
√
ρR

=
√
ρLρR and v̂ =

√
ρLvL +

√
ρR vR√

ρL +
√
ρR

for v = un,H

Wave decomposition: ∆q = qr − q
l

=
X

m

am r̂m

F(q
L
, q

R
) = f(q

L
) +

X
λ̂m<0

λ̂m am r̂m = f(q
R

)−
X
λ̂m≥0

λ̂m am r̂m

=
1

2

f(q

L
) + f(q

R
)−

X
m

|λ̂m| am r̂m

!

Fundamentals: Used schemes and mesh adaptation 18

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-difference splitting

Roe’s approximate Riemann solver

Choosing Â(q
L
, q

R
) [Roe, 1981]:

(i) Â(q
L
, q

R
) has real eigenvalues

(ii) Â(q
L
, q

R
)→ ∂f(q)

∂q
as q

L
, q

R
→ q

(iii) Â(q
L
, q

R
)∆q = f(q

R
)− f(q

L
)

ql qr
tn

tn+1

For Euler equations:

ρ̂ =

√
ρLρR +

√
ρRρL√

ρL +
√
ρR

=
√
ρLρR and v̂ =

√
ρLvL +

√
ρR vR√

ρL +
√
ρR

for v = un,H

Wave decomposition: ∆q = qr − q
l

=
X

m

am r̂m

F(q
L
, q

R
) = f(q

L
) +

X
λ̂m<0

λ̂m am r̂m = f(q
R

)−
X
λ̂m≥0

λ̂m am r̂m

=
1

2

f(q

L
) + f(q

R
)−

X
m

|λ̂m| am r̂m

!

Fundamentals: Used schemes and mesh adaptation 18

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-difference splitting

Roe’s approximate Riemann solver

Choosing Â(q
L
, q

R
) [Roe, 1981]:

(i) Â(q
L
, q

R
) has real eigenvalues

(ii) Â(q
L
, q

R
)→ ∂f(q)

∂q
as q

L
, q

R
→ q

(iii) Â(q
L
, q

R
)∆q = f(q

R
)− f(q

L
)

ql qr
tn

tn+1

For Euler equations:

ρ̂ =

√
ρLρR +

√
ρRρL√

ρL +
√
ρR

=
√
ρLρR and v̂ =

√
ρLvL +

√
ρR vR√

ρL +
√
ρR

for v = un,H

Wave decomposition: ∆q = qr − q
l

=
X

m

am r̂m

F(q
L
, q

R
) = f(q

L
) +

X
λ̂m<0

λ̂m am r̂m = f(q
R

)−
X
λ̂m≥0

λ̂m am r̂m

=
1

2

f(q

L
) + f(q

R
)−

X
m

|λ̂m| am r̂m

!

Fundamentals: Used schemes and mesh adaptation 18

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-difference splitting

Roe’s approximate Riemann solver

Choosing Â(q
L
, q

R
) [Roe, 1981]:

(i) Â(q
L
, q

R
) has real eigenvalues

(ii) Â(q
L
, q

R
)→ ∂f(q)

∂q
as q

L
, q

R
→ q

(iii) Â(q
L
, q

R
)∆q = f(q

R
)− f(q

L
)

ql qr
tn

tn+1

For Euler equations:

ρ̂ =

√
ρLρR +

√
ρRρL√

ρL +
√
ρR

=
√
ρLρR and v̂ =

√
ρLvL +

√
ρR vR√

ρL +
√
ρR

for v = un,H

Wave decomposition: ∆q = qr − q
l

=
X

m

am r̂m

F(q
L
, q

R
) = f(q

L
) +

X
λ̂m<0

λ̂m am r̂m = f(q
R

)−
X
λ̂m≥0

λ̂m am r̂m

=
1

2

f(q

L
) + f(q

R
)−

X
m

|λ̂m| am r̂m

!

Fundamentals: Used schemes and mesh adaptation 18

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-difference splitting

Roe’s approximate Riemann solver

Choosing Â(q
L
, q

R
) [Roe, 1981]:

(i) Â(q
L
, q

R
) has real eigenvalues

(ii) Â(q
L
, q

R
)→ ∂f(q)

∂q
as q

L
, q

R
→ q

(iii) Â(q
L
, q

R
)∆q = f(q

R
)− f(q

L
)

ql qr
tn

tn+1

For Euler equations:

ρ̂ =

√
ρLρR +

√
ρRρL√

ρL +
√
ρR

=
√
ρLρR and v̂ =

√
ρLvL +

√
ρR vR√

ρL +
√
ρR

for v = un,H

Wave decomposition: ∆q = qr − q
l

=
X

m

am r̂m

F(q
L
, q

R
) = f(q

L
) +

X
λ̂m<0

λ̂m am r̂m = f(q
R

)−
X
λ̂m≥0

λ̂m am r̂m

=
1

2

f(q

L
) + f(q

R
)−

X
m

|λ̂m| am r̂m

!

Fundamentals: Used schemes and mesh adaptation 18

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-difference splitting

Harten-Lax-Van Leer (HLL) approximate Riemann solver

q⋆

q
L

q
R

tn

tn+1

s
L
tn+1 s

R
tn+1

q̄(x , t) =

8<:
q

L
, x < s

L
t

q? , s
L

t ≤ x ≤ s
R

t
q

R
, x > s

R
t

FHLL(q
L
, q

R
) =

8>>><>>>:
f(q

L
) , 0 < s

L
,

s
R

f(q
L

)− s
L
f(q

R
) + s

L
s

R
(q

R
− q

L
)

s
R
− s

L

, s
L
≤ 0 ≤ s

R
,

f(q
R

) , 0 > s
R
,

Euler equations:

s
L

= min(u1,L − cL, u1,R − cR) , s
R

= max(u1,L + cl , u1,R + cR)

[Toro, 1999], HLLC: [Toro et al., 1994]

Fundamentals: Used schemes and mesh adaptation 19

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-difference splitting

Harten-Lax-Van Leer (HLL) approximate Riemann solver

q⋆

q
L

q
R

tn

tn+1

s
L
tn+1 s

R
tn+1

q̄(x , t) =

8<:
q

L
, x < s

L
t

q? , s
L

t ≤ x ≤ s
R

t
q

R
, x > s

R
t

FHLL(q
L
, q

R
) =

8>>><>>>:
f(q

L
) , 0 < s

L
,

s
R

f(q
L

)− s
L
f(q

R
) + s

L
s

R
(q

R
− q

L
)

s
R
− s

L

, s
L
≤ 0 ≤ s

R
,

f(q
R

) , 0 > s
R
,

Euler equations:

s
L

= min(u1,L − cL, u1,R − cR) , s
R

= max(u1,L + cl , u1,R + cR)

[Toro, 1999], HLLC: [Toro et al., 1994]

Fundamentals: Used schemes and mesh adaptation 19

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-difference splitting

Harten-Lax-Van Leer (HLL) approximate Riemann solver

q⋆

q
L

q
R

tn

tn+1

s
L
tn+1 s

R
tn+1

q̄(x , t) =

8<:
q

L
, x < s

L
t

q? , s
L

t ≤ x ≤ s
R

t
q

R
, x > s

R
t

FHLL(q
L
, q

R
) =

8>>><>>>:
f(q

L
) , 0 < s

L
,

s
R

f(q
L

)− s
L
f(q

R
) + s

L
s

R
(q

R
− q

L
)

s
R
− s

L

, s
L
≤ 0 ≤ s

R
,

f(q
R

) , 0 > s
R
,

Euler equations:

s
L

= min(u1,L − cL, u1,R − cR) , s
R

= max(u1,L + cl , u1,R + cR)

[Toro, 1999], HLLC: [Toro et al., 1994]

Fundamentals: Used schemes and mesh adaptation 19

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-vector splitting

Flux vector splitting

Splitting

f(q) = f+(q) + f−(q)

derived under restriction λ̂+
m ≥ 0 and

λ̂−m ≤ 0 for all m = 1, . . . ,M for

Â+(q) =
∂f+(q)

∂q
, Â−(q) =

∂f−(q)

∂q

q
L

q
R

f−(q
L
) f+(q

L
) f−(q

R
) f+(q

R
)

F(q
L
, q

R
) = f+(q

L
) + f−(q

R
)

tl

tl+1

plus reproduction of regular upwinding

f+(q) = f(q) , f−(q) = 0 if λm ≥ 0 for all m = 1, . . . ,M
f+(q) = 0 , f−(q) = f(q) if λm ≤ 0 for all m = 1, . . . ,M

Then use
F(q

L
, q

R
) = f+(q

L
) + f−(q

R
)

Fundamentals: Used schemes and mesh adaptation 20

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-vector splitting

Flux vector splitting

Splitting

f(q) = f+(q) + f−(q)

derived under restriction λ̂+
m ≥ 0 and

λ̂−m ≤ 0 for all m = 1, . . . ,M for

Â+(q) =
∂f+(q)

∂q
, Â−(q) =

∂f−(q)

∂q q
L

q
R

f−(q
L
) f+(q

L
) f−(q

R
) f+(q

R
)

F(q
L
, q

R
) = f+(q

L
) + f−(q

R
)

tl

tl+1

plus reproduction of regular upwinding

f+(q) = f(q) , f−(q) = 0 if λm ≥ 0 for all m = 1, . . . ,M
f+(q) = 0 , f−(q) = f(q) if λm ≤ 0 for all m = 1, . . . ,M

Then use
F(q

L
, q

R
) = f+(q

L
) + f−(q

R
)

Fundamentals: Used schemes and mesh adaptation 20

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-vector splitting

Flux vector splitting

Splitting

f(q) = f+(q) + f−(q)

derived under restriction λ̂+
m ≥ 0 and

λ̂−m ≤ 0 for all m = 1, . . . ,M for

Â+(q) =
∂f+(q)

∂q
, Â−(q) =

∂f−(q)

∂q q
L

q
R

f−(q
L
) f+(q

L
) f−(q

R
) f+(q

R
)

F(q
L
, q

R
) = f+(q

L
) + f−(q

R
)

tl

tl+1

plus reproduction of regular upwinding

f+(q) = f(q) , f−(q) = 0 if λm ≥ 0 for all m = 1, . . . ,M
f+(q) = 0 , f−(q) = f(q) if λm ≤ 0 for all m = 1, . . . ,M

Then use
F(q

L
, q

R
) = f+(q

L
) + f−(q

R
)

Fundamentals: Used schemes and mesh adaptation 20

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-vector splitting

Steger-Warming

Required f(q) = A(q) q

λ+
m =

1

2
(λm + |λm|) λ−m =

1

2
(λm − |λm|)

A+(q) := R(q) Λ+(q) R−1(q) , A−(q) := R(q) Λ−(q) R−1(q)

Gives
f(q) = A+(q) q + A−(q) q

and the numerical flux

F(q
L
, q

R
) = A+(q

L
) q

L
+ A−(q

R
) q

R

Jacobians of the split fluxes are identical to A±(q) only in linear case

∂f±(q)

∂q
=
∂
`
A±(q) q

´
∂q

= A±(q) +
∂A±(q)

∂q
q

Further methods: Van Leer FVS [Toro, 1999], AUSM [Wada and Liou, 1997]

Fundamentals: Used schemes and mesh adaptation 21

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-vector splitting

Steger-Warming

Required f(q) = A(q) q

λ+
m =

1

2
(λm + |λm|) λ−m =

1

2
(λm − |λm|)

A+(q) := R(q) Λ+(q) R−1(q) , A−(q) := R(q) Λ−(q) R−1(q)

Gives
f(q) = A+(q) q + A−(q) q

and the numerical flux

F(q
L
, q

R
) = A+(q

L
) q

L
+ A−(q

R
) q

R

Jacobians of the split fluxes are identical to A±(q) only in linear case

∂f±(q)

∂q
=
∂
`
A±(q) q

´
∂q

= A±(q) +
∂A±(q)

∂q
q

Further methods: Van Leer FVS [Toro, 1999], AUSM [Wada and Liou, 1997]

Fundamentals: Used schemes and mesh adaptation 21

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-vector splitting

Steger-Warming

Required f(q) = A(q) q

λ+
m =

1

2
(λm + |λm|) λ−m =

1

2
(λm − |λm|)

A+(q) := R(q) Λ+(q) R−1(q) , A−(q) := R(q) Λ−(q) R−1(q)

Gives
f(q) = A+(q) q + A−(q) q

and the numerical flux

F(q
L
, q

R
) = A+(q

L
) q

L
+ A−(q

R
) q

R

Jacobians of the split fluxes are identical to A±(q) only in linear case

∂f±(q)

∂q
=
∂
`
A±(q) q

´
∂q

= A±(q) +
∂A±(q)

∂q
q

Further methods: Van Leer FVS [Toro, 1999], AUSM [Wada and Liou, 1997]

Fundamentals: Used schemes and mesh adaptation 21

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-vector splitting

Steger-Warming

Required f(q) = A(q) q

λ+
m =

1

2
(λm + |λm|) λ−m =

1

2
(λm − |λm|)

A+(q) := R(q) Λ+(q) R−1(q) , A−(q) := R(q) Λ−(q) R−1(q)

Gives
f(q) = A+(q) q + A−(q) q

and the numerical flux

F(q
L
, q

R
) = A+(q

L
) q

L
+ A−(q

R
) q

R

Jacobians of the split fluxes are identical to A±(q) only in linear case

∂f±(q)

∂q
=
∂
`
A±(q) q

´
∂q

= A±(q) +
∂A±(q)

∂q
q

Further methods: Van Leer FVS [Toro, 1999], AUSM [Wada and Liou, 1997]

Fundamentals: Used schemes and mesh adaptation 21

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

High-resolution methods

High-resolution methods

Objective: Higher-order accuracy in smooth solution regions but no spurious
oscillations near large gradients
Consistent monotone methods converge toward the entropy solution, but

Theorem
A monotone method is at most first order accurate.

Proof: [Harten et al., 1976]

Definition (TVD property)

Scheme H(∆t)(Qn; j) TVD if TV (Ql+1) ≤ TV (Ql) is satisfied for all discrete
sequences Qn. Herein, TV (Ql) :=

P
j∈Z |Q

l
j+1 −Ql

j | .

TVD schemes: no new extrema, local minima are non-decreasing, local maxima
are non-increasing (termed monotonicity-preserving). Monotonicity-preserving
higher-order schemes are at least 5-point methods. Proofs: [Harten, 1983]

TVD concept is proven [Godlewski and Raviart, 1996] for scalar schemes only
but nevertheless used to construct high resolution schemes.
Monotonicity-preserving scheme can converge toward non-physical weak
solutions.

Fundamentals: Used schemes and mesh adaptation 22

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

High-resolution methods

High-resolution methods

Objective: Higher-order accuracy in smooth solution regions but no spurious
oscillations near large gradients
Consistent monotone methods converge toward the entropy solution, but

Theorem
A monotone method is at most first order accurate.

Proof: [Harten et al., 1976]

Definition (TVD property)

Scheme H(∆t)(Qn; j) TVD if TV (Ql+1) ≤ TV (Ql) is satisfied for all discrete
sequences Qn. Herein, TV (Ql) :=

P
j∈Z |Q

l
j+1 −Ql

j | .

TVD schemes: no new extrema, local minima are non-decreasing, local maxima
are non-increasing (termed monotonicity-preserving). Monotonicity-preserving
higher-order schemes are at least 5-point methods. Proofs: [Harten, 1983]

TVD concept is proven [Godlewski and Raviart, 1996] for scalar schemes only
but nevertheless used to construct high resolution schemes.
Monotonicity-preserving scheme can converge toward non-physical weak
solutions.

Fundamentals: Used schemes and mesh adaptation 22

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

High-resolution methods

High-resolution methods

Objective: Higher-order accuracy in smooth solution regions but no spurious
oscillations near large gradients
Consistent monotone methods converge toward the entropy solution, but

Theorem
A monotone method is at most first order accurate.

Proof: [Harten et al., 1976]

Definition (TVD property)

Scheme H(∆t)(Qn; j) TVD if TV (Ql+1) ≤ TV (Ql) is satisfied for all discrete
sequences Qn. Herein, TV (Ql) :=

P
j∈Z |Q

l
j+1 −Ql

j | .

TVD schemes: no new extrema, local minima are non-decreasing, local maxima
are non-increasing (termed monotonicity-preserving). Monotonicity-preserving
higher-order schemes are at least 5-point methods. Proofs: [Harten, 1983]

TVD concept is proven [Godlewski and Raviart, 1996] for scalar schemes only
but nevertheless used to construct high resolution schemes.
Monotonicity-preserving scheme can converge toward non-physical weak
solutions.

Fundamentals: Used schemes and mesh adaptation 22

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

High-resolution methods

High-resolution methods

Objective: Higher-order accuracy in smooth solution regions but no spurious
oscillations near large gradients
Consistent monotone methods converge toward the entropy solution, but

Theorem
A monotone method is at most first order accurate.

Proof: [Harten et al., 1976]

Definition (TVD property)

Scheme H(∆t)(Qn; j) TVD if TV (Ql+1) ≤ TV (Ql) is satisfied for all discrete
sequences Qn. Herein, TV (Ql) :=

P
j∈Z |Q

l
j+1 −Ql

j | .

TVD schemes: no new extrema, local minima are non-decreasing, local maxima
are non-increasing (termed monotonicity-preserving). Monotonicity-preserving
higher-order schemes are at least 5-point methods. Proofs: [Harten, 1983]

TVD concept is proven [Godlewski and Raviart, 1996] for scalar schemes only
but nevertheless used to construct high resolution schemes.
Monotonicity-preserving scheme can converge toward non-physical weak
solutions.

Fundamentals: Used schemes and mesh adaptation 22

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

High-resolution methods

MUSCL slope limiting

Monotone Upwind Schemes for Conservation Laws [van Leer, 1979]

Q̃
L

j+ 1
2

= Qn
j

+
1

4

»
(1− ω) Φ

+

j− 1
2

∆j− 1
2

+ (1 + ω) Φ
−
j+ 1

2

∆j+ 1
2

–
,

Q̃
R

j− 1
2

= Qn
j
−

1

4

»
(1− ω) Φ

−
j+ 1

2

∆j+ 1
2

+ (1 + ω) Φ
+

j− 1
2

∆j− 1
2

–
with ∆j−1/2 = Qn

j − Qn
j−1, ∆j+1/2 = Qn

j+1 − Qn
j .

Φ
+

j− 1
2

:= Φ

„
r+

j− 1
2

«
, Φ

−
j+ 1

2

:= Φ

„
r−
j+ 1

2

«
with r+

j− 1
2

:=
∆j+ 1

2

∆j− 1
2

, r−
j+ 1

2

:=
∆j− 1

2

∆j+ 1
2

and slope limiters, e.g., Minmod

Φ(r) = max(0,min(r , 1))

Using a midpoint rule for temporal integration, e.g.,

Q?
j = Qn

j
−

1

2

∆t

∆x

“
F (Qn

j+1
,Qn

j
)− F (Qn

j
,Qn

j−1
)
”

and constructing limited values from Q? to be used in FV scheme gives a TVD
method if

1

2

»
(1− ω)Φ(r) + (1 + ω) r Φ

„
1

r

«–
< min(2, 2r)

is satisfied for r > 0. Proof: [Hirsch, 1988]

Fundamentals: Used schemes and mesh adaptation 23

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

High-resolution methods

MUSCL slope limiting

Monotone Upwind Schemes for Conservation Laws [van Leer, 1979]

Q̃
L

j+ 1
2

= Qn
j

+
1

4

»
(1− ω) Φ

+

j− 1
2

∆j− 1
2

+ (1 + ω) Φ
−
j+ 1

2

∆j+ 1
2

–
,

Q̃
R

j− 1
2

= Qn
j
−

1

4

»
(1− ω) Φ

−
j+ 1

2

∆j+ 1
2

+ (1 + ω) Φ
+

j− 1
2

∆j− 1
2

–
with ∆j−1/2 = Qn

j − Qn
j−1, ∆j+1/2 = Qn

j+1 − Qn
j .

Φ
+

j− 1
2

:= Φ

„
r+

j− 1
2

«
, Φ

−
j+ 1

2

:= Φ

„
r−
j+ 1

2

«
with r+

j− 1
2

:=
∆j+ 1

2

∆j− 1
2

, r−
j+ 1

2

:=
∆j− 1

2

∆j+ 1
2

and slope limiters, e.g., Minmod

Φ(r) = max(0,min(r , 1))

Using a midpoint rule for temporal integration, e.g.,

Q?
j = Qn

j
−

1

2

∆t

∆x

“
F (Qn

j+1
,Qn

j
)− F (Qn

j
,Qn

j−1
)
”

and constructing limited values from Q? to be used in FV scheme gives a TVD
method if

1

2

»
(1− ω)Φ(r) + (1 + ω) r Φ

„
1

r

«–
< min(2, 2r)

is satisfied for r > 0. Proof: [Hirsch, 1988]

Fundamentals: Used schemes and mesh adaptation 23

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

High-resolution methods

MUSCL slope limiting

Monotone Upwind Schemes for Conservation Laws [van Leer, 1979]

Q̃
L

j+ 1
2

= Qn
j

+
1

4

»
(1− ω) Φ

+

j− 1
2

∆j− 1
2

+ (1 + ω) Φ
−
j+ 1

2

∆j+ 1
2

–
,

Q̃
R

j− 1
2

= Qn
j
−

1

4

»
(1− ω) Φ

−
j+ 1

2

∆j+ 1
2

+ (1 + ω) Φ
+

j− 1
2

∆j− 1
2

–
with ∆j−1/2 = Qn

j − Qn
j−1, ∆j+1/2 = Qn

j+1 − Qn
j .

Φ
+

j− 1
2

:= Φ

„
r+

j− 1
2

«
, Φ

−
j+ 1

2

:= Φ

„
r−
j+ 1

2

«
with r+

j− 1
2

:=
∆j+ 1

2

∆j− 1
2

, r−
j+ 1

2

:=
∆j− 1

2

∆j+ 1
2

and slope limiters, e.g., Minmod

Φ(r) = max(0,min(r , 1))

Using a midpoint rule for temporal integration, e.g.,

Q?
j = Qn

j
−

1

2

∆t

∆x

“
F (Qn

j+1
,Qn

j
)− F (Qn

j
,Qn

j−1
)
”

and constructing limited values from Q? to be used in FV scheme gives a TVD
method if

1

2

»
(1− ω)Φ(r) + (1 + ω) r Φ

„
1

r

«–
< min(2, 2r)

is satisfied for r > 0. Proof: [Hirsch, 1988]

Fundamentals: Used schemes and mesh adaptation 23

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

High-resolution methods

Wave Propagation with flux limiting

Wave Propagation Method [LeVeque, 1997] is built on the flux differencing approach

A±∆ := Â±(q
L
, q

R
)∆q and the waves Wm := am r̂m, i.e.

A−∆q =
X
λ̂m<0

λ̂mWm , A+∆q =
X
λ̂m≥0

λ̂mWm

Wave Propagation 1D:

Qn+1 = Qn
j −

∆t

∆x

“
A−∆j+ 1

2
+A+∆j− 1

2

”
−

∆t

∆x

“
F̃j+ 1

2
− F̃j− 1

2

”
with

F̃j+ 1
2

=
1

2
|A|
„

1−
∆t

∆x
|A|
«

∆j+ 1
2

=
1

2

MX
m=1

|λ̂m
j+ 1

2

|
„

1−
∆t

∆x

«
|λ̂m

j+ 1
2

| W̃m
j+ 1

2

and wave limiter
W̃m

j+ 1
2

= Φ(Θm
j+ 1

2

)Wm
j+ 1

2

with

Θm
j+ 1

2

=

8<: am
j− 1

2

/am
j+ 1

2

, λ̂m
j+ 1

2

≥ 0 ,

am
j+ 3

2

/am
j+ 1

2

, λ̂m
j+ 1

2

< 0

Fundamentals: Used schemes and mesh adaptation 24

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

High-resolution methods

Wave Propagation with flux limiting

Wave Propagation Method [LeVeque, 1997] is built on the flux differencing approach

A±∆ := Â±(q
L
, q

R
)∆q and the waves Wm := am r̂m, i.e.

A−∆q =
X
λ̂m<0

λ̂mWm , A+∆q =
X
λ̂m≥0

λ̂mWm

Wave Propagation 1D:

Qn+1 = Qn
j −

∆t

∆x

“
A−∆j+ 1

2
+A+∆j− 1

2

”
−

∆t

∆x

“
F̃j+ 1

2
− F̃j− 1

2

”
with

F̃j+ 1
2

=
1

2
|A|
„

1−
∆t

∆x
|A|
«

∆j+ 1
2

=
1

2

MX
m=1

|λ̂m
j+ 1

2

|
„

1−
∆t

∆x

«
|λ̂m

j+ 1
2

| W̃m
j+ 1

2

and wave limiter
W̃m

j+ 1
2

= Φ(Θm
j+ 1

2

)Wm
j+ 1

2

with

Θm
j+ 1

2

=

8<: am
j− 1

2

/am
j+ 1

2

, λ̂m
j+ 1

2

≥ 0 ,

am
j+ 3

2

/am
j+ 1

2

, λ̂m
j+ 1

2

< 0

Fundamentals: Used schemes and mesh adaptation 24

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

High-resolution methods

Wave Propagation with flux limiting

Wave Propagation Method [LeVeque, 1997] is built on the flux differencing approach

A±∆ := Â±(q
L
, q

R
)∆q and the waves Wm := am r̂m, i.e.

A−∆q =
X
λ̂m<0

λ̂mWm , A+∆q =
X
λ̂m≥0

λ̂mWm

Wave Propagation 1D:

Qn+1 = Qn
j −

∆t

∆x

“
A−∆j+ 1

2
+A+∆j− 1

2

”
−

∆t

∆x

“
F̃j+ 1

2
− F̃j− 1

2

”
with

F̃j+ 1
2

=
1

2
|A|
„

1−
∆t

∆x
|A|
«

∆j+ 1
2

=
1

2

MX
m=1

|λ̂m
j+ 1

2

|
„

1−
∆t

∆x

«
|λ̂m

j+ 1
2

| W̃m
j+ 1

2

and wave limiter
W̃m

j+ 1
2

= Φ(Θm
j+ 1

2

)Wm
j+ 1

2

with

Θm
j+ 1

2

=

8<: am
j− 1

2

/am
j+ 1

2

, λ̂m
j+ 1

2

≥ 0 ,

am
j+ 3

2

/am
j+ 1

2

, λ̂m
j+ 1

2

< 0

Fundamentals: Used schemes and mesh adaptation 24

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

High-resolution methods

Wave Propagation Method in 2D

Writing Ã±∆j±1/2 := A+∆j±1/2 + F̃j±1/2 one can develop a truly two-dimensional
one-step method [Langseth and LeVeque, 2000]

Qn+1
jk = Qn

jk −
∆t

∆x1

„
Ã−∆j+ 1

2
,k −

1

2

∆t

∆x2

h
A−B̃−∆j+1,k+ 1

2
+A−B̃+∆j+1,k− 1

2

i
+

Ã+∆j− 1
2
,k −

1

2

∆t

∆x2

h
A+B̃−∆j−1,k+ 1

2
+A+B̃+∆j−1,k− 1

2

i«
−

∆t

∆x2

„
B̃−∆j,k+ 1

2
−

1

2

∆t

∆x1

h
B−Ã−∆j+ 1

2
,k+1 + B−Ã+∆j− 1

2
,k+1

i
+

B̃+∆j,k− 1
2
−

1

2

∆t

∆x1

h
B+Ã−∆j+ 1

2
,k−1 + B+Ã+∆j− 1

2
,k−1

i«
that is stable for

max
j∈Z
|λ̂m,j+ 1

2
|

∆t

∆x1
,max

k∈Z
|λ̂m,k+ 1

2
|

∆t

∆x2

ff
≤ 1 , for all m = 1, . . . ,M

Fundamentals: Used schemes and mesh adaptation 25

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

High-resolution methods

Further high-resolution methods

Some further high-resolution methods (good overview in [Laney, 1998]):

I FCT: 2nd order [Oran and Boris, 2001]

I ENO/WENO: 3rd order [Shu, 97]

I PPM: 3rd order [Colella and Woodward, 1984]

3rd order methods must make use of strong-stability preserving Runge-Kutta
methods [Gottlieb et al., 2001] for time integration that use a multi-step
update

Q̃υ
j = αυQn

j + βυ Q̃υ−1
j + γυ

∆t

∆x

“
Fj+ 1

2
(Q̃υ−1)− Fj− 1

2
(Q̃υ−1)

”
with Q̃0 := Qn, α1 = 1, β1 = 0; and Qn+1 := Q̃Υ after final stage Υ

Typical storage-efficient SSPRK(3,3):

Q̃1 = Qn + ∆tF(Qn), Q̃2 =
3

4
Qn +

1

4
Q̃1 +

1

4
∆tF(Q̃1),

Qn+1 =
1

3
Qn +

2

3
Q̃2 +

2

3
∆tF(Q̃2)

Fundamentals: Used schemes and mesh adaptation 26

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

High-resolution methods

Further high-resolution methods

Some further high-resolution methods (good overview in [Laney, 1998]):

I FCT: 2nd order [Oran and Boris, 2001]

I ENO/WENO: 3rd order [Shu, 97]

I PPM: 3rd order [Colella and Woodward, 1984]

3rd order methods must make use of strong-stability preserving Runge-Kutta
methods [Gottlieb et al., 2001] for time integration that use a multi-step
update

Q̃υ
j = αυQn

j + βυ Q̃υ−1
j + γυ

∆t

∆x

“
Fj+ 1

2
(Q̃υ−1)− Fj− 1

2
(Q̃υ−1)

”
with Q̃0 := Qn, α1 = 1, β1 = 0; and Qn+1 := Q̃Υ after final stage Υ

Typical storage-efficient SSPRK(3,3):

Q̃1 = Qn + ∆tF(Qn), Q̃2 =
3

4
Qn +

1

4
Q̃1 +

1

4
∆tF(Q̃1),

Qn+1 =
1

3
Qn +

2

3
Q̃2 +

2

3
∆tF(Q̃2)

Fundamentals: Used schemes and mesh adaptation 26

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

High-resolution methods

Further high-resolution methods

Some further high-resolution methods (good overview in [Laney, 1998]):

I FCT: 2nd order [Oran and Boris, 2001]

I ENO/WENO: 3rd order [Shu, 97]

I PPM: 3rd order [Colella and Woodward, 1984]

3rd order methods must make use of strong-stability preserving Runge-Kutta
methods [Gottlieb et al., 2001] for time integration that use a multi-step
update

Q̃υ
j = αυQn

j + βυ Q̃υ−1
j + γυ

∆t

∆x

“
Fj+ 1

2
(Q̃υ−1)− Fj− 1

2
(Q̃υ−1)

”
with Q̃0 := Qn, α1 = 1, β1 = 0; and Qn+1 := Q̃Υ after final stage Υ

Typical storage-efficient SSPRK(3,3):

Q̃1 = Qn + ∆tF(Qn), Q̃2 =
3

4
Qn +

1

4
Q̃1 +

1

4
∆tF(Q̃1),

Qn+1 =
1

3
Qn +

2

3
Q̃2 +

2

3
∆tF(Q̃2)

Fundamentals: Used schemes and mesh adaptation 26

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

High-resolution methods

Further high-resolution methods

Some further high-resolution methods (good overview in [Laney, 1998]):

I FCT: 2nd order [Oran and Boris, 2001]

I ENO/WENO: 3rd order [Shu, 97]

I PPM: 3rd order [Colella and Woodward, 1984]

3rd order methods must make use of strong-stability preserving Runge-Kutta
methods [Gottlieb et al., 2001] for time integration that use a multi-step
update

Q̃υ
j = αυQn

j + βυ Q̃υ−1
j + γυ

∆t

∆x

“
Fj+ 1

2
(Q̃υ−1)− Fj− 1

2
(Q̃υ−1)

”
with Q̃0 := Qn, α1 = 1, β1 = 0; and Qn+1 := Q̃Υ after final stage Υ

Typical storage-efficient SSPRK(3,3):

Q̃1 = Qn + ∆tF(Qn), Q̃2 =
3

4
Qn +

1

4
Q̃1 +

1

4
∆tF(Q̃1),

Qn+1 =
1

3
Qn +

2

3
Q̃2 +

2

3
∆tF(Q̃2)

Fundamentals: Used schemes and mesh adaptation 26

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

High-resolution methods

Further high-resolution methods

Some further high-resolution methods (good overview in [Laney, 1998]):

I FCT: 2nd order [Oran and Boris, 2001]

I ENO/WENO: 3rd order [Shu, 97]

I PPM: 3rd order [Colella and Woodward, 1984]

3rd order methods must make use of strong-stability preserving Runge-Kutta
methods [Gottlieb et al., 2001] for time integration that use a multi-step
update

Q̃υ
j = αυQn

j + βυ Q̃υ−1
j + γυ

∆t

∆x

“
Fj+ 1

2
(Q̃υ−1)− Fj− 1

2
(Q̃υ−1)

”
with Q̃0 := Qn, α1 = 1, β1 = 0; and Qn+1 := Q̃Υ after final stage Υ

Typical storage-efficient SSPRK(3,3):

Q̃1 = Qn + ∆tF(Qn), Q̃2 =
3

4
Qn +

1

4
Q̃1 +

1

4
∆tF(Q̃1),

Qn+1 =
1

3
Qn +

2

3
Q̃2 +

2

3
∆tF(Q̃2)

Fundamentals: Used schemes and mesh adaptation 26

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

High-resolution methods

Further high-resolution methods

Some further high-resolution methods (good overview in [Laney, 1998]):

I FCT: 2nd order [Oran and Boris, 2001]

I ENO/WENO: 3rd order [Shu, 97]

I PPM: 3rd order [Colella and Woodward, 1984]

3rd order methods must make use of strong-stability preserving Runge-Kutta
methods [Gottlieb et al., 2001] for time integration that use a multi-step
update

Q̃υ
j = αυQn

j + βυ Q̃υ−1
j + γυ

∆t

∆x

“
Fj+ 1

2
(Q̃υ−1)− Fj− 1

2
(Q̃υ−1)

”
with Q̃0 := Qn, α1 = 1, β1 = 0; and Qn+1 := Q̃Υ after final stage Υ

Typical storage-efficient SSPRK(3,3):

Q̃1 = Qn + ∆tF(Qn), Q̃2 =
3

4
Qn +

1

4
Q̃1 +

1

4
∆tF(Q̃1),

Qn+1 =
1

3
Qn +

2

3
Q̃2 +

2

3
∆tF(Q̃2)

Fundamentals: Used schemes and mesh adaptation 26

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Outline

Conservation laws
Mathematical background
Examples

Finite volume methods
Basics of finite difference methods
Splitting methods, second derivatives

Upwind schemes
Flux-difference splitting
Flux-vector splitting
High-resolution methods

Meshes and adaptation
Elements of adaptive algorithms
Adaptivity on unstructured meshes
Structured mesh refinement techniques

Fundamentals: Used schemes and mesh adaptation 27

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Elements of adaptive algorithms

Elements of adaptive algorithms

I Base grid

I Solver

I Error indicators

I Grid manipulation

I Interpolation (restriction and prolongation)

I Load-balancing

Fundamentals: Used schemes and mesh adaptation 28

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Elements of adaptive algorithms

Elements of adaptive algorithms

I Base grid

I Solver

I Error indicators

I Grid manipulation

I Interpolation (restriction and prolongation)

I Load-balancing

Fundamentals: Used schemes and mesh adaptation 28

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Elements of adaptive algorithms

Elements of adaptive algorithms

I Base grid

I Solver

I Error indicators

I Grid manipulation

I Interpolation (restriction and prolongation)

I Load-balancing

Fundamentals: Used schemes and mesh adaptation 28

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Elements of adaptive algorithms

Elements of adaptive algorithms

I Base grid

I Solver

I Error indicators

I Grid manipulation

I Interpolation (restriction and prolongation)

I Load-balancing

Fundamentals: Used schemes and mesh adaptation 28

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Elements of adaptive algorithms

Elements of adaptive algorithms

I Base grid

I Solver

I Error indicators

I Grid manipulation

I Interpolation (restriction and prolongation)

I Load-balancing

Fundamentals: Used schemes and mesh adaptation 28

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Elements of adaptive algorithms

Elements of adaptive algorithms

I Base grid

I Solver

I Error indicators

I Grid manipulation

I Interpolation (restriction and prolongation)

I Load-balancing

Fundamentals: Used schemes and mesh adaptation 28

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Adaptivity on unstructured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Fundamentals: Used schemes and mesh adaptation 29

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Adaptivity on unstructured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Fundamentals: Used schemes and mesh adaptation 29

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Adaptivity on unstructured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Fundamentals: Used schemes and mesh adaptation 29

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Adaptivity on unstructured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Fundamentals: Used schemes and mesh adaptation 29

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Adaptivity on unstructured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Fundamentals: Used schemes and mesh adaptation 29

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Adaptivity on unstructured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Fundamentals: Used schemes and mesh adaptation 29

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Adaptivity on unstructured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Fundamentals: Used schemes and mesh adaptation 29

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Adaptivity on unstructured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Fundamentals: Used schemes and mesh adaptation 29

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Adaptivity on unstructured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Fundamentals: Used schemes and mesh adaptation 29

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Adaptivity on unstructured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Fundamentals: Used schemes and mesh adaptation 29

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Adaptivity on unstructured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Fundamentals: Used schemes and mesh adaptation 29

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Adaptivity on unstructured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Fundamentals: Used schemes and mesh adaptation 29

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Adaptivity on unstructured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Fundamentals: Used schemes and mesh adaptation 29

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Fundamentals: Used schemes and mesh adaptation 30

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Fundamentals: Used schemes and mesh adaptation 30

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Fundamentals: Used schemes and mesh adaptation 30

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Fundamentals: Used schemes and mesh adaptation 30

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Fundamentals: Used schemes and mesh adaptation 30

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Fundamentals: Used schemes and mesh adaptation 30

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Fundamentals: Used schemes and mesh adaptation 30

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Fundamentals: Used schemes and mesh adaptation 30

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Fundamentals: Used schemes and mesh adaptation 30

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Fundamentals: Used schemes and mesh adaptation 30

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Fundamentals: Used schemes and mesh adaptation 30

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2

3

5

8

6

9

12

10

11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree

Fundamentals: Used schemes and mesh adaptation 30

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Fundamentals: Used schemes and mesh adaptation 31

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Fundamentals: Used schemes and mesh adaptation 31

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Fundamentals: Used schemes and mesh adaptation 31

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Fundamentals: Used schemes and mesh adaptation 31

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Fundamentals: Used schemes and mesh adaptation 31

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Fundamentals: Used schemes and mesh adaptation 31

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Fundamentals: Used schemes and mesh adaptation 31

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Fundamentals: Used schemes and mesh adaptation 31

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Fundamentals: Used schemes and mesh adaptation 31

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Fundamentals: Used schemes and mesh adaptation 31

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Fundamentals: Used schemes and mesh adaptation 31

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Fundamentals: Used schemes and mesh adaptation 31

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Fundamentals: Used schemes and mesh adaptation 31

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Structured mesh refinement techniques

Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Fundamentals: Used schemes and mesh adaptation 31

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

References

References I

[Colella and Woodward, 1984] Colella, P. and Woodward, P. (1984). The piecewise
parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys.,
54:174–201.

[Godlewski and Raviart, 1996] Godlewski, E. and Raviart, P.-A. (1996). Numerical
approximation of hyperbolic systems of conservation laws. Springer Verlag, New
York.

[Gottlieb et al., 2001] Gottlieb, S., Shu, C.-W., and Tadmor, E. (2001). Strong
stability-preserving high-order time discretization methods. SIAM Review,
43(1):89–112.

[Harten, 1983] Harten, A. (1983). High resolution schemes for hyperbolic
conservation laws. J. Comput. Phys., 49:357–393.

[Harten et al., 1976] Harten, A., Hyman, J. M., and Lax, P. D. (1976). On
finite-difference approximations and entropy conditions for shocks. Comm. Pure
Appl. Math., 29:297–322.

[Hirsch, 1988] Hirsch, C. (1988). Numerical computation of internal and external
flows. John Wiley & Sons, Chichester.

Fundamentals: Used schemes and mesh adaptation 32

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

References

References II

[Kröner, 1997] Kröner, D. (1997). Numerical schemes for conservation laws. John
Wiley & Sons and B. G. Teubner, New York, Leipzig.

[Laney, 1998] Laney, C. B. (1998). Computational gasdynamics. Cambridge University
Press, Cambridge.

[Langseth and LeVeque, 2000] Langseth, J. and LeVeque, R. (2000). A wave
propagation method for three dimensional conservation laws. J. Comput. Phys.,
165:126–166.

[LeVeque, 1992] LeVeque, R. J. (1992). Numerical methods for conservation laws.
Birkhäuser, Basel.

[LeVeque, 1997] LeVeque, R. J. (1997). Wave propagation algorithms for
multidimensional hyperbolic systems. J. Comput. Phys., 131(2):327–353.

[Majda, 1984] Majda, A. (1984). Compressible fluid flow and systems of conservation
laws in several space variables. Applied Mathematical Sciences Vol. 53.
Springer-Verlag, New York.

[Oran and Boris, 2001] Oran, E. S. and Boris, J. P. (2001). Numerical simulation of
reactive flow. Cambridge Univ. Press, Cambridge, 2nd edition.

Fundamentals: Used schemes and mesh adaptation 33

Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

References

References III

[Roe, 1981] Roe, P. L. (1981). Approximate Riemann solvers, parameter vectors and
difference schemes. J. Comput. Phys., 43:357–372.

[Shu, 97] Shu, C.-W. (97). Essentially non-oscillatory and weigted essentially
non-oscillatory schemes for hyperbolic conservation laws. Technical Report
CR-97-206253, NASA.

[Toro, 1999] Toro, E. F. (1999). Riemann solvers and numerical methods for fluid
dynamics. Springer-Verlag, Berlin, Heidelberg, 2nd edition.

[Toro et al., 1994] Toro, E. F., Spruce, M., and Speares, W. (1994). Restoration of
the contact surface in the HLL-Riemann solver. Shock Waves, 4:25–34.

[van Leer, 1979] van Leer, B. (1979). Towards the ultimate conservative difference
scheme V. A second order sequel to Godunov’s method. J. Comput. Phys.,
32:101–136.

[Wada and Liou, 1997] Wada, Y. and Liou, M.-S. (1997). An accurate and robust
flux splitting scheme for shock and contact discontinuities. SIAM J. Sci. Comp.,
18(3):633–657.

Fundamentals: Used schemes and mesh adaptation 34

	Conservation laws
	Mathematical background
	Examples

	Finite volume methods
	Basics of finite difference methods
	Splitting methods, second derivatives

	Upwind schemes
	Flux-difference splitting
	Flux-vector splitting
	High-resolution methods

	Meshes and adaptation
	Elements of adaptive algorithms
	Adaptivity on unstructured meshes
	Structured mesh refinement techniques

	References
	

