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Mathematical background

Hyperbolic Conservation Laws

∂

∂t
q(x, t) +

dX
n=1

∂

∂xn
fn(q(x, t)) = 0 , D ⊂ {(x, t) ∈ Rd × R+

0 }

q = q(x, t) ∈ S ⊂ RM - vector of state, fn(q) ∈ C1(S ,RM ) - flux functions,
s(q) ∈ C1(S ,RM ) - source term

Definition (Hyperbolicity)

A(q, ν) = ν1A1(q) + · · ·+ νd Ad (q) with An(q) = ∂fn(q)/∂q has M real
eigenvalues λ1(q, ν) ≤ ... ≤ λM (q, ν) and M linear independent right
eigenvectors rm(q, ν).

If fn(q) is nonlinear, classical solutions
q(x, t) ∈ C1(D, S) do not generally exist, not
even for q0(x) ∈ C1(Rd , S) [Majda, 1984],
[Godlewski and Raviart, 1996],
[Kröner, 1997]

Example: Euler equations
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Mathematical background

Weak solutions

Integral form (Gauss’s theorem):Z
Ω

q(x, t + ∆t) dx−
Z
Ω

q(x, t) dx

+
dX

n=1

t+∆tZ
t

Z
∂Ω

fn(q(o, t))σn(o) do dt =

t+∆tZ
t

Z
Ω

s(q(x, t)) dx

Theorem (Weak solution)

q0 ∈ L∞loc (Rd ,S). q ∈ L∞loc (D, S) is weak solution if q satisfies

∞Z
0

Z
Rd

"
∂ϕ

∂t
· q +

dX
n=1

∂ϕ

∂xn
· fn(q)− ϕ · s(q)

#
dx dt+

Z
Rd

ϕ(x, 0)·q0(x) dx = 0

for any test function ϕ ∈ C1
0(D,S)
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Mathematical background

Entropy solutions

Select physical weak solution as lim
ε→0

qε = q almost everywhere in D of

∂qε
∂t

+
dX

n=1

∂fn(qε)

∂xn
− ε

dX
n=1

∂2qε
∂x2

n
= s(qε) , x ∈ Rd , t > 0

Theorem (Entropy condition)

Assume existence of entropy η ∈ C2(S ,R) and entropy fluxes ψn ∈ C1(S ,R)
that satisfy

∂η(q)

∂q

T

· ∂fn(q)

∂q
=
∂ψn(q)

∂q

T

, n = 1, . . . , d

then lim
ε→0

qε = q almost everywhere in D is weak solution and satisfies

∂η(q)

∂t
+

dX
n=1

∂ψn(q)

∂xn
≤ ∂η(q)

∂q

T

· s(q)

in the sense of distributions. Proof: [Godlewski and Raviart, 1996]
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Mathematical background

Entropy solutions II

Definition (Entropy solution)

Weak solution q is called an entropy solution if q satisfies

∞Z
0

Z
Rd

"
∂ϕ

∂t
η(q) +

dX
n=1

∂ϕ

∂xn
ψn(q)− ϕ

∂η(q)

∂q

T

· s(q)

#
dx dt +

Z
Rd

ϕ(x, 0) η(q0(x)) dx ≥ 0

for all entropy functions η(q) and all test functions ϕ ∈ C1
0(D,R+

0 ), ϕ ≥ 0

Theorem (Jump conditions)

An entropy solution q is a classical solution q ∈ C1(D,S) almost everywhere and
satisfies the Rankine-Hugoniot (RH) jump condition

(q+ − q−)σt +
dX

n=1

`
fn(q+)− fn(q−)

´
σn = 0

and the jump inequality

(η(q+)− η(q−))σt +
dX

n=1

`
ψn(q+)− ψn(q−)

´
σn ≤ 0

along discontinuities. Proof: [Godlewski and Raviart, 1996]
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Examples

Examples

Euler equations
∂ρ

∂t
+

∂

∂xn

(
ρun

)
= 0

∂

∂t

(
ρuk

)
+

∂

∂xn

(
ρuk un + δknp

)
= 0 , k = 1, . . . , d

∂

∂t

(
ρE

)
+

∂

∂xn

(
un(ρE + p)

)
= 0

with polytrope gas equation of state

p = (γ − 1)
(
ρE − 1

2
ρunun

)
have structure

∂tq(x, t) +∇ · f(q(x, t)) = 0
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Examples

Examples II

Navier-Stokes equations
∂ρ

∂t
+

∂

∂xn

`
ρun

´
= 0

∂

∂t

`
ρuk

´
+

∂

∂xn

`
ρuk un + δknp − τkn

´
= 0 , k = 1, . . . , d

∂

∂t

`
ρE
´

+
∂

∂xn

`
un(ρE + p) + qn − τnj uj

´
= 0

with stress tensor

τkn = µ
`∂un

∂xk
+
∂uk

∂xn

´
− 2

3
µ
∂uj

∂xj
δkn

and heat conduction

qn = −λ∂T

∂xn

have structure

∂tq(x, t) +∇ · f(q(x, t)) +∇ · h(q(x, t),∇q(x, t)) = 0

Type can be either hyperbolic or parabolic
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∂xn

`
ρun

´
= 0

∂

∂t

`
ρuk

´
+

∂

∂xn

`
ρuk un + δknp − τkn

´
= 0 , k = 1, . . . , d

∂

∂t

`
ρE
´

+
∂

∂xn

`
un(ρE + p) + qn − τnj uj

´
= 0

with stress tensor

τkn = µ
`∂un

∂xk
+
∂uk

∂xn

´
− 2

3
µ
∂uj

∂xj
δkn

and heat conduction

qn = −λ∂T

∂xn

have structure

∂tq(x, t) +∇ · f(q(x, t)) +∇ · h(q(x, t),∇q(x, t)) = 0

Type can be either hyperbolic or parabolic
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Basics of finite difference methods

Derivation

Assume ∂t q + ∂x f(q) + ∂x h(q(·, ∂x q)) = s(q)

Time discretization tn = n∆t, discrete volumes
Ij = [xj − 1

2
∆x , xj + 1

2
∆x[=: [xj−1/2, xj+1/2[

Using approximations Qj (t) ≈
1

|Ij |

Z
Ij

q(x, t) dx , s(Qj (t)) ≈
1

|Ij |

Z
Ij

s(q(x, t)) dx

and numerical fluxes

F
`
Qj (t),Qj+1(t)

´
≈ f(q(xj+1/2, t)), H

`
Qj (t),Qj+1(t)

´
≈ h(q(xj+1/2, t),∇q(xj+1/2, t))

yields after integration (Gauss theorem)

Qj (tn+1) = Qj (tn)−
1

∆x

tn+1Z
tn

[F (Qj (t), Qj+1(t))− F (Qj−1(t), Qj (t))] dt−

1

∆x

tn+1Z
tn

[H (Qj (t), Qj+1(t))− H (Qj−1(t), Qj (t))] dt +

tn+1Z
tn

s(Qj (t)) dt

For instance:

Qn+1
j = Qn

j −
∆t

∆x

h
F
“

Qn
j , Qn

j+1

”
− F

“
Qn

j−1, Qn
j

”i
−

∆t

∆x

h
H
“

Qn
j , Qn

j+1

”
− H

“
Qn

j−1, Qn
j

”i
+ ∆ts(Qn

j ) dt
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Basics of finite difference methods

Some classical definitions

(2s + 1)-point difference scheme of the form

Qn+1
j = H(∆t)(Qn

j−s , . . . ,Q
n
j+s )

Definition (Stability)

For each time τ there is a constant CS and a value n0 ∈ N such that
‖H(∆t)(Qn)‖ ≤ CS for all n∆t ≤ τ , n < n0

Definition (Consistency)

If the local truncation error

L(∆t)(x, t) :=
1

∆t

h
q(x, t + ∆t)−H(∆t)(q(·, t))

i
satisfies ‖L(∆t)(·, t)‖ → 0 as ∆t → 0

Definition (Convergence)

If the global error E (∆t)(x, t) := Q(x, t)− q(x, t) satisfies ‖E (∆t)(·, t)‖ → 0 as
∆t → 0 for all admissible initial data q0(x)
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Basics of finite difference methods

Some classical definitions II

Definition (Order of accuracy)

H(·) is accurate of order o if for all sufficiently smooth initial data q0(x), there
is a constant CL, such that the local truncation error satisfies
‖L(∆t)(·, t)‖ ≤ CL∆to for all ∆t < ∆t0 , t ≤ τ

Definition (Conservative form)

If H(·) can be written in the form

Qn+1
j = Qn

j −
∆t

∆x

`
F(Qn

j−s+1, . . . ,Q
n
j+s )− F(Qn

j−s , . . . ,Q
n
j+s−1)

´
A conservative scheme satisfiesX

j ∈Z

Qn+1
j =

X
j ∈Z

Qn
j

Definition (Consistency of a conservative method)

If the numerical flux satisfies F(q, . . . , q) = f(q) for all q ∈ S
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Splitting methods, second derivatives

Splitting methods

Solve homogeneous PDE and ODE successively!

H(∆t) : ∂tq +∇ · f(q) = 0 , IC: Q(tm)
∆t
=⇒ Q̃

S(∆t) : ∂tq = s(q) , IC: Q̃
∆t
=⇒ Q(tm + ∆t)

1st-order Godunov splitting: Q(tm + ∆t) = S(∆t)H(∆t)(Q(tm)),

2nd-order Strang splitting : Q(tm + ∆t) = S( 1
2 ∆t)H(∆t)S( 1

2 ∆t)(Q(tm))

1st-order dimensional splitting for H(·):

X (∆t)
1 : ∂tq + ∂x1 f1(q) = 0 , IC: Q(tm)

∆t
=⇒ Q̃1/2

X (∆t)
2 : ∂tq + ∂x2 f2(q) = 0 , IC: Q̃1/2 ∆t

=⇒ Q̃

[Toro, 1999]
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Splitting methods, second derivatives

Conservative scheme for diffusion equation

Consider ∂t q − c∆q = 0 with c ∈ R+

, which is readily discretized as

Qn+1
jk = Qn

jk + c
∆t

∆x2
1

“
Qn

j+1,k − 2Qn
jk + Qn

j−1,k

”
+ c

∆t

∆x2
2

“
Qn

j,k+1 − 2Qn
jk + Qn

j,k−1

”
or conservatively

Qn+1
jk = Qn

jk + c
∆t

∆x1

„
H1

j+ 1
2
,k
− H1

j− 1
2
,k

«
+ c

∆t

∆x2

„
H2

j,k+ 1
2

− H2
j,k− 1

2

«
Von Neumann stability analysis: Insert single eigenmode Q̂(t)e ik1x1 e ik2x2 into
discretization

Q̂n+1 = Q̂n+C1

“
Q̂ne ik1∆x1 − 2Q̂n + Q̂ne−ik1∆x1

”
+C2

“
Q̂ne ik2∆x2 − 2Q̂n + Q̂ne−ik2∆x2

”
with Cι = c ∆t

∆x2
ι
, ι = 1, 2, which gives after inserting e ikιxι = cos(kιxι) + i sin(kιxι)

Q̂n+1 = Q̂n (1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1))

Stability requires

|1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1)| ≤ 1

i.e.
|1− 4C1 − 4C2| ≤ 1

from which we derive the stability condition

0 ≤ c

„
∆t

∆x2
1

+
∆t

∆x2
2

«
≤

1

2

Fundamentals: Used schemes and mesh adaptation 15



Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Splitting methods, second derivatives

Conservative scheme for diffusion equation

Consider ∂t q − c∆q = 0 with c ∈ R+ , which is readily discretized as

Qn+1
jk = Qn

jk + c
∆t

∆x2
1

“
Qn

j+1,k − 2Qn
jk + Qn

j−1,k

”
+ c

∆t

∆x2
2

“
Qn

j,k+1 − 2Qn
jk + Qn

j,k−1

”

or conservatively

Qn+1
jk = Qn

jk + c
∆t

∆x1

„
H1

j+ 1
2
,k
− H1

j− 1
2
,k

«
+ c

∆t

∆x2

„
H2

j,k+ 1
2

− H2
j,k− 1

2

«
Von Neumann stability analysis: Insert single eigenmode Q̂(t)e ik1x1 e ik2x2 into
discretization

Q̂n+1 = Q̂n+C1

“
Q̂ne ik1∆x1 − 2Q̂n + Q̂ne−ik1∆x1

”
+C2

“
Q̂ne ik2∆x2 − 2Q̂n + Q̂ne−ik2∆x2

”
with Cι = c ∆t

∆x2
ι
, ι = 1, 2, which gives after inserting e ikιxι = cos(kιxι) + i sin(kιxι)

Q̂n+1 = Q̂n (1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1))

Stability requires

|1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1)| ≤ 1

i.e.
|1− 4C1 − 4C2| ≤ 1

from which we derive the stability condition

0 ≤ c

„
∆t

∆x2
1

+
∆t

∆x2
2

«
≤

1

2

Fundamentals: Used schemes and mesh adaptation 15



Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Splitting methods, second derivatives

Conservative scheme for diffusion equation

Consider ∂t q − c∆q = 0 with c ∈ R+ , which is readily discretized as

Qn+1
jk = Qn

jk + c
∆t

∆x2
1

“
Qn

j+1,k − 2Qn
jk + Qn

j−1,k

”
+ c

∆t

∆x2
2

“
Qn

j,k+1 − 2Qn
jk + Qn

j,k−1

”
or conservatively

Qn+1
jk = Qn

jk + c
∆t

∆x1

„
H1

j+ 1
2
,k
− H1

j− 1
2
,k

«
+ c

∆t

∆x2

„
H2

j,k+ 1
2

− H2
j,k− 1

2

«

Von Neumann stability analysis: Insert single eigenmode Q̂(t)e ik1x1 e ik2x2 into
discretization

Q̂n+1 = Q̂n+C1

“
Q̂ne ik1∆x1 − 2Q̂n + Q̂ne−ik1∆x1

”
+C2

“
Q̂ne ik2∆x2 − 2Q̂n + Q̂ne−ik2∆x2

”
with Cι = c ∆t

∆x2
ι
, ι = 1, 2, which gives after inserting e ikιxι = cos(kιxι) + i sin(kιxι)

Q̂n+1 = Q̂n (1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1))

Stability requires

|1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1)| ≤ 1

i.e.
|1− 4C1 − 4C2| ≤ 1

from which we derive the stability condition

0 ≤ c

„
∆t

∆x2
1

+
∆t

∆x2
2

«
≤

1

2

Fundamentals: Used schemes and mesh adaptation 15



Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Splitting methods, second derivatives

Conservative scheme for diffusion equation

Consider ∂t q − c∆q = 0 with c ∈ R+ , which is readily discretized as

Qn+1
jk = Qn

jk + c
∆t

∆x2
1

“
Qn

j+1,k − 2Qn
jk + Qn

j−1,k

”
+ c

∆t

∆x2
2

“
Qn

j,k+1 − 2Qn
jk + Qn

j,k−1

”
or conservatively

Qn+1
jk = Qn

jk + c
∆t

∆x1

„
H1

j+ 1
2
,k
− H1

j− 1
2
,k

«
+ c

∆t

∆x2

„
H2

j,k+ 1
2

− H2
j,k− 1

2

«
Von Neumann stability analysis: Insert single eigenmode Q̂(t)e ik1x1 e ik2x2 into
discretization

Q̂n+1 = Q̂n+C1

“
Q̂ne ik1∆x1 − 2Q̂n + Q̂ne−ik1∆x1

”
+C2

“
Q̂ne ik2∆x2 − 2Q̂n + Q̂ne−ik2∆x2

”
with Cι = c ∆t

∆x2
ι
, ι = 1, 2,

which gives after inserting e ikιxι = cos(kιxι) + i sin(kιxι)

Q̂n+1 = Q̂n (1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1))

Stability requires

|1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1)| ≤ 1

i.e.
|1− 4C1 − 4C2| ≤ 1

from which we derive the stability condition

0 ≤ c

„
∆t

∆x2
1

+
∆t

∆x2
2

«
≤

1

2

Fundamentals: Used schemes and mesh adaptation 15



Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Splitting methods, second derivatives

Conservative scheme for diffusion equation

Consider ∂t q − c∆q = 0 with c ∈ R+ , which is readily discretized as

Qn+1
jk = Qn

jk + c
∆t

∆x2
1

“
Qn

j+1,k − 2Qn
jk + Qn

j−1,k

”
+ c

∆t

∆x2
2

“
Qn

j,k+1 − 2Qn
jk + Qn

j,k−1

”
or conservatively

Qn+1
jk = Qn

jk + c
∆t

∆x1

„
H1

j+ 1
2
,k
− H1

j− 1
2
,k

«
+ c

∆t

∆x2

„
H2

j,k+ 1
2

− H2
j,k− 1

2

«
Von Neumann stability analysis: Insert single eigenmode Q̂(t)e ik1x1 e ik2x2 into
discretization

Q̂n+1 = Q̂n+C1

“
Q̂ne ik1∆x1 − 2Q̂n + Q̂ne−ik1∆x1

”
+C2

“
Q̂ne ik2∆x2 − 2Q̂n + Q̂ne−ik2∆x2

”
with Cι = c ∆t

∆x2
ι
, ι = 1, 2, which gives after inserting e ikιxι = cos(kιxι) + i sin(kιxι)

Q̂n+1 = Q̂n (1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1))

Stability requires

|1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1)| ≤ 1

i.e.
|1− 4C1 − 4C2| ≤ 1

from which we derive the stability condition

0 ≤ c

„
∆t

∆x2
1

+
∆t

∆x2
2

«
≤

1

2

Fundamentals: Used schemes and mesh adaptation 15



Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Splitting methods, second derivatives

Conservative scheme for diffusion equation

Consider ∂t q − c∆q = 0 with c ∈ R+ , which is readily discretized as

Qn+1
jk = Qn

jk + c
∆t

∆x2
1

“
Qn

j+1,k − 2Qn
jk + Qn

j−1,k

”
+ c

∆t

∆x2
2

“
Qn

j,k+1 − 2Qn
jk + Qn

j,k−1

”
or conservatively

Qn+1
jk = Qn

jk + c
∆t

∆x1

„
H1

j+ 1
2
,k
− H1

j− 1
2
,k

«
+ c

∆t

∆x2

„
H2

j,k+ 1
2

− H2
j,k− 1

2

«
Von Neumann stability analysis: Insert single eigenmode Q̂(t)e ik1x1 e ik2x2 into
discretization

Q̂n+1 = Q̂n+C1

“
Q̂ne ik1∆x1 − 2Q̂n + Q̂ne−ik1∆x1

”
+C2

“
Q̂ne ik2∆x2 − 2Q̂n + Q̂ne−ik2∆x2

”
with Cι = c ∆t

∆x2
ι
, ι = 1, 2, which gives after inserting e ikιxι = cos(kιxι) + i sin(kιxι)

Q̂n+1 = Q̂n (1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1))

Stability requires

|1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1)| ≤ 1

i.e.
|1− 4C1 − 4C2| ≤ 1

from which we derive the stability condition

0 ≤ c

„
∆t

∆x2
1

+
∆t

∆x2
2

«
≤

1

2

Fundamentals: Used schemes and mesh adaptation 15



Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Splitting methods, second derivatives

Conservative scheme for diffusion equation

Consider ∂t q − c∆q = 0 with c ∈ R+ , which is readily discretized as

Qn+1
jk = Qn

jk + c
∆t

∆x2
1

“
Qn

j+1,k − 2Qn
jk + Qn

j−1,k

”
+ c

∆t

∆x2
2

“
Qn

j,k+1 − 2Qn
jk + Qn

j,k−1

”
or conservatively

Qn+1
jk = Qn

jk + c
∆t

∆x1

„
H1

j+ 1
2
,k
− H1

j− 1
2
,k

«
+ c

∆t

∆x2

„
H2

j,k+ 1
2

− H2
j,k− 1

2

«
Von Neumann stability analysis: Insert single eigenmode Q̂(t)e ik1x1 e ik2x2 into
discretization

Q̂n+1 = Q̂n+C1

“
Q̂ne ik1∆x1 − 2Q̂n + Q̂ne−ik1∆x1

”
+C2

“
Q̂ne ik2∆x2 − 2Q̂n + Q̂ne−ik2∆x2

”
with Cι = c ∆t

∆x2
ι
, ι = 1, 2, which gives after inserting e ikιxι = cos(kιxι) + i sin(kιxι)

Q̂n+1 = Q̂n (1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1))

Stability requires

|1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1)| ≤ 1

i.e.
|1− 4C1 − 4C2| ≤ 1

from which we derive the stability condition

0 ≤ c

„
∆t

∆x2
1

+
∆t

∆x2
2

«
≤

1

2

Fundamentals: Used schemes and mesh adaptation 15



Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-difference splitting

Linear upwind schemes

Consider Riemann problem

∂

∂t
q(x , t)+A

∂

∂x
q(x , t) = 0 , x ∈ R , t > 0

Has exact solution
x

t

0

. . . . .

q
R

=
MX

m=1

βm rmq
L

=
MX

m=1

δm rm

β1r1 +
MX

m=2

δm rm

M−1X
m=1

βm rm + δM rM

q(x , t) = q
L

+
X

λm<x/t

amrm = q
R
−

X
λm≥x/t

amrm =
X

λm≥x/t

δmrm +
X

λm<x/t

βmrm

Use Riemann problem to evaluate numerical flux F(q
L
, q

R
) := f(q(0, t)) = Aq(0, t) as

F(q
L
, q

R
) = Aq

L
+
X
λm<0

amλmrm = Aq
R
−
X
λm≥0

amλmrm =
X
λm≥0

δmλmrm+
X
λm<0

βmλmrm

Use λ+
m = max(λm, 0) , λ−m = min(λm, 0)

to define Λ+ := diag(λ+
1 , . . . , λ

+
M ) , Λ− := diag(λ−1 , . . . , λ

−
M )

and A+ := R Λ+ R−1 , A− := R Λ− R−1 which gives

F(q
L
, q

R
) = Aq

L
+ A−∆q = Aq

R
− A+∆q = A+q

L
+ A−q

R

with ∆q = q
R
− q

L
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Flux-difference splitting

Flux difference splitting

Godunov-type scheme with ∆Qn
j+1/2 = Qn

j+1 −Qn
j

Qn+1
j = Qn

j −
∆t

∆x

(
A−∆Qn

j+1/2 + A+∆Qn
j−1/2

)

Use linearization f̄(q̄) = Â(q
L
,q

R
)q̄ and construct scheme for nonlinear

problem as

Qn+1
j = Qn

j −
∆t

∆x

(
Â−(Qn

j ,Q
n
j+1)∆Qn

j+ 1
2

+ Â+(Qn
j−1,Q

n
j )∆Qn

j− 1
2

)
stability condition

max
j∈Z
|λ̂m,j+ 1

2
|∆t

∆x
≤ 1 , for all m = 1, . . . ,M

[LeVeque, 1992]
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Flux-difference splitting

Roe’s approximate Riemann solver

Choosing Â(q
L
, q

R
) [Roe, 1981]:

(i) Â(q
L
, q

R
) has real eigenvalues

(ii) Â(q
L
, q

R
)→ ∂f(q)

∂q
as q

L
, q

R
→ q

(iii) Â(q
L
, q

R
)∆q = f(q

R
)− f(q

L
)

ql qr
tn

tn+1

For Euler equations:

ρ̂ =

√
ρLρR +

√
ρRρL√

ρL +
√
ρR

=
√
ρLρR and v̂ =

√
ρLvL +

√
ρR vR√

ρL +
√
ρR

for v = un,H

Wave decomposition: ∆q = qr − q
l

=
X

m

am r̂m

F(q
L
, q

R
) = f(q

L
) +

X
λ̂m<0

λ̂m am r̂m = f(q
R

)−
X
λ̂m≥0

λ̂m am r̂m

=
1

2

 
f(q

L
) + f(q

R
)−

X
m

|λ̂m| am r̂m

!

Fundamentals: Used schemes and mesh adaptation 18



Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

Flux-difference splitting

Roe’s approximate Riemann solver

Choosing Â(q
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√
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Flux-difference splitting

Harten-Lax-Van Leer (HLL) approximate Riemann solver

q⋆

q
L

q
R

tn

tn+1

s
L
tn+1 s

R
tn+1

q̄(x , t) =

8<:
q

L
, x < s

L
t

q? , s
L

t ≤ x ≤ s
R

t
q

R
, x > s

R
t

FHLL(q
L
, q

R
) =

8>>><>>>:
f(q

L
) , 0 < s

L
,

s
R

f(q
L

)− s
L
f(q

R
) + s

L
s

R
(q

R
− q

L
)

s
R
− s

L

, s
L
≤ 0 ≤ s

R
,

f(q
R

) , 0 > s
R
,

Euler equations:

s
L

= min(u1,L − cL, u1,R − cR ) , s
R

= max(u1,L + cl , u1,R + cR )

[Toro, 1999], HLLC: [Toro et al., 1994]
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Flux-vector splitting

Flux vector splitting

Splitting

f(q) = f+(q) + f−(q)

derived under restriction λ̂+
m ≥ 0 and

λ̂−m ≤ 0 for all m = 1, . . . ,M for

Â+(q) =
∂f+(q)

∂q
, Â−(q) =

∂f−(q)

∂q

q
L

q
R

f−(q
L
) f+(q

L
) f−(q

R
) f+(q

R
)

F(q
L
, q

R
) = f+(q

L
) + f−(q

R
)

tl

tl+1

plus reproduction of regular upwinding

f+(q) = f(q) , f−(q) = 0 if λm ≥ 0 for all m = 1, . . . ,M
f+(q) = 0 , f−(q) = f(q) if λm ≤ 0 for all m = 1, . . . ,M

Then use
F(q

L
, q

R
) = f+(q

L
) + f−(q

R
)
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Flux-vector splitting

Steger-Warming

Required f(q) = A(q) q

λ+
m =

1

2
(λm + |λm|) λ−m =

1

2
(λm − |λm|)

A+(q) := R(q) Λ+(q) R−1(q) , A−(q) := R(q) Λ−(q) R−1(q)

Gives
f(q) = A+(q) q + A−(q) q

and the numerical flux

F(q
L
, q

R
) = A+(q

L
) q

L
+ A−(q

R
) q

R

Jacobians of the split fluxes are identical to A±(q) only in linear case

∂f±(q)

∂q
=
∂
`
A±(q) q

´
∂q

= A±(q) +
∂A±(q)

∂q
q

Further methods: Van Leer FVS [Toro, 1999], AUSM [Wada and Liou, 1997]
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High-resolution methods

High-resolution methods

Objective: Higher-order accuracy in smooth solution regions but no spurious
oscillations near large gradients
Consistent monotone methods converge toward the entropy solution, but

Theorem
A monotone method is at most first order accurate.

Proof: [Harten et al., 1976]

Definition (TVD property)

Scheme H(∆t)(Qn; j) TVD if TV (Ql+1) ≤ TV (Ql ) is satisfied for all discrete
sequences Qn. Herein, TV (Ql ) :=

P
j∈Z |Q

l
j+1 −Ql

j | .

TVD schemes: no new extrema, local minima are non-decreasing, local maxima
are non-increasing (termed monotonicity-preserving). Monotonicity-preserving
higher-order schemes are at least 5-point methods. Proofs: [Harten, 1983]

TVD concept is proven [Godlewski and Raviart, 1996] for scalar schemes only
but nevertheless used to construct high resolution schemes.
Monotonicity-preserving scheme can converge toward non-physical weak
solutions.
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High-resolution methods

MUSCL slope limiting

Monotone Upwind Schemes for Conservation Laws [van Leer, 1979]

Q̃
L

j+ 1
2

= Qn
j

+
1

4

»
(1− ω) Φ

+

j− 1
2

∆j− 1
2

+ (1 + ω) Φ
−
j+ 1

2

∆j+ 1
2

–
,

Q̃
R

j− 1
2

= Qn
j
−

1

4

»
(1− ω) Φ

−
j+ 1

2

∆j+ 1
2

+ (1 + ω) Φ
+

j− 1
2

∆j− 1
2

–
with ∆j−1/2 = Qn

j − Qn
j−1, ∆j+1/2 = Qn

j+1 − Qn
j .

Φ
+

j− 1
2

:= Φ

„
r+

j− 1
2

«
, Φ

−
j+ 1

2

:= Φ

„
r−
j+ 1

2

«
with r+

j− 1
2

:=
∆j+ 1

2

∆j− 1
2

, r−
j+ 1

2

:=
∆j− 1

2

∆j+ 1
2

and slope limiters, e.g., Minmod

Φ(r) = max(0,min(r , 1))

Using a midpoint rule for temporal integration, e.g.,

Q?
j = Qn

j
−

1

2

∆t

∆x

“
F (Qn

j+1
,Qn

j
)− F (Qn

j
,Qn

j−1
)
”

and constructing limited values from Q? to be used in FV scheme gives a TVD
method if

1

2

»
(1− ω)Φ(r) + (1 + ω) r Φ

„
1

r

«–
< min(2, 2r)

is satisfied for r > 0. Proof: [Hirsch, 1988]
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High-resolution methods

MUSCL slope limiting

Monotone Upwind Schemes for Conservation Laws [van Leer, 1979]

Q̃
L

j+ 1
2

= Qn
j

+
1

4

»
(1− ω) Φ

+

j− 1
2

∆j− 1
2

+ (1 + ω) Φ
−
j+ 1

2

∆j+ 1
2

–
,

Q̃
R

j− 1
2

= Qn
j
−

1

4

»
(1− ω) Φ

−
j+ 1

2

∆j+ 1
2

+ (1 + ω) Φ
+

j− 1
2

∆j− 1
2

–
with ∆j−1/2 = Qn

j − Qn
j−1, ∆j+1/2 = Qn

j+1 − Qn
j .

Φ
+

j− 1
2

:= Φ

„
r+

j− 1
2

«
, Φ

−
j+ 1

2

:= Φ

„
r−
j+ 1

2

«
with r+

j− 1
2

:=
∆j+ 1

2

∆j− 1
2

, r−
j+ 1

2

:=
∆j− 1

2

∆j+ 1
2

and slope limiters, e.g., Minmod

Φ(r) = max(0,min(r , 1))

Using a midpoint rule for temporal integration, e.g.,

Q?
j = Qn

j
−

1

2

∆t

∆x

“
F (Qn

j+1
,Qn

j
)− F (Qn

j
,Qn

j−1
)
”

and constructing limited values from Q? to be used in FV scheme gives a TVD
method if

1

2

»
(1− ω)Φ(r) + (1 + ω) r Φ

„
1

r

«–
< min(2, 2r)

is satisfied for r > 0. Proof: [Hirsch, 1988]

Fundamentals: Used schemes and mesh adaptation 23



Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

High-resolution methods

Wave Propagation with flux limiting

Wave Propagation Method [LeVeque, 1997] is built on the flux differencing approach

A±∆ := Â±(q
L
, q

R
)∆q and the waves Wm := am r̂m, i.e.

A−∆q =
X
λ̂m<0

λ̂mWm , A+∆q =
X
λ̂m≥0

λ̂mWm

Wave Propagation 1D:

Qn+1 = Qn
j −

∆t

∆x

“
A−∆j+ 1

2
+A+∆j− 1

2

”
−

∆t

∆x

“
F̃j+ 1

2
− F̃j− 1

2

”
with

F̃j+ 1
2

=
1

2
|A|
„

1−
∆t

∆x
|A|
«

∆j+ 1
2

=
1

2

MX
m=1

|λ̂m
j+ 1

2

|
„

1−
∆t

∆x

«
|λ̂m

j+ 1
2

| W̃m
j+ 1

2

and wave limiter
W̃m

j+ 1
2

= Φ(Θm
j+ 1

2

)Wm
j+ 1

2

with

Θm
j+ 1

2

=

8<: am
j− 1

2

/am
j+ 1

2

, λ̂m
j+ 1

2

≥ 0 ,

am
j+ 3

2

/am
j+ 1

2

, λ̂m
j+ 1

2

< 0

Fundamentals: Used schemes and mesh adaptation 24



Conservation laws Finite volume methods Upwind schemes Meshes and adaptation References

High-resolution methods

Wave Propagation with flux limiting

Wave Propagation Method [LeVeque, 1997] is built on the flux differencing approach

A±∆ := Â±(q
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High-resolution methods

Wave Propagation Method in 2D

Writing Ã±∆j±1/2 := A+∆j±1/2 + F̃j±1/2 one can develop a truly two-dimensional
one-step method [Langseth and LeVeque, 2000]
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High-resolution methods

Further high-resolution methods

Some further high-resolution methods (good overview in [Laney, 1998]):

I FCT: 2nd order [Oran and Boris, 2001]

I ENO/WENO: 3rd order [Shu, 97]

I PPM: 3rd order [Colella and Woodward, 1984]

3rd order methods must make use of strong-stability preserving Runge-Kutta
methods [Gottlieb et al., 2001] for time integration that use a multi-step
update

Q̃υ
j = αυQn

j + βυ Q̃υ−1
j + γυ

∆t

∆x

“
Fj+ 1

2
(Q̃υ−1)− Fj− 1

2
(Q̃υ−1)

”
with Q̃0 := Qn, α1 = 1, β1 = 0; and Qn+1 := Q̃Υ after final stage Υ

Typical storage-efficient SSPRK(3,3):

Q̃1 = Qn + ∆tF(Qn), Q̃2 =
3

4
Qn +

1

4
Q̃1 +

1

4
∆tF(Q̃1),

Qn+1 =
1

3
Qn +

2

3
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2

3
∆tF(Q̃2)
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Basics of finite difference methods
Splitting methods, second derivatives

Upwind schemes
Flux-difference splitting
Flux-vector splitting
High-resolution methods

Meshes and adaptation
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Elements of adaptive algorithms

Elements of adaptive algorithms

I Base grid

I Solver

I Error indicators

I Grid manipulation

I Interpolation (restriction and prolongation)

I Load-balancing
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Adaptivity on unstructured meshes

Adaptivity on unstructured meshes

I Coarse cells replaced by finer ones

I Global time-step

I Cell-based data structures

I Neighborhoods have to stored

+ Geometric flexible

+ No hanging nodes

+ Easy to implement

- Higher order difficult to achieve

- Cell aspect ratio must be considered

- Fragmented data

- Cache-reuse / vectorizaton nearly
impossible

- Complex load-balancing

- Complex synchronization

Fundamentals: Used schemes and mesh adaptation 29
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Structured mesh refinement techniques

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Numerical scheme only for single
regular block necessary

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

+/- Cache-reuse / vectorization only in
data block

4

2
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12
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11

1 2 3 4

0

5 6 7 8

9 10 11 12

Wasted boundary space in a quad-tree
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Block-structured adaptive mesh refinement (SAMR)

I Refined block overlay coarser ones

I Time-step refinement

I Block (aka patch) based data
structures

I Global index coordinate system

+ Numerical scheme only for single
patch necessary

+ Efficient cache-reuse / vectorization
possible

+ Simple load-balancing

+ Minimal synchronization overhead

- Cells without mark are refined

- Hanging nodes unavoidable

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1
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