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Conservation laws
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Conservation laws
@000
Mathematical background

Hyperbolic Conservation Laws

9 d
aq(xa t) + nz_;

q=q(x,t) € S C R - vector of state, f,(q) € C*(S,RM) - flux functions,

s(q) € CY(S,RM) - source term

Definition (Hyperbolicity)

S-fa(a(x 1) = s(ax.6). D {(x.6) € B x g

A(q,v) = v1iAi(q) + - - - + vaAqg(q) with A,(q) = Of,(q)/0q has M real
eigenvalues \1(q,v) < ... < Am(q,v) and M linear independent right

eigenvectors rp(q, v).

If f.(q) is nonlinear, classical solutions
q(x, t) € C*(D, S) do not generally exist, not
even for qo(x) € CHRY,S) [Majda, 1984],
[Godlewski and Raviart, 1996],

[Kroner, 1997]

Example: Euler equations
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Conservation laws
[e] Jele]
Mathematical background

Weak solutions

Integral form (Gauss's theorem):

/q(x, t + At) dx — /q(x, t) dx

+nzi; 7At / f.(q(o0, t)) oa(0) do dt = 7At / s(a(x, t)) dx

Theorem (Weak solution)
qo € L2 (RY,S). q € L2(D, S) is weak solution if q satisfies

/!

for any test function p € C§(D, S)

dp N _
Bt q+;a—xn fo(q) — @-S(q)] dx dt+/so(x,0)-qo(><) dx =0

Rd
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Conservation laws
[e]e] le]

Mathematical background

Entropy solutions

Select physical weak solution as Iim0 g = q almost everywhere in D of
E—

8qE

d

Ofr(q:) e d
E R ,,Ezl 9 =s(gq:), xeR", t>0
Theorem (Entropy condition)

Assume existence of entropy 1 € C?(S,R) and entropy fluxes v, € C'(S,R)
that satisfy

on(a)" Ofu(@) _ dn@”
oq oq oq ’ B

then Iim0 g = q almost everywhere in D is weak solution and satisfies
E—

an q)+zc‘wn(q @’ o
ox, — 0q

in the sense of distributions. Proof: [Godlewski and Raviart, 1996]
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Conservation laws
oooe
Mathematical background

Entropy solutions ||

Definition (Entropy solution)
Weak solution q is called an entropy solution if q satisfies

[ [sw+s

for all entropy functions n(q) and all test functions ¢ € Cé(D,]RSF), >0

;
8?9—(;) -S(q)] dx dt+/s0(x,0)?7(qo(><))dx >0

Rd

Theorem (Jump conditions)

An entropy solution q is a classical solution q € C1 (D,S) almost everywhere and
satisfies the Rankine-Hugoniot (RH) jump condition

d
(q+ - q_)o't + Z (fn(q+) - fn(q_)) on=20
n=1
and the jump inequality
d
(m(a*t) —n(a ) ot + > (¥a(a™) = ¢n(a™)) on <0
n=1

along discontinuities. Proof: [Godlewski and Raviart, 1996]
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Conservation laws
[ Je]
Examples

Examples

Euler equations

op 0
ot + Oxp, (,ou,,) =0
0 0
D )+ (i + i) =0 k=1,

%(ﬂE) + %(Un(pE +p)) =0

with polytrope gas equation of state

1
p=(v—1(pE — 5ptntn)

have structure
ai.“q(xa t) +V- f(CI(X, t)) =0
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Conservation laws
(o] ]
Examples

Examples I

Navier-Stokes equations

0 (pukun+5k,,p—7'k,,):0, k=1,...,d

0
ot ('Ouk) + OXn

0 0
E(pE) + 87(un(pE +p) + gn — TnjUj) =0

with stress tensor

Thkn = ,u(aun 8uk> — gu%&m
Oxx  OXn 3" 0x;
and heat conduction
g = _)\8T
O0Xn

have structure

oq(x,t) + V- f(q(x,t)) + V - h(q(x, t), Vq(x,t)) =0

Type can be either hyperbolic or parabolic
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Finite volume methods

Outline

Finite volume methods
Basics of finite difference methods
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Finite volume methods
@00
Basics of finite difference methods

Derivation

Assume 0:q + 0xf(q) + Oxh(a(-, 9xq)) = s(a)

Time discretization t, = n/At, discrete volumes
1 1 .
li =[x — 38x, x5 + 3 Ax[=: [xj_1/2, Xj11/2]

Using approximations Q;(t) ~ ﬁ /q(x7 t)dx, s(Q;(t))~ ﬁ /s(q(x, t)) dx
ity J
J

'j
and numerical fluxes

F(Qj(t), Qj1(t)) = f(a(xj41/2, 1)), H(Qj(t), Qjy1(t)) = h(a(xj11/2, t), Va(Xj11/2, )
yields after integration (Gauss theorem)

thtl

Qy(tri1) = Qilt) = [ IF(QU(0), Qpaa(t)) — F(Qr-a(0), Q(e))] o

n
tht1 th+1

o [ H@0.Qu(0) - H@(0), Qo) de + [ s(Q(e) de

tn tn

For instance:

Q" =qf - % [F (9 Q1) —F ()0 97) | -
% [H (an Qf+1> _H (QJ’.’_l, QJ”)] + Ats(Q]) dt
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Finite volume methods
(o] e
Basics of finite difference methods

Some classical definitions

(2s 4 1)-point difference scheme of the form

Q" = HANQL ., Q)

Definition (Stability)

For each time 7 there is a constant Cs and a value ng € N such that
|IHAD(Q™)|| < Cs for all nAt < 7, n< ng

Definition (Consistency)
If the local truncation error

E(At)(x7 t) := i [q(x, t+ At) — H(At)(q(., t))]

satisfies ||L(20 (-, t)|]| — 0 as At — 0

Definition (Convergence)

If the global error £49(x, t) := Q(x, t) — q(x, t) satisfies ||EAI (-, t)|| — 0 as
At — 0 for all admissible initial data qo(x)
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Finite volume methods
ooe
Basics of finite difference methods

Some classical definitions ||

Definition (Order of accuracy)

H(+) is accurate of order o if for all sufficiently smooth initial data qo(x), there
is a constant C, such that the local truncation error satisfies
LAY, 1)) < CLAE for all At < Aty , t < T

Definition (Conservative form)
If H(-) can be written in the form

n At n n n n
Qj+1 = Qj - B (F(Qj—s+17 SRR Qj+s) _ F(Qj—s’ T Qj+5_1))

A conservative scheme satisfies

> Qit=>"q;

JjEZ jEZ

Definition (Consistency of a conservative method)
If the numerical flux satisfies F(q,...,q) = f(q) for all g € S
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Finite volume methods
[ Je)

Splitting methods, second derivatives

Splitting methods

Solve homogeneous PDE and ODE successively!

HAD . 9q+V-f(q)=0, IC Q(tn) 2= Q
SAL) 0tq = s(q) , Ic: @ 2% Q(tm + At)

1st-order Godunov splitting: Q(t,, + At) = SAOHAD(Q(t)),
2nd-order Strang splitting : Q(tm + At) = SGAVH(ADSGAN(Q(t,,))

1st-order dimensional splitting for H():
XA 9.q+0.f(q) =0, IC Q(tn) 25 Q2

XY 0.q+ 0,6 =0, IC QY2 2% Q@

[Toro, 1999]
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Finite volume methods
oe

Splitting methods, second derivatives

Conservative scheme for diffusion equation

Consider 0:q — cAq = 0 with ¢ € RT , which is readily discretized as

At At
n+1 __
Qi Qk"'cAz(H—lk 2Qj an1k>+CA2(jk+1 2Qj Qﬂk—l)

or conservatively

At At
n+1 n 1 1 2 2

Von Neumann stability analysis: Insert single eigenmode (?(1.“)e"k1’<1 e’k2X2 into
discretization

Ol = d" ¢y <©neik1Ax1 20" + Qne—ikle1)+C2 (Qneik2Ax2 20" + Qne—ikgsz)

with C, = cAAt2, v = 1,2, which gives after inserting e’**: = cos(k,x,) + isin(k,x,)

Qn+1 Qn (]. + 2C1(COS(/(1AX1) — 1) + 2C2(COS(k2AX2) — 1))
Stability requires
|1 4+ 2Ci(cos(kiAx1) — 1) +2C(cos(koAx2) — 1)| < 1
i.e.
I1-4C —4G| <1
from which we derive the stability condition

A A
O<c< ! —|——t>§

1
Axl Ax22 5
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Upwind schemes
@000

Flux-difference splitting

Linear upwind schemes A

M—1
Z Bmrm + 6MI‘M

Bir + Z Smtm

m=2

Consider Riemann problem

9 ( t)—|—A—a (x,t) =0 ER, t>0 qugié v
X X = X mtm
atq ) an Y ) ) m=1

Has exact solution

0
Q(X,t):qL+ Z amfm = qp — Z amfm = Z Om¥fm + Z ﬁmrm

Am<x/t Am>x/t Am>x/t Am<x/t

Use Riemann problem to evaluate numerical flux F(q,,q,) := f(q(0, t)) = Aq(0, t) as

Am <0 Am >0 Am>0 Am <0
Use AL = max(Am,0), m = min(Am,0)
to define AT = diag(A], ..., Af), N~ =diag(A],..., A\y)
and AT :=RATR71, A- :=RA-R! which gives

F(a,,95) =Aq, + A" Aq=Aq, —A"Aq=A"q, + A q,

with Aq=q, — q,
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Upwind schemes
0@00
Flux-difference splitting

Flux difference splitting

Godunov-type scheme with AQJ’.’+1/2 =Q7,; — Q7

At
n+1 n — n + n

Use linearization f(g) = A(qL,qR)ﬁ and construct scheme for nonlinear
problem as
At (

n+1 n__
Qll=Qr - =

~ (A(Q7.Q7,1)2Q), , +A*(Q),.Q))AQ] )

i
stability condition

2 At
max |\ <1

1| — forallm=1.....M
jeZ m,J—l—z‘AX— ’ ’ ’

[LeVeque, 1992]
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Upwind schemes
[ee] lo)
Flux-difference splitting

Roe’s approximate Riemann solver

Choosing A(qL,qR) [Roe, 1981]:
(i) A(qL,qR) has real eigenvalues

oA Of
(i) Alaq,,qg) — a(:') as q,,q, — q

(iii) A(ql_, a;)Aq = f(ag) — f(a,)

For Euler equations:

+ v, + vV
p= VOLLRTNORPL _  ropr and o= YPELTVPRIR oy =y H
NN NN

Wave decomposition: Aq=4q, —q, = Z am fm

F(a,,9,) =f(q,)+ Z Am am bm = flas) — Z Am am Pm

Am<0 Am>0

= % (f(qL) +f(ag) = D 1An| am ?m>

m
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Upwind schemes
ooo0e
Flux-difference splitting

Harten-Lax-Van Leer (HLL) approximate Riemann solver

q, x<st
a(x,t)=4¢ q°, s t<x<s,t
dr, X>spt

f(a,) . 0<s,,
s f — s f + s, s —
Fre(a,,a,) = <f(a,) —s,f(ag) +5,5:(ag —q,) . s <o0<s, .
Sp TS5,
f(as) . 0>s,,

Euler equations:
s, = min(ul,l_ — CL,U1,R — CR) y  Sp = max(ul,L + ¢, ur + CR)

[Toro, 1999], HLLC: [Toro et al., 1994]
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Upwind schemes

[ Jo)
Flux-vector splitting
Flux vector splitting
Splitting
_ Fla,,ag) =f"(a,) +f (ag)
f(q) = f(q) +f (q) TR FEOAT S SRR .
derived under restriction Xﬁ > 0 and gf_(qL) f+(qL)§f_(qR) f+(qR)§

A, <Oforallm=1,...,M for

A*(q) — Ao @ \/

A of(a)  ;
dq

plus reproduction of regu

oq q ar

lar upwinding

ff(q) = f(q), f(q)9 = 0 if An>0 forall m=1,....M
ff'(q) = 0, f7(q) = f(q) if Am<0 forall m=1,....M
Then use

Fundamentals: Used schemes and mesh adaptation

F(a,,q;) =f"(q,) +f (az)

20




Upwind schemes
oe
Flux-vector splitting

Steger-Warming

Required f(q) = A(q) q
L1 1
>\m: E(Am+|)\m|) )\m - 5()\m_|)\m|)

A"(q) :==R(a)A"(@)R (@), A (q):=R(a)A (q)R7(q)
Gives
f(a) =A"(a)a+A (a)q
and the numerical flux

F(a,,a;) =A"(a,)a, + A (a;) ag

Jacobians of the split fluxes are identical to A(q) only in linear case

off(a) _ 9 (A" (a)a)
Ja - da A“(q) + 5 O

Further methods: Van Leer FVS [Toro, 1999], AUSM [Wada and Liou, 1997]

OA™(q)
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Upwind schemes
®0000
High-resolution methods

High-resolution methods

Objective: Higher-order accuracy in smooth solution regions but no spurious
oscillations near large gradients
Consistent monotone methods converge toward the entropy solution, but

Theorem
A monotone method is at most first order accurate.

Proof: [Harten et al., 1976]

Definition (TVD property)
Scheme HA9(Q";j) TVD if TV(Q'*!) < TV(Q') is satisfied for all discrete
sequences Q". Herein, TV(Q') := > icz Q)1 — Q] .

J

TVD schemes: no new extrema, local minima are non-decreasing, local maxima
are non-increasing (termed monotonicity-preserving). Monotonicity-preserving
higher-order schemes are at least 5-point methods. Proofs: [Harten, 1983]

TVD concept is proven [Godlewski and Raviart, 1996] for scalar schemes only
but nevertheless used to construct high resolution schemes.
Monotonicity-preserving scheme can converge toward non-physical weak
solutions.
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Upwind schemes
0O@000

High-resolution methods

MUSCL slope limiting

Monotone Upwind Schemes for Conservation Laws [van Leer, 1979]

~L 1 + —
%=t {(1 m@) Oy Ay T (L) %;Aﬁé] ’
~R n 1 — +

J

with Aj_1/5 = Q = QL1 Ajr1yp = Qfyy — Q.

A,
+ — _ . J+
¢ ;= rty), e =, with rf | = , rq =
J—3 =3 J+3 Jt+3 J—3 . Jt3

N|—=
I

P

N

and slope limiters, e.g., Minmod
®(r) = max(0, min(r, 1))
Using a midpoint rule for temporal integration, e.g.,
1 At
*x n _ - - n n _ n n
G =95 ax (F( e @) — FQ Qj—l))
and constructing limited values from @Q* to be used in FV scheme gives a TVD

method if ) .

5 {(1 —w)P(r)+(1+w)ro (—)} < min(2,2r)
r

is satisfied for r > 0. Proof: [Hirsch, 1988]

Fundamentals: Used schemes and mesh adaptation

23




Upwind schemes
00@00
High-resolution methods

Wave Propagation with flux limiting

Wave Propagation Method [LeVeque, 1997] is built on the flux differencing approach
ALTA = Ai(qL,qR)Aq and the waves Wy, := amtpm, i.e.

ATDa= D AaWn, ATAg= D AnWn

Am<0 Am>0
Wave Propagation 1D:
@t = qp — po (A ) - 2 (B Fy)
with
" 1 At 1 . At\ < "
Fiog =5 M (1 R M) By =5 1 (1 2 ) Wy P

and wave limiter

Aym _ m m
Wi, = e(er )W,
with .
m m m >
om L = aJ_%/ +é ’ AH‘l 20,
j+3 m _Jam . Am | <0
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Upwind schemes
000@0

High-resolution methods

Wave Propagation Method in 2D

Writing ﬂiAjilp = A+Aj:i:1/2 + lEjil/Q one can develop a truly two-dimensional
one-step method [Langseth and LeVeque, 2000]

Q= Q) - g‘_th (fl_AH%,k — %XA—XZ [A‘B‘AHLH% +A_Z§+Aj+1,k—%] +
Dy, - %AA—XZ [ATB=A; 1+ ATBT A, 1,k—;])
B, 1 - %A—; BFA A,y + B+A+AJ_;,k_1D

that is stable for

o At A At
max|A . 1[—,max|A_, 1|— <1, forallm=1,..., M
Jjez Mt Axy kez T MK Axo
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Upwind schemes
[e]e]ele] ]

High-resolution methods

Further high-resolution methods

Some further high-resolution methods (good overview in [Laney, 1998]):
FCT: 2nd order [Oran and Boris, 2001]
ENO/WENO: 3rd order [Shu, 97]
PPM: 3rd order [Colella and Woodward, 1984]

3rd order methods must make use of strong-stability preserving Runge-Kutta
methods [Gottlieb et al., 2001] for time integration that use a multi-step

update

At

ax (Fa @7 =F,@7)

Q' =, Q +8,Q7 "+,
with Q° := Q", a1 =1, $1 =0; and Q" := QT after final stage T
Typical storage-efficient SSPRK(3,3):

Q! + %Atf(@l),

.1
Q"+

)

Q' =Q"+AatFQ"), Q=

3
4

n 1 ., 2=x 2 ~
Q = §Q + §Q2+§Atf(Q
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Meshes and adaptation

Outline

Meshes and adaptation
Elements of adaptive algorithms
Adaptivity on unstructured meshes
Structured mesh refinement techniques
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Elements of adaptive algorithms

Elements of adaptive algorithms

Base grid

Solver

Error indicators

Grid manipulation

Interpolation (restriction and prolongation)

Load-balancing

Fundamentals: Used schemes and mesh adaptation
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Adaptivity on unstructured meshes

Adaptivity on unstructured meshes

Coarse cells replaced by finer ones
Global time-step

Cell-based data structures
Neighborhoods have to stored
Geometric flexible

No hanging nodes

Easy to implement

Higher order difficult to achieve
Cell aspect ratio must be considered
Fragmented data

Cache-reuse / vectorizaton nearly
impossible

Complex load-balancing

Complex synchronization
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Meshes and adaptation
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Structured mesh refinement techniques

Structured mesh refinement techniques

Meshes and adaptation

[ Je]

Block-based data of equal size 0

Block stored in a quad-tree * ’ 1'_§_|_5_31
Time-step refinement o [ 2 6 | 78

Global index coordinate system 5 | 6 o 10 1 12
Neighborhoods need not be stored

Numerical scheme only for single
regular block necessary

Easy to implement

Simple load-balancing | cBEEERR L HEEE
Parent/Child relations according to

tree

Cache-reuse / vectorization only in e
data block Wasted boundary space in a quad-tree
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30




Structured mesh refinement techniques

Block-structured adaptive mesh

Refined block overlay coarser ones

Time-step refinement

Block (aka patch) based data
structures

Global index coordinate system

Numerical scheme only for single
patch necessary

Efficient cache-reuse / vectorization
possible

Simple load-balancing

Minimal synchronization overhead
Cells without mark are refined
Hanging nodes unavoidable
Cluster-algorithm necessary

Difficult to implement
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Serial SAMR method

Outline

The serial Berger-Colella SAMR method
Block-based data structures
Numerical update
Conservative flux correction
Level transfer operators
The basic recursive algorithm
Cluster algorithm
Refinement criteria
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Serial SAMR method
[ Je]
Block-based data structures

The mth refinement grid on level /

Notations:
Boundary: 0G)
Hull:

(_;l,m — Gl,m U aGl,m

Ghost cell region:

Gl(?m = G/(,Tm\él ,m

The SAMR method for hyperbolic problems
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Interior grid with buffer cells - G/

Complete grid
with ghost

. cells - G/,




Serial SAMR method
(o] J
Block-based data structures

Refinement data

At)_ AXx, —
! and Axy = =izl

ry r
Refinement factor: n € N, >2for/ >0and nn=1

Resolution: At :=

Integer coordinate system for internal organization [Bell et al., 1994]:

lmax

AXn,/g H I's

r=I+1

Computational Domain: Gy = JY, Gom
Domain of level I: G, := UAm/I’Zl Gim with G mNG,=0form#n
Refinements are properly nested: G! C G/_;
Assume a FD scheme with stencil radius s. Necessary data:

Vector of state: Q' := U, Q(G/ )

Numerical fluxes: F"' :=J, F"(G,m)

Flux corrections: §F™ := U,, 0F"(0G,m)

The SAMR method for hyperbolic problems 5



Serial SAMR method
[ Jele]
Numerical update

Setting of ghost cells

oodbooo

.......

= Synchronization with G - 5, m = G, m G
E Physical boundary conditions - P, m= G, ,,,\Go
[ Interpolation from G;_; - I, = G, ,,,\(S, _UPs 'm)

The SAMR method for hyperbolic problems 6



Serial SAMR method
oo
Numerical update

Numerical update

Time-explicit conservative finite volume scheme

A At 1 1 At 2
HA: Qu(t+At) = Qi(t)— 7 (Fj+;,k - F-—;,k>_A_X2 (Fj,k+é - J,k—l)

UpdateLevel (/)

For all m=1 To M, Do

QG t) "L Q(Grom t + Al F* (G, £)
If level />0

Add F"(0Gjm,t) to 6F™
If level [+ 1 exists

Init SF™' with F"(Gn» N OGy1,t)

The SAMR method for hyperbolic problems 7



Serial SAMR method
ooe
Numerical update

Conservative flux correction

Example: Cell j, k

fy1—=1rnp1—1

x| Al At 1,/ 1 1,41
Qi (t + Aty) = Qji(t) — A | i~ 720 FV+%’W+L(t+/1At/+1)
’ I+1 k=0 =0
At (Fz,/ _ 2! )
Axyy \ Jk+3 Jk—3
Correction pass:
Li+1 . gl 4
W /]
1 ry1—1
1,41 1,141 1,/+1
L SRV (t+ kAL
2 27 T o 2 T
x| I Aty 141 viv+l
W(t+ At) = Qi(t + At oF>
Qe+ At) = Qu(t + At) + Axp =3k | |
J—1

The SAMR method for hyperbolic problems




Serial SAMR method
[
Conservative flux correction

Conservative flux correction |l

Level / cells needing %

correction (G,rJ’rJrll\G/H) N G

Corrections §F™/*1 stored on Vo ‘
level / 4+ 1 along 0G4 EZA% ’%
(lower-dimensional data 7/}

g

coarsened by rjy1)

e . %
Init SF™/*1 with level | fluxes %‘ %

F*!(G N 8G11) >
Add level | + 1 fluxes % ] % A%

F7/"1(8G41) to 6F™/

N

N
N
N

N
N

[ Cells to correct « F™/ ¢ Fr/+l o gpn/+l

The SAMR method for hyperbolic problems [¢]



Serial SAMR method
[}
Level transfer operators

Level transfer operators

Conservative averaging (restriction):
Replace cells on level | covered by level [ + 1, i.e

J—1 J
G N Gyy1, by
ry1—1lryp—1 . k
Qo= D0 3 e , o
(f/+1)
Bilinear interpolation (prolongation): ChE ,x2, Y) 1
QL i =(1-A)1-£) Q11+ Al — £) Qi1+t
(1-AfA)k j—1,k+f1f2 ij "
XV . Xj—l X . Xk—l
with factors f; := L , Fh = 2.1 2! derived from the spatial
AXl,/ AX2 /

: i—1 k-1
coordinates of the cell centers (x{, ,x2, ) and (X1 /11, %2"141)-

For boundary conditions on I7: linear time interpolation

Q" (t+rAtiyy) = <1 — Ti) ’*1(t)+rl+1 Q" (t+At) fork=0,...n4

The SAMR method for hyperbolic problems




Serial SAMR method
@000
The basic recursive algorithm

Recursive integration order

Space-time interpolation of coarse data to set /7,/ > 0
Regridding:
Creation of new grids, copy existing cells on level /| > 0
Spatial interpolation to initialize new cells on level / > 0

Root Level ’ . ‘

=1 |

|
|
Level 1 | O @ @ Y
|
|
Y

n=4 2 5 8 11

| | | |
| | | |
Level 2 v } Y } Y } Y }

1 1
ry = 2 3 4 6 7 9 10 12 13

>
Time

— — > Regridding of finer levels.
Base level (@) stays fixed.

The SAMR method for hyperbolic problems




Serial SAMR method
0@00
The basic recursive algorithm

The basic recursive algorithm

AdvanceLevel (/)

Repeat r times

Set ghost cells of Q'(t)

If time to regrid?
Regrid (/)

UpdateLevel (/)

If level /+ 1 exists?
Set ghost cells of Ql(t—i—At/)
Advancelevel(/ 4 1)
Average Q'!(t+ At)) onto Q'(t+ At)
Correct Q'(t+ At)) with SF'™

t:=t+ At

Start - Start integration on level 0

/ = 0, o = 1
AdvanceLevel (/)

[Berger and Colella, 1988][Berger and Oliger, 1984]

The SAMR method for hyperbolic problems

Recursion

Restriction and flux
correction

Re-organization of
hierarchical data




Serial SAMR method
000
The basic recursive algorithm

Regridding algorithm

Regrid(/) - Regrid all levels ¢ >/

For = Ir Downto / Do
Flag N' according to Q(t)
If level ¢+ 1 exists?

Flag N* below G'*2

Flag buffer zone on N*
Generate G'™! from N

é/ = G/

For + =1 To If Do
CG, := Gy\G,
éL—H = éaJrl\Céi

Recompose (/)

The SAMR method for hyperbolic problems

Refinement flags:

N =, NOG,m)

Activate flags below higher
levels

Flag buffer cells of b > k, cells,
K, steps between calls of
Regrid (/)

Special cluster algorithm

Use complement operation to
ensure proper nesting condition




Serial SAMR method
oooe
The basic recursive algorithm

Recomposition of data

Recompose(/) - Reorganize all levels ¢ >/

For t=/+4+1 To Ir+1 Do
Interpolate Q“ 1(t) onto Q‘(t)
Copy Q‘(t) onto Q!(t)

Set ghost cells of Q'(t)
Q:(t) == Q«(t), G, =G,

Creates max. 1 level above /¢, but can remove multiple level if éL
empty (no coarsening!)

Use spatial interpolation on entire data Q*(t)
Overwrite where old data exists

Synchronization and physical boundary conditions

The SAMR method for hyperbolic problems




Serial SAMR method

Cluster algorithm

e0

Clustering by signatures

X X X X X xX|6

X X X X X x|6

X X X 3

X X X 3

X X 2

X X 2

X X 2

0

X X 2

2

T 6 2 3 2 2 2 2 2
T Flagged cells per row/column

A Second derivative of T, A =T, 1

Technique from image detection: [Bell et al.,

X X X X X X
X X X X X X
X X X
X X X
X X
X X

7

[\

T
A

[Berger and Rigoutsos, 1991], [Berger, 1986]

The SAMR method for hyperbolic problems
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1994], see also
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T
A

N NN W W
o ~ 4

4 4 2 1 1 T 2 1 1
21 A

Recursive
OinT

Largest difference in A
Stop if ratio between flagged and unflagged cell > 1




Serial SAMR method
[ Jele]
Refinement criteria

Refinement criteria

Scaled gradient of scalar quantity w

(W(Qjr1,6)—w(Qj)| > €w, [W(Qjk+1)—wW(Qjk)| > €w, [W(Qji1,k+1)—W(Qjk)| > €w

Heuristic error estimation [Berger, 1982]:
Local truncation error of scheme of order o

q(x, t + At) — HA9(q(-, 1)) = CAt™ + O(At°T?)
For q smooth after 2 steps At
a(x, t + At) — HL)(q(-, t — At)) = 2CALT + O(AtH?)
and after 1 step with 2At
q(x, t + At) — HP2(q(-, t — At)) = 2°T'CALt° ! + O(At°?)
Gives

HEI(a(-, t — At)) — HE(q(-, ¢ — At)) = (27 —2)CAL™ 4 O(AL™?)

The SAMR method for hyperbolic problems




Serial SAMR method
(o] le]
Refinement criteria

Heuristic error estimation for FV methods

2. Create temporary Grid
coarsened by factor 2

Initialize with fine-grid-

values of preceding 1. Error estimation on 3. Compare tempo-

time step interior cells rary solutions

VY IRY, AN
BELINNIDY, AR RS
A ERERISESAIAN P
,// ,/,' /// \:}\ \\\\ N \>\A/ 7N
pdVdav.a ,/,' ) '\':‘\\\ \\\\'?: . |

///,// V) NS
Y XANN X/

At O _ A A /
S RO QY — At) HAU(HAY QI (y — AY)) 7
\\ Aty A/ //
S. o = M, Q(t—-Ay)__-
— -~ - - -

- -
e ——

H2AH Q! (1 — Aty)
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Serial SAMR method
ooe
Refinement criteria

Usage of heuristic error estimation
Current solution integrated tentatively 1 step with At; and coarsened
O(t; + At;) := Restrict (HQA“ Q'(t; — At/))
Previous solution coarsened and integrated 1 step with 2At,
Q(t; + Aty) := H*" Restrict (Q'(t) — At))
Local error estimation of scalar quantity w

w(Q(t + At)) — w(Qu(t + At))]
20+1 _ 9

w .
Tik =

In practice [Deiterding, 2003] use

w
7 jk r

max([w(Qp(t + AL, Sn) ~ ™

The SAMR method for hyperbolic problems




Parallel SAMR method

Outline

Parallel SAMR method
Domain decomposition
A parallel SAMR algorithm
Partitioning
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Parallel SAMR method
@000
Domain decomposition

Parallelization strategies

Decomposition of the hierarchical data
Distribution of each grid

Separate distribution of each level, cf.
[Rendleman et al., 2000]

Rigorous domain decomposition

Data of all levels resides on same
node

Grid hierarchy defines unique
"floor-plan”

Redistribution of data blocks
during reorganization of
hierarchical data

Synchronization when setting
ghost cells

The SAMR method for hyperbolic problems

Processor 1 Processor 2

DO IO,
p /. 2/

pat




Parallel SAMR method
(o] Te]e]
Domain decomposition

Rigorous domain decomposition formalized

Parallel machine with P identical nodes. P non-overlapping portions G/,
p=1,...,Pas

P
G():LJG(’,J with Gf NGy =0 forp+#gq

p=1
Higher level domains G follow decomposition of root level
G,p = G/ N Gg

With N(-) denoting number of cells, we estimate the workload as

W(Q) = i [N,(G, n)[] rR]

1=0 =0
Equal work distribution necessitates

_ P-W(&g)

LP = ~1 forallp=1,...,P
W(Go) P

[Deiterding, 2005]

The SAMR method for hyperbolic problems




Domain decomposition

Ghost cell setting

Local synchronization
&SP _ 5P p
S;C = G,7m NG

I,m

Parallel synchronization

&S,q _ 7S q
Sim=6/mNG a7 p
Interpolation and physi-

cal boundary conditions
remain strictly local

Scheme H(At)
evaluated locally

Restriction and
propolongation
local

The SAMR method for hyperbolic problems

Parallel SAMR method
[e]e] o]

Processor 1 Processor 2

7 £
L L7

Ghost cell values:

1 Interpolation B Parallel synchronization
1 Local synchronization A Physical boundary

23




Parallel SAMR method
oooe
Domain decomposition

Parallel flux correction

Strictly local: Init §F™/*1 with F”((_§/7m N 0Gj41,t)
Strictly local: Add F"(0G/ m, t) to SFn!

Parallel communication: Correct Q/(t + At;) with 6F/*1

Node p e Node q

........

The SAMR method for hyperbolic problems
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Parallel SAMR method
[ JeJe)

A parallel SAMR algorithm

The recursive algorithm in parallel

Regrid(/)

Numerical update
strictly local

Inter-level transfer local
Parallel synchronization

Application of §F'*! on
G

The SAMR method for hyperbolic problems
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Parallel SAMR method
(o] Jo)

A parallel SAMR algorithm

Regridding algorithm in parallel

Recompose (/)

The SAMR method for hyperbolic problems

Need a ghost cell overlap of b
cells to ensure correct setting
of refinement flags in parallel

Two options exist (we choose
the latter):

Global clustering
algorithm

Local clustering algorithm
and concatenation of new
lists G**

26




Parallel SAMR method
ooce
A parallel SAMR algorithm

Recomposition algorithm in parallel

For 1t =/+4+1 To Ir+1 Do

Copy Q‘(t) onto Qt(t)
Set ghost cells of Q!(t)
Q' () = ()

G =G,

The SAMR method for hyperbolic problems

Global redistribution can also
be required when regridding
higher levels and Gy, ..., G; do
not change (drawback of
domain decomposition)

When ¢ > | do nothing special

For « </, redistribute
additionally

Flux corrections dF"*
Already updated time
level Q“(t + kAt,)

27




Partitioning

Space-filling curve algorithm r
.

Calculation
domain

\

Parallel SAMR method
[ ]

e

Necessary domain of
Space-Filling Curve

AA
VALY
,’Iamrl/i

[ ] Proc. 1 XX High Workload
B Proc. 2 XY Medium Workload

B Proc. 3 7] Low Workload

The SAMR method for hyperbolic problems
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Outline

Examples
Euler equations
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Examples
®00000

Euler equations

SAMR accuracy verification

Gaussian density shape

_< 33 )2

p(X17X2) =1+e

is advected with constant velocities u; = u, =1,
p=1 R=1/4

Domain [—1,1] x [—1, 1], periodic
boundary conditions, tepq = 2

Two levels of adaptation with > = 2,
finest level corresponds to N x N uniform
grid

Use locally conservative interpolation

Q(,,W = ij + ﬂ(Q;-H,j — Qf—l,j) + f2(Q;,j+1 — Q?,j—l)

v I X3 — X

. X1,0+1 — X1, 2,141 2,1 .

with factor f = ————> , f, = ————= to also test flux correction
2Ax1 20Xz,

This prolongation operator is not monotonicity preserving! Only applicable to

smooth problems.
The SAMR method for hyperbolic problems
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Euler equations

SAMR accuracy verification: results

Examples
O@0000

VanlLeer flux vector splitting with dimensional splitting, Minmod limiter

N Unigrid SAMR - fixup SAMR - no fixup
Error Order Error Order | Ap Error Order Ap
20 0.10946400
40 0.04239430 1.369
80 0.01408160 1.590 | 0.01594820 0 0.01595980 2e-5
160 | 0.00492945 1.514 | 0.00526693 1.598 0 0.00530538 1.589 2e-5
320 | 0.00146132 1.754 | 0.00156516 1.751 0 0.00163837 1.695 | -le-5
640 | 0.00041809 1.805 | 0.00051513 1.603 0 0.00060021 1449 | -6e-5
Fully two-dimensional Wave Propagation Method, Minmod limiter
N Unigrid SAMR - fixup SAMR - no fixup
Error Order Error Order | Ap Error Order Ap
20 0.10620000
40 0.04079600 1.380
80 0.01348250 1.598 | 0.01536580 0 0.01538820 2e-5
160 | 0.00472301 1.513 | 0.00505406 1.604 0 0.00510499 1.592 | 5e-5
320 | 0.00139611 1.758 | 0.00147218 1.779 0 0.00152387 1.744 | Te-5
640 | 0.00039904 1.807 | 0.00044500 1.726 0 0.00046587 1.710 | 6e-5

The SAMR method for hyperbolic problems
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Euler equations

Benchmark run: blast wave in 2D

2D-Wave-Propagation
Method with Roe's
approximate solver

Base grid 150 x 150

2 levels: factor 2, 4

Examples

00000
Task [%] P=1 P=2 | P=4 | P=8 | P=16
Update by H(") 86.6 | 834 | 767 | 64.1 51.9
Flux correction 1.2 1.6 3.0 7.9 10.7
Boundary setting 3.5 5.7 10.1 15.6 18.3
Recomposition 5.5 6.1 7.4 9.9 14.0
Misc. 4.9 3.2 2.8 2.5 5.1
Time [min 151.9 79.2 43.4 23.3 13.9
Efficiency [%] 100.0 95.9 87.5 81.5 68.3

After 38 time steps

The SAMR method for hyperbolic problems

07<Z>A/

After 79 time steps
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Examples
[e]e]e] Tele]
Euler equations

Benchmark run 2: point-explosion in 3D

Benchmark from the Chicago Imax = 4 solution

workshop on AMR methods,
September 2003

Sedov explosion - energy
deposition in sphere of radius 4
finest cells

3D-Wave-Prop. Method with
hybrid Roe-HLL scheme

Base grid 32°

. Imax = b solution
Refinement factor r, = 2

Effective resolutions: 1283,
2563, 5123 10243

Grid generation efficiency
Ntol = 85%

Proper nesting enforced

nnnnnnn

Buffer of 1 cell

The SAMR method for hyperbolic problems
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Examples
0000@0

Euler equations

Benchmark run 2: visualization of refinement

The SAMR method for hyperbolic problems



Euler equations

Examples

00000e
Benchmark run 2: performance results
Number of grids and cells

/ hnax = 2 lnax = 3 Inax = 4 Imax = 5
Grids Cells Grids Cells Grids Cells Grids Cells
0 28 32,768 28 32,768 33 32,768 34 32,768
1 8 32,768 14 32,768 20 32,768 20 32,768
2 63 115,408 49 116,920 43 125,680 50 125,144
3 324 | 398,112 420 555,744 193 572,768
4 1405 1,487,312 1,498 1,795,048
5 5,266 | 5,871,128
> 180,944 580,568 2,234,272 8,429,624

Breakdown of CPU time on 8 nodes SGI Altix 3000 (Linux-based shared memory system)

Task [%] fnax = 2 Imax = 3 Imax = 4 lmax = 5
Integration 73.7 77.2 72.9 37.8

Fixup 26 | 46 3.1 | 58 26 | 42 22 | 45
Boundary 10.1 79 6.3 78 51 | 56 6.9 78
Recomposition 7.4 8.0 15.1 50.4
Clustering 0.5 0.6 0.7 1.0
Output/Misc 5.7 4.0 3.6 1.7

Time [min] 0.5 5.1 73.0 2100.0
Uniform [min 5.4 160 ~5,000 ~180,000
Factor of AMR savings 11 31 69 86

Time steps 15 27 52 115

The SAMR method for hyperbolic problems
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Outline

Complex geometry
Boundary aligned meshes
Cartesian techniques
Implicit geometry representation
Accuracy / verification

Combustion
Equations and FV schemes
Shock-induced combustion examples

Fluid-structure interaction
Coupling to a solid mechanics solver
Rigid body motion
Thin elastic structures
Deforming thin structures

Turbulence
Large-eddy simulation

Complex hyperbolic applications 2



Complex geometry

Outline

Complex geometry
Boundary aligned meshes
Cartesian techniques
Implicit geometry representation
Accuracy / verification
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Complex geometry
[}
Boundary aligned meshes

SAMR on boundary aligned meshes

Analytic or stored geometric mapping of the coordinates
(graphic from [Yamaleev and Carpenter, 2002])

Topology remains unchanged and thereby entire 7
1 ‘u."
SAMR algorithm e
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Patch solver and interpolation need to consider
geometry transformation

i

Handles boundary layers well

Overlapping adaptive meshes
i [Henshaw and Schwendeman, 2003],
f [Meakin, 1995]
Corupoent gid 1, L T * Idea is to use a non-Cartesian
hasc grid g .
s it 1 i structured grids only near
interpolate from 1 : boundary

refinements of a
different base grid

Very suitable for moving
objects with boundary layers

Component grid 2,
base grid 2 3

Interpolation between meshes
is usually non-conservative

Complex hyperbolic applications 4




Complex geometry
[ Jele]
Cartesian techniques

Cut-cell techniques

Accurate embedded boundary method

Vet =V - At (A72FQ.)

j+1/2
~AAFQ - 1) e
Methods that represent the boundary sharply:
Cut-cell approach constructs appropriate finite
volumes /
Conservative by construction. Correct 7

boundary flux
Key question: How to avoid small-cell time step restriction in explicit
metyhods?

Cell merging: [Quirk, 1994a]

Usually explicit geometry representation used [Aftosmis, 1997], but can
also be implicit, cf. [Nourgaliev et al., 2003], [Murman et al., 2003]
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Complex geometry
(o] le]
Cartesian techniques

Embedded boundary techniques

Volume of fluid methods that resemble a cut-cell technique on purely Cartesian mesh

Redistribution of boundary flux achieves conservation and bypasses time step
restriction: [Pember et al., 1999], [Berger and Helzel, 2002]

Methods that diffuse the boundary in one cell (good overview in
[Mittal and laccarino, 2005]):

Related to the immersed boundary method by Peskin, cf. [Roma et al., 1999]

Boundary prescription often by internal ghost cell values, cf.
[Tseng and Ferziger, 2003]

Not conservative by construction but conservative correction possible

Usually combined with implicit geometry representation

L l_J.}L

K. J. Richards et al., On the use of the immersed boundary method for engine modeling

Complex hyperbolic applications




Complex geometry
ooce
Cartesian techniques

Level-set method for boundary embedding

Implicit boundary representation via distance
N \ function ¢, normal n = Vo /|V|

1 Complex boundary moving with local velocity
o [ [ode w, treat interface as moving rigid wall

Construction of values in embedded boundary
cells by interpolation / extrapolation

Interpolate / constant value ex-

2w — uj
trapolate values at /
w

Velocity in ghost cells 1 1 1 1

Pj—1 Pj Pj Pj—1
uU=02w-n—u-n)n+ (u-t)t Yot W 2w — U 2w — Uiy
Pj—1 Pj Pj Pj—1

=2((w—u)-n)n+u

Complex hyperbolic applications 7



Complex geometry
[ Je]

Implicit geometry representation

Closest point transform algorithm

The signed distance ¢ to a surface Z satisfies the eikonal equation [Sethian, 1999]
[Vp| =1 with QO‘I =0

Solution smooth but non-diferentiable across characteristics.

Distance computation trivial for non-overlapping elementary shapes but difficult to do

efficiently for triangulated surface meshes:

Geometric solution approach with plosest-point-transform algorithm
[Mauch, 2003]

50

Surface mesh 7 Distance ¢ Normal to closest point

Complex hyperbolic applications 8
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Complex geometry
(o] ]
Implicit geometry representation

The characteristic / scan conversion algorithm

Characteristic polyhedra for faces, edges, and vertices

Build the characteristic

polyhedrons for the surface mesh
N

LNSZN
ASKINA]
AORDAS)
AN,

For each face/edge/vertex
SO

%
74

Scan convert the polyhedron.
Compute distance to that
primitive for the scan
converted points

Computational complexity.

O(m) to build the b-rep and ©
the polyhedra.

O(n) to scan convert the
polyhedra and compute the
distance, etc.

Slicing and scan conversion of apolygon

Problem reduction by evaluation
only within specified max. distance

[Mauch, 2003], see also
[Deiterding et al., 2006]

Complex hyperbolic applications




Complex geometry
[ lelele]e}
Accuracy / verification

Accuracy test: stationary vortex

Construct non-trivial radially symmetric and stationary solution
by balancing hydrodynamic pressure and centripetal force per
volume element, i.e.

r 2
9 p(r) = o)

For po = 1 and the velocity field A

2r/R if0<r<R/2
Ulr)=a-¢ 2(1-r/R) ifR/2<r<R,
0 if r >R,

one gets with boundary condition p(R) = pp = 2 the pressure distribution

r’/R?> +1 —2log?2 if 0 < r<R/2,
p(r) = po+2p00®-{ r2/R2+3—4r/R+2log(r/R) if R/2<r<R,
0 if r > R.

Entire solution for Euler equations reads

p(X17X27 t) = PO, Ul(Xl,X2, t) = _U(r) Sin¢> U2(X1,X2, t) = U(r) COS¢> p(X17X27 t) = p(r)

X2 — X
for all t > 0 with r = \/(x1 — x1,c)2 + (x2 — x2,c)2 and ¢ = arctan =<
X1 — X1,c

Complex hyperbolic applications




Complex geometry
(o] lelele}
Accuracy / verification

Stationary vortex: results

Compute one full rotation, Roe solver, embedded slip wall boundary conditions
xi,c =05, x0c =05, R=0.4, teng =1, Ah=Axg = Axx =1/N, a = Rm

No embedded boundary
N Wave Propagation Godunov Splitting
Error Order Error Order
20 | 0.0111235 0.0182218
40 | 0.0037996 1.55 0.0090662 1.01
80 | 0.0013388 1.50 0.0046392 0.97
160 | 0.0005005 1.42 0.0023142 1.00

Marginal shear flow along embedded boundary, « = Rm, Rg = R, Uy =0

N Wave Propagation Godunov Splitting
Error Order Mass loss Error Order Mass loss
20 | 0.0120056 0.0079236 | 0.0144203 0.0020241
40 | 0.0035074 1.78 0.0011898 | 0.0073070 0.98 0.0001300
80 | 0.0014193 1.31 0.0001588 | 0.0038401 0.93 -0.0001036
160 | 0.0005032 1.50 5.046e-05 0.0018988 1.02 -2.783e-06

Major shear flow along embedded boundary, o« = Rw, Rg = R/2, Uy =0

Complex hyperbolic applications

N Wave Propagation Godunov Splitting
Error Order Mass loss Error Order Mass loss
20 | 0.0423925 0.0423925 | 0.0271446 0.0271446
40 | 0.0358735 0.24 0.0358735 | 0.0242260 0.16 0.0242260
80 | 0.0212340 0.76 0.0212340 | 0.0128638 0.91 0.0128638
160 | 0.0121089 0.81 0.0121089 | 0.0070906 0.86 0.0070906
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Accuracy / verification

Verification: shock reflection

Reflection of a Mach 2.38 shock in nitrogen at 43° wedge

2nd order MUSCL scheme with Roe solver, 2nd order multidimensional
wave propagation method

20

T T T 1
0.000 0.005 0.010 0.015 0.020 0.025 0.030

Cartesian base grid 360 x 160 cells on domain of
36 mm X 16 mm with up to 3 refinement levels LI —
with r =2,4,4 and Ax; » = 3.125um, 38h CPU ° £ 1 ® »

GFM base grid 390 x 330 cells on domain of
26 mm X 22mm with up to 3 refinement levels
with 1 = 2,4,4 and Ax. 12 = 2.849um, 200 h
CPU

Complex hyperbolic applications




Complex geometry
[ee]e] Jo}

Accuracy / verification

Shock reflection: SAMR solution for Euler equations

Ax. = 22.8mm

2nd order MUSCL scheme
with Van Leer FVS, dimen-
sional splitting

20

Ax = 12.5mm Ax = 3.125mm

Complex hyperbolic applications 13



Complex geometry
[e]e]ele] J

Accuracy / verification

Shock reflection: solution for Navier-Stokes equations

No-slip boundary conditions enforced

Conservative 2nd order centered differences to approximate stress tensor and
heat flow

Ax. = 45.6 mm Ax. = 22.8 mm Ax. = 11.4 mm, SAMR

Complex hyperbolic applications
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Combustion
Equations and FV schemes
Shock-induced combustion examples
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Combustion
@0000
Equations and FV schemes

Governing equations for premixed combustion

Euler equations with reaction terms

ap,' 0

_ _— i :.1'7 .:1,...,K
ot + Oxn (p u,,) “ I
0 0
— n+0 =0, k=1,...,d
ot (puk) + B, (pukun + 8knp)
0 0
— (pE — E =0
a¢ (PE) + 5 (un(pE + p))
Ideal gas law and Dalton’s law for gas-mixtures
K K R R K
p(p1,--- ok, T) :ZPi Zpr—T:p—T with pr =p,Yi
i=1 i=1 VV’ w i=1

Caloric equation
K T
h(Yi,..., Y, T) =Y Yih(T) with hi(T)=h +/ cpi(s)ds
i=1 0

Computation of T = T(p1,...,pk, €) from implicit equation
K K o
D> pihi(T)=RT> = —pe=0
i=1 i=1
for thermally perfect gases with ~;(T) = c,i(T)/c.i(T)

Complex hyperbolic applications




Combustion
0000
Equations and FV schemes

Chemistry

Arrhenius-Kinetics:
K f K r

M
U r f f Pn \ Yin r Pn \ Vin .
Wi—;(’/ji—Vﬁ)lij<Wn>J—ij<Wn)J} i=1,...,K

n=1 n=1

Parsing of mechanisms with Chemkin-II

Evalutation of w; with automatically generated optimized Fortran-77
functions in the line of Chemkin-II

Integration of reaction rates: ODE integration in S) for Euler equations with
chemical reaction

Standard implicit or semi-implicit ODE-solver subcycles within each cell

p, €, Ux remain unchanged!
8tpi:\/V,'d),‘(pl,...,p;(,T) i=1,...,K

Use Newton or bisection method to compute T iteratively.

Complex hyperbolic applications




Equations and FV schemes

Combustion
[e]e] lele]

Non-equilibrium mechanism for hydrogen-oxgen combustion

A Eact
[cm, mol, s] B [cal mol_l]
1.  H+ Oy — O+ OH 1.86 x 1014 0.00 16790.
2. O+ OH —— H+ 0, 1.48 x 1013 0.00 680.
3. Hg+O ——  H+OH 1.82 x 1010 1.00 8900.
4  H+OH —  Ho+O 8.32 x 1099 1.00 6950.
5. HyO+ O ——  OH+ OH 3.39 x 1013 0.00 18350.
6. OH+ OH —  Hy0+O0 3.16 x 1012 0.00 1100.
7. HeO+H —  Hy +OH 9.55 x 1013 0.00 20300.
8. Ho + OH —  HyO+H 2.19 x 1013 0.00 5150.
9. Hy05+OH ——  HyO+HO5  1.00 x 1013 0.00 1800.
10. HyO +HOy  —  Hg9Oo +OH  2.82 x 1013 0.00 32790.
3. OH+M — O+H+M 7.94 x 1019 —1.00 103720.
3. O9+ M —  O0+0+4+M 5.13 x 1015 0.00 115000.
2. 0+0+M — 09+ M 4.68 x 1015 —0.28 0.
3. Hg+M —  H+4+H+M 2.19 x 1014 0.00 96000.
3. H+H+M —  Ho+M 3.02 x 1015 0.00 0.

Complex hyperbolic applications

Third body efficiencies: f(Og) = 0.40, f(H5O) = 6.50

C. K. Westbrook. Chemical kinetics of hydrocarbon oxidation in gaseous detonations. J. Combustion and Flame, 46:191-210, 1982.




Combustion
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Equations and FV schemes

Riemann solver for combustion

A~ A A

Calculate standard Roe-averages p, U, H, Yi, T.
A a A el A 1 TR
Compute 4 := &,/¢, with &,/,yj = ——— cipvyilT)dT.
T, — T, T, ’

Calculate QA&,- =(’-1) (% — /A1,-) + A R; T with standard Roe-averages &; or h;.

A A A\1/2
Calculate & = (Z,-K:l Vidi— (5 — 1% + (5 — 1)H> 2

Use Aq = q, — q, and Ap to compute the wave strengths ap,.

Calculate Wy = aj#), W, = > " a, b, Wy =a, P o
=2

Evaluate sy = inh — ¢, sp = in, s3 = inh + C.
Evaluate pj /g, uiL/R, eZ/R, cl*’L/R from qz =q, +W, and q; =q, — W,.
If p//p < 0ore g < 0useFry(q,,d,) and go to (S12).

Entropy correction: Evaluate |3, ].

Froe(a,,a5) = 3 (F(a,) +fag) — 301 5. /W,)
Positivity correction: Replace F; by

. Y, F,>0,
F"_Fp'{ Y:.’, F, <O0.

Evaluate maximal signal speed by S = max(|s1], |s3])-

Complex hyperbolic applications




Combustion
[e]e]e)e] }
Equations and FV schemes

Riemann solver for combustion: carbuncle fix

Entropy corrections [Harten, 1983] 2D modification of entropy correction
[Harten and Hyman, 1983] [Sanders et al., 1998]:
|s.] if|s.[ > 2n i+l i1+ d
3l =14 |2 herwi
an +m  otherwise : 1
n= %maxb{|sb(qR)—sL(qL)|} : e
Replace |s,| by |5,] only if :
si(a,) <0< s(ag) OEENNESNES

ﬁi+1/2,j = max {77I+1/2,j>77i,j—1/27 ni,j+1/2777i+1,j—1/2a77i+1,j+1/2}

Exact Riemann solver

8 8 =
6 6 ?5
4 4 =4
Carbuncle phenomenon , =
[Quirk, 1994b] % 30 % 5 10 15 20 25 30
Test from SW FVS, VL FVS, HLL, Roe + EC 2.4+2D
10 10
[Deiterding, 2003] s
6 6
4 4
2 2
0 0
0 30 0 5 10 15 20 25 30

Complex hyperbolic applications
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Combustion
@0000000
Shock-induced combustion examples

Detonations - motivation for SAMR

Extremly high spatial resolution in reaction zone necessary.
Minimal spatial resolution: 7 — 8Pts//,-g — Ax; ~# 0.2 —-0.175mm

Uniform grids for typical geometries: > 107 Pts in 2D, > 10° Pts in
3D — Self-adaptive finite volume method (AMR)

3000 3000
{ 0014 ] 0.014
1 0.012 1 0.012
2500 r 2500 r
< {001 =X {1001 X
g : se / 5
S | 25 - | S
g 2000 r 0.008 Eg 2000 f 0.008 §
£ i { 0006 gg - | 0006 2
@ g5 8
. 1500 | 1 0.004 1500 | 1 0.004
1 0.002 1 0.002
1000 : : 0 1000 \ AN 0
6.28 6.32 6.36 6.4 5.9 5.94 5.98 6.02
X4 [em] x4 [cm]

Approximation of Ha : O2 detonation at ~ 1.5 Pts/liz (left) and ~ 24 Pts/l;; (right)

Complex hyperbolic applications
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Combustion
O@000000
Shock-induced combustion examples

Detonation ignition in a shock tube

Shock-induced detonation ignition of Hz : Oz : Ar mixture at molar ratios
2:1:7 in closed 1d shock tube

Insufficient resolution leads to inaccurate results

Reflected shock is captured correctly by FV scheme, detonation is
resolution dependent

Fine mesh necessary in the induction zone at the head of the detonation

1.0 1.0 ; ;
Pressure
0.9 p Axy=6.25um —— ] 0.9 t Level -~
Ax4=100 pm - ------- § :
0.8 I Ax4=200 pm e Ak 1 08 |
= 0.7} S 1= 07}
© © .
o
s 06 15 o6}
(0] L 4
g 04p — 18 04¢ #
o 03T 1% 03 F Pan
02} @ 1 o2t —— o
01 | ﬂ 0.1 f 1
4.5 5 5.5 6 6.5 7 4 4.5 5 5.5 6 6.5 7 7.5 8
X4 [em] x4 [em]

Left: Comparison of pressure distribution t = 170 us after shock reflection.Right:
Domains of refinement levels

Complex hyperbolic applications
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Shock-induced combustion examples

Detonation ignition in 1d - adaptive vs. uniform

Uniformly refined vs. dynamic adaptive simulations (Intel Xeon 3.4 GHz CPU)

Uniform Adaptive
Axq [pm] Cells | tm[us] | Time [s] || Imax r | tmlus] | Time [s]
400 300 166.1 31
200 600 172.6 90 2 2 172.6 99
100 1200 175.5 277 3 2,2 175.8 167
50 2400 176.9 858 4 22,2 177.3 287
25 4800 177.8 2713 4 22,4 177.9 393
12.5 9600 178.3 0472 5 2,2,2.,4 178.3 696
6.25 19200 178.6 35712 5 2,2,4,4 178.6 1370
o ~ 12Pts/lg Refinement criteria:
0:9 t A%gi;fft)icg | ‘ 1 0.014 —4 r -3
0.8 | 1 0.012 Yi SYi -10 77y,. 10
z 07 1 001 O9 10.0 2.0
% 2:2: | oo T H->O 7.8 8.0
% o | 0008 = H 0.16 5.0
T 03 | 0008 O 1.0 5.0
02} OH 1.8 5.0
L 0.002
01 . Ho 1.3 2.0

595 597

5.99 6.01
X4 [cm]

Complex hyperbolic applications

6.03

6.05

€p = 0.07kgm™3, ¢, = 50kPa

23




Combustion
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Shock-induced combustion examples

Shock-induced combustion around a sphere

Spherical projectile of radius 1.5 mm travels with constant velocity
v = 2170.6 m/s through Ha : O2 : Ar mixture (molar ratios 2:1:7) at 6.67 kPa
and T =298K

Cylindrical symmetric simulation on AMR base mesh of 70 x 40 cells

Comparison of 3-level computation with refinement factors 2,2 (~ 5Pts/l;z) and
a 4-level computation with refinement factors 2,2,4 (~ 19Pts/lj;) at t = 350 us

Higher resolved computation captures combustion zone visibly better and at
slightly different position (see below)

0.90 0.90=

0.80 0.80=

0.70 0.70=

0.60 0.60=

0.50 0.50=

0.40= 0.40=

0.30= 0.30=

0.20= 0.20=

0.10= 0.10=

000" I T T T T T T T 0.00°
0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 -0

Iso-contours of p (black) and Yy, (white) on refinement domains for 3-level (left) and 4-level
computation (right)

Complex hyperbolic applications
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Shock-induced combustion examples

Combustion around a sphere - adaptation

Refinement indicators on / = 2 at t = 350 us. Refinement criteria:
Blue: €,, light blue: €,, green shades: 7y,
red: embedded boundary : Yi Sy, - 10~4 ng,i -10—4
b O2 10.0 4.0
H20 5.8 3.0
o H 0.2 10.0
@) 1.4 10.0
OH 2.3 10.0
Ho 1.3 4.0
o €p = 0.02kgm~3, ¢, = 16kPa

0.00

Scaling of different code portions

10
Parallel performance
100 . ‘ ‘ ‘ = |
Total time ——
Ideal ———
)
@ : l
Fluid dynamics —— e
Chemical kinetics - .
Boundary setting -
Embedded boundary e
‘ Recomposition ---=---
! : ‘ ‘ ‘ s ‘ 0.1 s w ‘ ‘ ‘ ‘
1 2 4 8 16 32 64 128 1 2 4 8 6 - ”
CPU

CPU
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Combustion
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Shock-induced combustion examples

Detonation diffraction

CJ detonation for
Hy:O2:Ar/2:1:7 at

To = 298K and pp = 10 kPa.
Cell width A\ = 1.6cm

Adaption criteria (similar as
before):

Scaled gradients of p and
p

Error estimation in Y; by
Richardson extrapolation

25 Pts/ljg. 5 refinement levels
(2,2,2,4).

Adaptive computations use up to
~ 2.2 M instead of ~ 150 M cells
(uniform grid)

~ 3850 h CPU (~ 80h real time)
on 48 nodes Athlon 1.4GHz

Complex hyperbolic applications

E. Schultz. Detonation diffraction through an abrupt area expan-
sion. PhD thesis, California Institute of Technology, Pasadena,

California, April 2000.
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Shock-induced combustion examples

Detonation diffraction - adaptation

Final distribution to 48 nodes and density distribution on four refinement levels

Complex hyperbolic applications
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Shock-induced combustion examples

Detonation cell structure in 3D

Schlieren on refinement levels

P Simulation of only one quadrant
> 44.8Pts/lig for Hy : O2 : Ar CJ detonation

> SAMR base grid 400x24x24, 2 additional
refinement levels (2, 4)

P Simulation uses ~ 18 M cells instead of
~ 118 M (unigrid)

> ~ 51,000h CPU on 128 CPU Compaq Alpha.
H: 37.6%, S: 25.1%

Schlieren and isosurface of Yoy

Distribution to 128 processors

Complex hyperbolic applications




Fluid-structure interaction

Outline

Fluid-structure interaction
Coupling to a solid mechanics solver
Rigid body motion
Thin elastic structures
Deforming thin structures
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Fluid-structure interaction
[ Jolelele]e}
Coupling to a solid mechanics solver

Construction of coupling data

Moving boundary/interface is treated

as a moving contact discontinuity and
represented by level set

[Fedkiw, 2002][Arienti et al., 2003]

One-sided construction of mirrored

ghost cell and new FEM nodal point
values

FEM ansatz-function interpolation to

obtain intermediate surface values

Explicit coupling possible if geometry

and velocities are prescribed for the
more compressible medium

[Specht, 2000]

up = up ()|
UpdateFluid ( At)
U;?n = PF(t + At)|z
UpdateSolid( At)
t:=t+ At

Complex hyperbolic applications

Coupling conditions on

interface

_= Ur,:
pF
0
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Fluid-structure interaction
O®@0000
Coupling to a solid mechanics solver

Usage of SAMR

Eulerian SAMR + non-adaptive Lagrangian FEM scheme
Exploit SAMR time step refinement for effective coupling to solid solver

Lagrangian simulation is called only at level /. < fnax
SAMR refines solid boundary at least at level /.
Additional levels can be used resolve geometric ambiguities

Nevertheless: Inserting sub-steps accommodates for time step reduction
from the solid solver within an SAMR cycle

Communication strategy:

Updated boundary info from solid solver must be received before
regridding operation
Boundary data is sent to solid when highest level available

Inter-solver communication (point-to-point or globally) managed on the
fly special coupling module

Complex hyperbolic applications
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Fluid-structure interaction

00@000
Coupling to a solid mechanics solver

SAMR algorithm for FSI coupling

AdvanceLevel (/) I=1=1

Repeat r; times [=2
Set ghost cells of Q/(t)
CPT(¢', C', T, &)
If time to regrid?
Regrid (/)
UpdateLevel (/)
If level /+ 1 exists?
Set ghost cells of Q'(t+ At))
AdvanceLevel(/ + 1)
Average Ql+1(t+At/) onto Ql(t—l—Atl)
If /=17
SendInterfaceData(p’ (t + At)|,)
If (t+ At) < (to+ Ato)?
ReceivelInterfaceData(Z, uS|I)
t:=t+ At

Complex hyperbolic applications

F1

F2 F5

A 1

F6 | F7
I
] | |

F3 = F4
AI/‘l
] | | |

S1 S2 'S3 S4 S5 S6 S7 S8

»
»

Time

Call CPT algorithm
before Regrid (1)

Include also call to
CPT(:) into
Recompose (1) to
ensure consistent level
set data on levels that
have changed

Communicate boundary
data on coupling level /.
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Coupling to a solid mechanics solver

Fluid and so

FluidStep( )

AT, = Omirll (R;- StableFluidTimeStep(/), A7)

At = A1 /Ry for I =0,---,L
ReceivelInterfaceData(Z, u5|I)
AdvanceLevel (0)

SolidStep( )

A1, :=min(K - R_- StableSolidTimeStep(), Ar.)
Repeat R; times
tend := t + AT, /R, At := A1, /(KR),)
While t < tenda
SendInterfaceData(Z(t), i#°|,(t))
ReceiveInterfaceData(p’|,)
UpdateSolid(p©|,, At)
t:=t+ At
At := min(StableSolidTimeStep(), tend — t)
with R =T] _, .

Complex hyperbolic applications

id update / exchange of time steps

Time step stays
constant for R)_ steps,
which correponds to
one fluid step at level 0
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Fluid-structure interaction
0000@0
Coupling to a solid mechanics solver

Parallelization strategy for coupled simulations

Coupling of an Eulerian FV fluid Solver and a Lagrangian FEM Solver:

Distribute both meshes seperately and copy necessary nodal values and
geometry data to fluid nodes

Setting of ghost cell values becomes strictly local operation

Construct new nodal values strictly local on fluid nodes and transfer them
back to solid nodes

Only surface data is transfered
Asynchronous communication ensures scalability

Generic encapsulated implementation guarantees reusability

Solid Node 0 [
]

Solid Node 1

SendBoundaries
SendVelocities

Fluid Node 0

Fluid Node 1 [¥~

Synchronization
UOI}BZIUOIYOUAS

Fluid None N A |

SendPressures

Complex hyperbolic applications
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Fluid-structure interaction
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Coupling to a solid mechanics solver

Eulerian/Lagrangian communication module

Put bounding boxes

around each solid
processors piece of the

boundary and around

each fluid processors . il o i
. P \\\ L %ﬂ]ﬂ]%]]ﬂ]]]] EEE$‘EE
grid &3 e [

Gather, exchange and

broadcast of bounding
box information

/

|
i
|

Optimal point-to-point g | s
communication pattern, S R T | 1
non-blocking DR sl

/;% e FRH I BERR AT

35
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Fluid-structure interaction
[

Rigid body motion

Lift-up of a spherical body

Cylindrical body hit by Mach 3 shockwave, 2D test case by
[Falcovitz et al., 1997]

Schlieren plot of density

Refinement levels

Complex hyperbolic applications 36




Fluid-structure interaction
@00
Thin elastic structures

Treatment of thin structures

Thin boundary structures or pa
lower-dimensional shells require T T
“thickening” to apply embedded Sl

boundary method

Unsigned distance level set function ¢ 7] o |} 9 p

Treat cells with 0 < ¢ < d as ghost RN 25 (S
fluid cells S .

Leaving ¢ unmodified ensures correctness of Vi
Use face normal in shell element to evaluate in Ap=p™ — p~

Utilize finite difference solver using the beam equation

82W 84W F
Phge T gz =P

to verify FSI algorithms

Complex hyperbolic applications




Fluid-structure interaction
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Thin elastic structures

FSI verification by elastic vibration

Thin steel plate (thickness h = 1 mm, length 50 mm), clamped at lower
end

ps = 7600 kg/m?, E = 220GPa, | = h*/12, v = 0.3

Modeled with beam solver (101 points) and thin-shell FEM solver (325
triangles) by F. Cirak

Left: Coupling verification with constant instantenous loading by

Ap = 100kPa
Right: FSI verification with Mach 1.21 shockwave in air (7 = 1.4)
10 "‘Beam 10 Beam solver
97 Beam-FSI —— 1 9r Shell solver 4
— 8l SFC-FSI ool — 8l
£ €
E 7¢ E 7t
5 6f 5 6f
= £
8 57 g 5t
© (3]
o 4+ o 4+
(2] (7]
a g3} a g3}
h=3 i3
= ot = ot
1+ 1+
0 L L L L L L L L L 0 L L L L L L L L L
05 10 15 20 25 3.0 35 40 45 5.0 05 10 15 20 25 3.0 35 40 45 5.0
Time [ms] Time [ms]
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Thin elastic structures

Fluid-structure interaction
ooe

Shock-driven elastic panel motion

Test case suggested by [Giordano et al., 2005]
Forward facing step geometry, fixed walls everywhere except at inflow

400 mm 1
p=1.6458 kg/m’ p=1.2 kg/m’
u,=112.61 Il’l/S, u_,=0 u1=()a u2=0 65 mm
8omm —156.18 kPa p=100 kPa
—_— 250 mm
130 mm j 265 mm

SAMR base mesh 320 x 64(x2), o =2

Intel 3.4GHz Xeon dual processors, GB Ethernet interconnect
Beam-FSI: 12.25h CPU on 3 fluid CPU + 1 solid CPU
FEM-FSI: 322h CPU on 14 fluid CPU + 2 solid CPU

Complex hyperbolic applications

t = 1.56 ms after impact
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Detonation-driven plastic deformation

Chapman-Jouguet detonation in a tube filled with a stoichiometric ethylene and
oxygen (C2Hy4 + 302, 295 K) mixture. Euler equations with single exothermic
reaction A — B

Otp + Ox,(pun) =0, Ot(puk) + Ox, (puxun + 6xpp) =0, k=1,...,d

Ot(pPE) + Ox,(un(pE + p)) =0, 0t(Yp) + 0%, (Y pun) = 2
with

1 —E
p=(y—1)(pE — 5 PUntin — pYqo) and ¢ = —kYpexp ( pAp)

modeled with heuristic detonation model by

[I\/Iader, 1979] Comparison of the pressure traces in the experiment
and in a 1d simulation

4 |

Vi=p"1 Vo:=py ", Veg = pcy

Y i1 — (V= Vo) /(Vay — Vo)

If 0<Y' <1 and Y >10"8 then
If Y<Y’ and Y’ <0.9 then Y':=0
If Y/ <0.99 then p' :=(1—Y')pcy

w

Pressure MPa
N

.

B

else p' :=p . . )
=Y — T ‘
pA / p / 1 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
E = P /(p(’y — 1)) + Y qo + 5 unUnp Time after passage of transducer 1 [ms]

Complex hyperbolic applications
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Tube with flaps

Fluid: VanLeer FVS

Detonation model with v = 1.24, pcy = 3.3MPa, Dcy = 2376 m/s
AMR base level: 104 x 80 x 242, no =2, 3 =4

~ 4 -10" cells instead of 7.9 - 10° cells (uniform)

Tube and detonation fully refined

Thickening of 2D mesh: 0.81 mm on both sides (real 0.445 mm)

Solid: thin-shell solver by F. Cirak

Aluminum, J2 plasticity with hardening, rate sensitivity, and thermal
softening
Mesh: 8577 nodes, 17056 elements

1642 nodes 2.2 GHz AMD Opteron quad processor, PCI-X 4x Infiniband
network, ~ 4320 h CPU to t.,q = 450 us

0.032 ms 0.030 ms 0.212 ms 0.210 ms

Complex hyperbolic applications
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Deforming thin structures

Tube with flaps: results

\\\

Fluid density and diplacement in y-
direction in solid

[Cirak et al., 2007]

Complex hyperbolic applications

O0e00000

Schlieren plot of fluid density on refine-
ment levels
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Underwater explosion modeling

Volume fraction based two-component model with >-7 . o/ = 1, that defines
mixture quantities as

m m m
. i . i . iqi
p=) ap', pu,=) apu,, pe=) dope

i=1

Assuming total pressure p = (v — 1) pe — vpos and speed of sound
c=(v(p+ pw)/p)/? yields

m- 0

P~ op VPoo N~ @7 Pl

and the overall set of equations [Shyue, 1998]

Oep+0x,(pun) =0, Oc(pur)+0x, (puktntéimp) =0,  Oc(pE)+0x,(un(pE+p)) =0

0 1 0 1 B 0 [ YpPoo O [ VP \ _
5’t(7—1>+un8xn (7—1>_0’ 8t<7—1)+un5’x,, (7—1 =0
Oscillation free at contacts: [Abgrall and Karni, 2001][Shyue, 2006]

Complex hyperbolic applications
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Approximate Riemann solver

Use HLLC approach because of robustness and positivity preservation

q,, x1<st
* *
qHLLC(Xl £ = qa; sLtgxl < s™t,
’ q;7 S*tSXISSRt7
qR7 X1 >SR t,

Wave speed estimates [Davis, 1988] s, = min{u, , — ¢
Sp = max{ul’L +cu gt g}
Unkown state [Toro et al., 1994]

. Pr—pP T SLul,L(SL - “1,L) - pRul,R(sR - “1,R)

s =
p (s, — ”1,L) — pp(sg — “1,R)

E 1
q; = {n,m*,nuw? [u +(s* —u,r) <ST + Pr >] , , JrPoo.

1% PT(ST - Ul,T) Yr — 1 Yr — 1

Sr — uy,
n:PTﬁ ) T:{I—7R}
T

Evaluate waves as W; = q’Z —q,, Wa = q’;_(, — qz, Wi =qg — q’,; and \; =5,
Ao = s*, A3 = S, to compute the fluctuations A~ A = ZA,,<O Av Wy,
AtA = ZA,,>0 Ao W, for v ={1,2,3}

Overall scheme: Wave Propagation method [Shyue, 2006

Complex hyperbolic applications
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Underwater explosion FSI simulations

Air: vA = 1.4, pA =0, p* = 1.29kg/m3
Water: yW = 7.415, p// = 296.2 MPa, p"¥ = 1027 kg/m?
Cavitation modeling with pressure cut-off model at p = —1 MPa

3D simulation of deformation of air backed aluminum plate with r = 85 mm,
h = 3mm from underwater explosion
Water basin [Ashani and Ghamsari, 2008] 2m X 1.6 m x 2m
Explosion modeled as energy increase (mca4 - 6.06 MJ/kg) in sphere
with r=5mm
ps = 2719kg/m3, E = 69 GPa, v = 0.33, J2 plasticity model, yield
stress o, = 217.6 MPa
3D simulation of copper plate r = 32mm, h = 0.25 mm rupturing due to water
hammer
Water-filled shocktube 1.3 m with driver piston
[Deshpande et al., 2006]
Piston simulated with separate level set, see [Deiterding et al., 2009]
for pressure wave
ps = 8920kg/m3, E = 130 GPa, v = 0.31, J2 plasticity model,
oy, = 38.5 MPa, cohesive interface model, max. tensile stress
o = 525 MPa

Complex hyperbolic applications
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Deforming thin structures

Underwater explosion simulation

Q0000080

AMR base grid 50 x 40 x 50, r1 53 = 2, r; = 4, Ic = 3, highest level restricted to
initial explosion center, 3rd and 4th level to plate vicinity

Triangular mesh with 8148 elements

Computations of 1296 coupled time steps
to tepg = 1ms

1042 nodes 3.4 GHz Intel Xeon dual
processor, ~ 130h CPU

Complex hyperbolic applications

Maximal deflection [mm]

Exp. Sim.
20g,d =25cm | 28.83 | 25.88
30g,d =30cm | 30.09 | 27.31
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Deforming thin structures

P

Complex hyperbolic applications

ate in underwater shocktube

» AMR base mesh 374 x 20 x 20, r;» = 2, Ic = 2, solid mesh: 8896 triangles
» ~ 1250 coupled time steps to tepg = 1 ms
» 646 nodes 3.4 GHz Intel Xeon dual processor, ~ 800h CPU

g’ o

Y
= /
_|r v
.
-

po = 64 MPa po = 173 MPa
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Turbulence

Outline

Turbulence
Large-eddy simulation

Complex hyperbolic applications 48



Turbulence
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Large-eddy simulation

Favre-averaged Navier-Stokes equations

op 0 ,_.\
ot + OXn (pun) =0

o ,_. o ,_. . _ .
E( bk ) + o (Pikiin + 8knP — Tin + Okn) = 0
OpE o ,. ,_= _ - I
P (n(PE + B) + Gn — Fyjllj + 05) =0
t Oxn
O on, O o
g¢ (PYi) + 5 (PYiln + Jp + 0) =0
with stress tensor
. N((?E/n 8f1k) 2~8flj5
Tin = — —[l—=—=0jn ,
kn = O OXn 3“8)(1 "
heat conduction .
. :OT
ql‘l - 8Xn )
and inter-species diffusion N
- ~ 0Y;
Jy = —pDi—
Xn

Favre-filtering

5=PL2 with 3(xt: AC):/ G(x—x ; A)(x , t)dx
7 Q

Complex hyperbolic applications
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Numerical solution approach

Subgrid terms oy, o€, ol are computed by Pullin’s stretched-vortex model

Cutoff Ac¢ is set to local SAMR resolution Ax;

It remains to solve the Navier-Stokes equations in the hyperbolic regime

3rd order WENO method (hybridized with a tuned centered
difference stencil) for convection
2nd order conservative centered differences for diffusion

Example: Cylindrical Richtmyer-Meshkov instability T

Sinusoidal interface between two gases hit by
shock wave

Objective is correctly predict turbulent mixing

Embedded boundary method used to regularize
apex

AMR base grid 95 x 95 x 64 cells, r; 53 = 2

~ 70,000h CPU on 32 AMD 2.5GHZ-quad-core
nodes

Complex hyperbolic applications
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Large-eddy simulation

Planar Richtmyer-Meshkov instability

> Perturbed Air-SF6 interface shocked and
re-shocked by Mach 1.5 shock

» Containment of turbulence in refined
zones

> 96 CPUs IBM SP2-Power3
» WENO-TCD scheme with LES model

AMR base grid 172 x 56 x 56, r » = 2,
10 M cells in average instead of 3M

(uniform)
Task 2ms (%) | 5ms (%) | 10ms (%)
Integration 45.3 65.9 52.0
Boundary setting 443 28.6 41.9
Flux correction 7.2 3.4 4.1
Interpolation 0.9 0.4 0.3
Reorganization 1.6 1.2 1.2
Misc. 0.6 0.5 0.5
Max. imbalance 1.25 1.23 1.30

Complex hyperbolic applications

Turbulence
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Large-eddy simulation

Flux correction for Runge-Kutta method

Recall Runge-Kutta temporal update

~ At
QY = 0, Q) +8,Q7 7 7, o AFF(QUY)
Axy
rewrite scheme as
r At ~ u
@ =0 S, AR @) win o= [T A
v=1 v=v+l
Flux correction to be used [Pantano et al., 2007]
SR B (@) SRS, @y
=35 =5, 2’J !
Fi41— -
SELHL . sELHL L 1 Z Z L/t (Qv_l(t—l—l-iAtH_l))

1
/—71 /—7 v+f w+m
r/+1 m=0 v=1 2’

2 9.
Storage-efficient SSPRK(3,3):

v|a

wins= O @Q
WIND[= = 52
(.*JII\)O\IHO\ID—IéG

NIRA W = &

1
2
3

Complex hyperbolic applications
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Linear iterative methods for Poisson-type problems

Poisson equation

Ag(x) = (x), xe QCRY, geC*(Q), ¢ eCQ)
g = Y(x), xeoQ

Discrete Poisson equation in 2D:

Qit1,k —2Qu + Qi—1.x | Qjk+1 — 2Qjk + Qj k-1

+ = Pjk
Ax? AxZ v
Operator
1
a2
A(Q ) = 1 (2 2 1 Q(x1j,x2.k) = 1;
Axy,Axp % A2 1A N Lijs %2,k Ik
1
Ax2

1
Qik = p [(Qj+1,k + Qj—l,k)szz + (Qjk+1 + QJ',1<—1)AX12 - AX12AX22”¢J'/<}

2AX; + 2Ax3
AxZAXZ

with o =

Using the SAMR approach for elliptic and parabolic problems 3
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Linear iterative methods for Poisson-type problems

lterative methods

Jacobi iteration
m+1 1 m m 2 m m 2 2 2
Qi = p (Qf1.k + QL1,k) A% + (@ k1 + Qk—1)Axi — Axq Axz 1k

Lexicographical Gauss-Seidel iteration (use updated values when they become
available)

m 1 m m m ITI
Qi = = [(Qk+ QAR + (Qlrs + QU AKE — A A Yy
Efficient parallelization / patch-wise application not possible!

Checker-board or Red-Black Gauss Seidel iteration
m 1 m m
Qitt = p [(Qj+1,k + QM1 )A% + Qi1 + QMk—1)Ax; — AXfAX§¢jk]
forj—|—kmod 2=0
Q= 2 [(Qih+ QTELIAG + (QIh + QI AR — AxtAxyy]
for1—|—kmod2—1

Gauss-Seidel methods require ~ 1/2 of iterations than Jacobi method, however,
iteration count still proportional to number of unknowns [Hackbusch, 1994]

Using the SAMR approach for elliptic and parabolic problems 4
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Linear iterative methods for Poisson-type problems

Smoothing vs. solving

v iterations with iterative linear solver
Qm—i-u — S(Qm,?/),l/)
Defect after m iterations
d™ =4 — A(Q")
Defect after m + v iterations

dm-l—u :w _A(Qm-l-u) :w —A(Qm+ V;T) — dm _A(V,T)
with correction
v, =8(0,d",v)
Neglecting the sub-iterations in the smoother we write
QM =Q"+v=Q" +5(d")

Observation: Oscillations are damped faster on coarser grid.

Coarse grid correction:
Qn+l — Qn_|_ v = Qn+P8R(dn)

where R is suitable restriction operator and P a suitable prolongation operator

Using the SAMR approach for elliptic and parabolic problems 5
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Multi-level algorithms

Two-grid correction method

Relaxation on current grid:

Q (n7¢71/)
Q" = Q+PS@O, pR(v — A(Q))

Algorithm: with smoothing: with pre- and post-iteration:
QR :=S5(Q",v¥,v) d:=v¢— AQ) d:=v¢— AQ)
d =9y — AQ) v :=S8(0,d,v) v :=3S8(0,d,v1)

r:=d— A(v) r:=d— A(v)
de == R(d) de :=R(r) de :=R(r)
ve := S(0, dc, ) ve :=8(0,dc, p) ve := 8(0,dc, p)
v i=P(vc) v i=v+ P(v) vi=v+ P(v)
Q™ =Q+v Q™ =Q+v d:=d— A(v)

= S(O, d,1/2)

Q™ :=Q+v+r
[Hackbusch, 1985]
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Multi-level algorithms

Multi-level methods and cycles

4-grid
V-cycle

T QT ] P
2-grid @2 é
Q @5@ 9: @%@5

W-cycle @2‘ 59} @2@2 @2 é
Y QQ
S %%@5 %%é

[Hackbusch, 1985] [Wesseling, 1992] ...

Using the SAMR approach for elliptic and parabolic problems 7
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Multigrid algorithms on SAMR data structures

Stencil modification at coarse-fine boundaries in 1D

1D Example: Cell j, vy =V -Vg=0
1 1 / / 1 / / 1 / /
Ax; (A_XI(QJH - Q) - A_X/(Qj - Qj—l)) = wj—A_x, (Hj+§ - Hj—%)

H is approximation to derivative of Q'.
Consider 2-level situation with r 1 = 2:

I+1 I+1 141
Qw—l QW Qw+1
| I I I " | Solution needs to be continuously dif-
H* [ HYY ferentiable across interface.

djl = 1hj—

w—3 w+§ .
Easiest approach: H™, = H' |
W+§ J_§
H H
i-% +3
| [ | | |
I I I
j—1 Qj J+1

No specific modification necessary for 1D vertex-based stencils, cf.
[Bastian, 1996]

Using the SAMR approach for elliptic and parabolic problems 8
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Multigrid algorithms on SAMR data structures

Stencil modification at coarse-fine boundaries in 1D 1l

Set H't!, = Hz. Inserting Q gives

I+1 1+1 / I+1
(QWJ;]__QWjL . Qj_QW+

o 3
AXl—i—l 5AX/+1

|r0||| WhICh we readi|y derive
/41 2 I 1 I+1
Qw 1= _(‘?j _|_ _QW

for the boundary cell on / + 1. We use the flux correction procedure to enforce

H'erl1 = H’ 1 and thereby HJ(_; = Hs.
2 2 2
Correction pass [Martin, 1998]
OH Ty = —H]_,
J=3
3
SHTY = HT + H = —H )+ (Q — Q) 5 8%

— - Hl+1
d d + Ax/(s 1

yields

1 1 / / I+1
~—(Qj1 — Q Q - Q.
— - AX,<AX/( fia = @) — ga—( )
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Multigrid algorithms on SAMR data structures

..........

1+1
Qu

Using the SAMR approach for elliptic and parabolic problems

Stencil modification at coarse-fine boundaries: 2D

1
Q\l/—j_vi—l =3 Qi+

2 (3 1
3 (9430

In general:
Qw1 = (1 S ) Q'+
v,w—1 Fia1 + 1 vw
2

rny1+1 ((1 B f)Qj!k + fQ}H’k)

with

, ,
X1,04+1 X{,/
Axq
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Multigrid algorithms on SAMR data structures

Components of an SAMR multigrid method

Stencil operators

Application of defect d' = ¢/ — A(Q') on each grid G/, of level |
Computation of correction v/ = S(0,d’, ) on each grid of level /

Boundary (ghost cell) operators

Synchronization of Q' and v/ on 5} ow— Q;
Specification of Dirichlet boundary / !
conditions for a finite volume AW/
discretization for Q' = w and v/ = w Q

on 'E)/1 l l |
Specification of v/ = 0 on 7,1 ' ' Q 2w -— QjI
Specification of Q; = %ﬁlﬂd vj —Vj

on I}

Coarse-fine boundary flux accumulation and application of §H'*1 on defect d’

Standard prolongation and restriction on grids between adjacent levels
Adaptation criteria

E.g., standard restriction to project solution on 2x coarsended grid,
then use local error estimation
Looping instead of time steps and check of convergence

Using the SAMR approach for elliptic and parabolic problems 11
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Multigrid algorithms on SAMR data structures

Additive geometric multigrid algorithm

AdvanceLevelMG(/) - Correction Scheme

Set ghost cells of Q'

Calculate defect d' from Q',v’ d =y — A(Ql)

If (] < Imax)
Calculate updated defect r'*! from v'*!,d'™! P=dtt - AT
Restrict d'™' onto d' d =R

Do v smoothing steps to get correction v/ v = 8(0,d',11)

If (> Imin)

Do v > 1 times
AdvanceLevelMG(/ — 1)
Set ghost cells of vt

Prolongate and add v/~ ! to v/ vi= v PV
If (rp > 0)
Set ghost cells of v/
Update defect d' according to v/ d:=d — AW
Do 1, post-smoothing steps to get r’ r' =SV, d )

Add addional correction r' to v/ vi=/ + r!
Add correction v/ to Q' Q =@ +

Using the SAMR approach for elliptic and parabolic problems 12



Adaptive geometric multigrid methods
00000e

Multigrid algorithms on SAMR data structures

Additive Geometric Multiplicative Multigrid Algorithm

Start - Start iteration on level [,ax

For | = Il,,.x Downto /mi, +1 Do
Restrict Q' onto Q'!

Regrid(0)

AdvanceLevelMG (/max)

See also: [Trottenberg et al., 2001], [Canu and Ritzdorf, 1994]
Vertex-based: [Brandt, 1977], [Briggs et al., 2001]
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Adaptive geometric multigrid methods

[ ]
Example
Example
On Q =0, 10] x [0, 10] use hat
function
b = —A, cos (ﬁ) , r<R,

elsewhere

with r = 1/(x1 — Xa)2 + (x2 — Ya)?
to define three sources with

n A, R, Xn Y,
1 0.3 03 | 65 | 80
2 0.2 03 | 20| 70
31-01] 04| 70|30
128 x 128 | 1024 x 1024 | 1024 x 1024
Imax 3 0 0
Imin -4 -7 -4
V1 5 5 5
vy 5 5 5
V-Cycles 15 16 341
Time [sec] 9.4 27.7 563

Stop at ||d'||max < 1077 for [ >0, v =1, =2

Using the SAMR approach for elliptic and parabolic problems




Comments on parabolic problems

Some comments on parabolic problems

Consequences of time step refinement
Level-wise elliptic solves vs. global solve

If time step refinement is used an elliptic flux correction is
unavoidable.

The correction is explained in Bell, J. (2004). Block-structured
adaptive mesh refinement. Lecture 2. Available at
https://ccse.lbl.gov/people/jbb/shortcourse/lecture2.pdf.
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Available SAMR software
[ ]

Simplified block-based AMR

Simplified structured designs

Distributed memory parallelization fully supported if not otherwise states.

PARAMESH (Parallel Adaptive Mesh Refinement)
Library based on uniform refinement blocks [MacNeice et al., 2000]
Both multigrid and explicit algorithms considered
http://sourceforge.net/projects/paramesh

Flash code (AMR code for astrophysical thermonuclear flashes)
Built on PARAMESH
Solves the magneto-hydrodynamic equations with self-gravitation
http://flash.uchicago.edu/website /home

Uintah (AMR code for simulation of accidental fires and explosions)
Only explicit algorithms considered

FSI coupling Material Point Method and ICE Method (Implicit,
Continuous fluid, Eulerian)

http://www.uintah.utah.edu
DAGH /Grace [Parashar and Browne, 1997]
Just C4+ data structures but no methods

All grids are aligned to bases mesh coarsened by factor 2
http://userweb.cs.utexas.edu/users/dagh
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Available SAMR software
[ le]
General patch-based SAMR

Systems that support general SAMR

SAMRAI - Structured Adaptive Mesh Refinement Application
Infrastructure

Very mature SAMR system [Hornung et al., 2006]

Explicit algorithms directly supported, implicit methods through
interface to Hypre package

Mapped geometry and some embedded boundary support
https://computation.linl.gov/casc/SAMRAI

BoxLib, AmrLib, MGLib, HGProj

Berkley-Lab-AMR collection of C++4 classes by J. Bell et al., 50,000
LOC [Rendleman et al., 2000]

Both multigrid and explicit algorithms supported
https://ccse.lbl.gov/Software (no codes available)

Chombo

Redesign and extension of BoxLib by P. Colella et al.
Both multigrid and explicit algorithms demonstrated
Some embedded boundary support
https://seesar.lbl.gov/anag/chombo
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Available SAMR software
oce
General patch-based SAMR

Further SAMR software

Overture (Object-oriented tools for solving PDEs in complex geometries)
Overlapping meshes for complex geometries by W. Henshaw et al.
[Brown et al., 1997]

Explicit and implicit algorithms supported
https://computation.linl.gov/casc/Overture

AMRClaw within Clawpack [Berger and LeVeque, 1998]

Serial 2D Fortran 77 code for the explicit Wave Propagation method
with own memory management
http://www.clawpack.org

Amrita by J. Quirk
Only 2D explicit finite volume methods supported

Embedded boundary algorithm
http://www.amrita-cfd.org

Cell-based Cartesian AMR: RAGE

Embedded boundary method
Explicit and implicit algorithms
[Gittings et al., 2008]
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Overview

AMROC

DAGH

AMROC
0

“Adaptive Mesh Refinement in
Object-oriented C++"

~ 46,000 LOC for C++ SAMR
kernel, ~ 140,000 total C++, C,
Fortran-77

uses parallel hierarchical data
structures that have evolved from

Right: point explosion in box, 4 level,
Euler computation, 7 compute nodes

V1.0: http://amroc.sourceforge.net

Imax Level O Level 1 Level 2 Level 3 Level 4
, 1 43/22500 145/38696
AI\D/lEgl_Cl ° 2 42 /22500 110/48708 283,/83688
grids /cells 3 36/22500 78/54796 245/109476 582/165784
4 41/22500 88/56404 233/123756 476/220540 1017/294828
Original 1 238/22500 125/41312
DAGH 2 494 /22500 435/48832 190/105216
grids /cells 3 695/22500 650/55088 462/133696 185/297984
4 875/22500 822/57296 677/149952 428/349184 196/897024

Comparison of number of cells and grids in DAGH and AMROC
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AMROC
oe
Overview

The Virtual Test Facility

Implements all described algorithms beside multigrid methods
AMROC V2.0 plus solid mechanics solvers

Implements explicit SAMR with different finite volume solvers
Embedded boundary method, FSI coupling

~ 430,000 lines of code total in C++, C, Fortran-77, Fortran-90

autoconf / automake environment with support for typical parallel
high-performance system

http://www.cacr.caltech.edu/asc

[Deiterding et al., 2006][Deiterding et al., 2007]
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Layered software structure

UML design of AMROC

Classical framework approach with
generic main program in C++

Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

Predefined, scheme-specific classes
(with F77 interfaces) provided for
standard simulations

Standard simulations require only
linking to F77 functions for initial and
boundary conditions, source terms.
No C++ knowledge required

Interface mimics Clawpack

Expert usage (algorithm modification,
advanced output, etc.) in C++

NumericalSch

InitialConditic B

laryConditions

+set_patch()

+set_patch()

+set_patch_boundary()

) :

TimeStepControler

Clustering

+find_boxes()

Criterion

+evaluate()

0.*
1

Flagging

1

A

LevelTransfer

1 1 1

+restrict_patch()
+prolong_patch()

HypSAMRSolver

+next_step()
+advance_level()
+update_level()
+regrid()

0.1

1

+flag_patch() 0.1 1

1
+Flags

GridFunction

0.1

Fixup

+flux_correction()
dF +add_fine_fluxes()
+add_coarse_fluxes()

1

+recreate_patches()

0.*
1

-follows distribution

GridHierarchy

+set_new_boxes() F
+redistribute_hierachy() [ 1 0-
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AMROC
(o] o)
Layered software structure

Commonalities in software design

/max

Index coordinate system based on Ax,; = [] r. to uniquely
r=I+1

identify a cell witin the hierarchy

Box<dim>, BoxList<dim> class that define rectangular regions Gp,

by lowerleft, upperright, stepsize and specify topological

operations N, U, \

Patch<dim,type> class that assigns data to a rectangular grid G,

A class, here GridFunction<dim,type>, that defines topogical
relations between lists of Patch objects to implement sychronization,
restriction, prolongation, re-distribution

Hierarchical parallel data structures are typically C++, routines on
patches often Fortran
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Layered software structure

Embedded boundary method / FSI coupling

Multiple independent

EmbeddedBoundaryMethod objects

possible

Specialization of GFM boundary
conditions, level set description in

scheme-specific F77 interface classes

| LevelSetEvaluation |

EmbeddedBoundaryConditions

T

+set_cells_in_patch()

ClosestPointTransform Zﬁ

+cpt()
-scan_convert()

| EmbeddedMovingWalls |

1

CoupledHypSAMRSolver

TimeStepControler

+fluid_step()
-advance_level()

-stable_fluid_timestep()

CoupledSolver

+next_step()

11

\/
EBMHypSAMRSolver

N !

LevelSetEval.

EmbeddedB daryC

it

+set_cells_in_patch()

+set_patch()

1

EBMHypSAMRSolver

EmbeddedBoundaryMethod

1

0.1

+apply_boundary_conditions()

Extra-/Interpolation

1

+calculate_in_patch()

1| +phi

CoupledSolidSolver

+solid_step()

-stable_solid_timestep()

InterSolverCommunication

+send_interface_data()
+receive_interface_data()

SolidSolver

+update_solid()

Design of SAMR Systems, Advanced Parallelization, Usage

HypSAMRSolver

Coupling algorithm implemented in
further derived HypSAMRSolver class

Level set evaluation always with CPT

algorithm

Parallel communication through
efficient non-blocking communication

module

Time step selection for both solvers
through CoupledSolver class




Performance data from AMROC

Performance assessment

Massively parallel SAMR
@000

Test run on 2.2 GHz AMD Opteron
quad-core cluster connected with
Infiniband

Cartesian test configuration

Spherical blast wave, Euler equations,
3rd order WENO scheme, 3-step
Runge-Kutta update

AMR base grid 643, r,2 =2, 89 time
steps on coarsest level

With embedded boundary method: 96
time steps on coarsest level

Redistribute in parallel every 2nd base
level step

Uniform grid 2563 = 16.8 - 10° cells

Level | Grids Cells
0 115 262,144
1 373 1,589,808
2 2282 5,907,064
Grid and cells used on 16 CPUs
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Performance data from AMROC

Cost of SAMR (AMROC V2.0)

Flux correction is
negligible

Clustering is negligible
(already local
approach). For the
complexities of a
scalable global
clustering algorithm see
[Gunney et al., 2007]

Costs for GFM constant
around ~ 36%

Main costs: Regrid(1)
operation and ghost cell
synchronization

Design of SAMR Systems, Advanced Parallelization, Usage

Massively parallel SAMR
(e JeJe)]

CPUs 16 32 64
Time per step 32.44s 18.63s 11.87s
Uniform 59.65s 29.70s 15.15s
Integration 73.46% | 64.69% | 50.44%
Flux Correction 1.30% 1.49% 2.03%
Boundary Setting | 13.72% | 16.60% | 20.44%
Regridding 10.43% | 15.68% | 24.25%
Clustering 0.34% 0.32% 0.26%
Output 0.29% 0.53% 0.92%
Misc. 0.46% 0.44% 0.47%
CPUs 16 32 64
Time per step 43.97s 25.24s 16.21s
Uniform 69.09s 35.94s 18.24s
Integration 59.09% | 49.93% | 40.20%
Flux Correction 0.82% 0.80% 1.14%
Boundary Setting 19.22% | 25.58% | 28.98%
Regridding 7.21% 9.15% 13.46%
Clustering 0.25% 0.23% 0.21%
GFM Find Cells 2.04% 1.73% 1.38%
GFM Interpolation 6.01% 10.39% 7.92%
GFM Overhead 0.54% 0.47% 0.37%
GFM Calculate 0.70% 0.60% 0.48%
Output 0.23% 0.52% 0.74%
Misc. 0.68% 0.62% 0.58%




Performance data from AMROC

AMROC scalability tests

Basic test configuration

Spherical blast wave, Euler
equations, 3D wave
propagation method

AMR base grid 32% with
r,2 = 2,4. 5 time steps on
coarsest level

Uniform grid
256° = 16.8 - 10° cells, 19
time steps

Flux correction deactivated
No volume 1/O operations

Tests run IBM BG/P
(mode VN)

Design of SAMR Systems, Advanced Parallelization, Usage

Massively parallel SAMR
[ee] Jo]

Weak scalability test

Reproduction of configuration each 64
CPUs

On 1024 CPUs: 128 x 64 x 64 base
grid, > 33,500 Grids, ~ 61 - 10° cells,
uniform 1024 x 512 x 512 = 268 - 10°

cells
Level Grids Cells
0 606 32,768
1 575 135,312
2 910 3,639,040

Strong scalability test

64 x 32 x 32 base grid, uniform
512 x 256 x 256 = 33.6 - 10° cells

Level Grids Cells
0 1709 65,536
1 1735 271,048
2 2210 7,190,208




Massively parallel SAMR

[e]e]e] )

Performance data from AMROC

Scalability tests AMROC V2.0

100%
80%
60%
40%
20%

0%

Distribution of CPU time with AMR

B Misc

H Recompose
O Partition-Calc
W Partition-Init
O 8yncing

B Integration

64 128 256 512 1024
CPUs

weak scalability test

100%

80%
60%
40%
20%

0%

Distribution of CPU time with AMR

B Misc
HRecompose
OPartition-Calc
B Partition-Init
O Syncing

B ntegration

S . P @q,"‘
CPUs

strong scalability test

Syncing: Parallel communication portion of boundary setting

Recompose: topological list operations, construction of boundary info,

redistribution of data blocks

Partition-Init, Partition-Calc: construction of space filling curve

Costs for Partition-Init and Recompose increase dramatically for large problem

size
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Massively parallel SAMR
0000
Scalability bottlenecks

Topological list operations

Weak scalability problems are due to non-parallel sub-algorithms!

Operations N, \ on two box lists have complexity O(NM)

Costs of operations in Recompose (1), that use global box lists G,
increase quadratically, cf. [Wissink et al., 2003]

Solution

Clip G; with properly chosen quadratic bounding box around G/
before using N, \

All topological operations in Recompose (1) involving global lists can be
reduced to local ones

Present code V2.173 still uses MPI_allgather () to communicate global
lists to all nodes

Global view is particularly useful to evaluate new local portion of hierarchy
and for data redistribution
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Massively parallel SAMR
OCe000
Scalability bottlenecks

Construction of space-filling curve

Computation of space filling curve

Partition-Init

Compute aggregated workload for

new grid hierarchy G, and project

result onto level 0

Construct recursively SFC-units until

work in each unit is homogeneous,

GuCFactor defines minimal

coarseness relative to level-0 grid
Partition-Calc

Compute entire workload and new work for each processor
Go sequentially through SFC-ordered list of partitioning units and
assign units to processors, refine partition if necessary and possible

Ensure scalability of Partition-Init by creating SFC-units strictly local

Currently still use of MPI_allgather() to create globally identical input for
Partition-Calc
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Massively parallel SAMR

Scalability bottlenecks S
Weak scalability test V2.13
Time per highest level step [s]
50 1~ AMR-new 100% 7
w e
30 60%
90 | #—8—&——p——¥ 40%
10 +——= v " 20%
0 T \ | | 0%
64 128 266 512 1024

CPUs

Distribution of CPU time with AMR

all:H-

B Misc
mRecompose
O Partition-Cale
B Partition-Init
0 Syncing

B Integration

T T
64 128 256 512 1024
CPUs

Overall performance improvement for 1024 CPUs by ~ 69 %

Absolute costs for Syncing are almost constant

1024 required usage of -DUAL option due to usage of global lists data
structures in Partition-Calc and Recompose
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Scalability bottlenecks

Strong scalability test V2.13

100

10

Time per highest level step [s]

I

~—
o,

i |

5

=

™

—— AMR-new
-&-Uniform
AMR-old

16

32

64 128 206

CPUs

912 1024

Massively parallel SAMR

[e]e]e] 6]

100%
80%
60%
40%
20%

0%

Distribution of CPU time with AMR

S G ’sm"'

CPUs

Overall performance improvement for 1024 CPUs by 43 %

H Misc
HRecompose
O Partition-Calc
B Partition-nit
O 8yncing

N Integration

Improved partitioning algorithm allowed usage of GuCFactor=1 instead of
2 before and full parallel data redistribution in every Regrid (1) instead of
every 2nd level-0 step
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Massively parallel SAMR
(e]e]ele] ]
Scalability bottlenecks

To-Do

Comments
Scalability of V2.13 for finite volume methods is comparable to results
reported from Chombo and SAMRAI
Significantly better scalability has so far only been reported for shallow
hierarchies [Greenough et al., 2005] and/or tailored parameters choices
Next step
Eliminate aggregation of global box list data (that currently uses simply
MPI_allgather())
Partition-Calc: assignment of SFC-ordered sequence and refinement
could be executed sequentially on each node
Global topology lists: assemble only those portions of global lists on
each node that are relevant for the subsequent operations. Use
Cartesian bounding box information to construct irregular
point-to-point communication pattern for list data between nodes

Future work
Large-scale hierarchical 1/0

Hybrid parallelization (considering accelerators), cf. [Schive et al., 2010],
[Jourdon, 2005]
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Usage of AMROC
0000
Short overview

Quick start with AMROC V2.0 |

Standard Linux development system assumed! See install vtf.pdf for
details.

Unpack hdf4_src.tgz into home directory: cd; tar -xvzf
hdf4_src.tgz

cd asc; ./build_hdf4.sh

If last step successful 1ibdf.a, 1libjpeg.a, libmfhdf.a, libsz.a,
libz.a are in $HOME/asc/hdf4/1ib.

Unpack AMROC-Clawpack-1.0.tgz into $HOME/asc:
cd $HOME/asc; tar -xvzf AMROC-Clawpack-1.0.tgz

With mpicc, mpicxx commands

cd vtf

./configure -C --enable-opt=yes --enable-mpi=yes
HDF4 DIR=$HOME/asc/hdf4

If autoconf, automake are available add
--enable-maintainer-mode to last line

cd gnu-opt-mpi

Design of SAMR Systems, Advanced Parallelization, Usage
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Usage of AMROC
0000
Short overview

Quick start with AMROC V2.0 Il

make

source ../ac/paths.sh
Optional unit test

../amroc/testrun.sh -m make -r 4 -s
../amroc/testrun.sh -c

Without MPI

cd vtf

./configure -C --enable-opt=yes --enable-mpi=no
HDF4_DIR=$HOME/asc/hdf4

If autoconf, automake are available add
--enable-maintainer-mode to last line

cd gnu-opt

make

source ../ac/paths.sh
Optional unit test

../amroc/testrun.sh -m make -r 0 -s
../amroc/testrun.sh -c

Design of SAMR Systems, Advanced Parallelization, Usage
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Short overview

Usage of AMROC
0000

Quick start with AMROC V2.0 Il

Realistic example

Change to compilation directory gnu-opt/gnu-opt-mpi:

cd amroc/clawpack/applications/euler/2d/SphereLift0ff
make

Change to corresponding directory with solver.in: cd
vtf/amroc/clawpack/applications/euler/2d/SpherelLift0ff
./run.py or ./run.py 2 (if you have compiled with MPI on a
dual-core system)

gnuplot Density.gnu shows density evolution of lower boundary
Create binary VTK files for Paraview or Vislt: hdf2tab.sh "-f
display_file_visit.in"

Execute Vislt or Paraview and load the VTK files for visualization.

Design of SAMR Systems, Advanced Parallelization, Usage

22




Usage of AMROC
0000
Short overview

Quick start with AMROC V2.0 IV

FSI example (requires MPI)

cd
$HOME/asc/gnu-opt-mpi/vtf/fsi/beam-amroc/VibratingBeam
make

cd $HOME/asc/vtf/fsi/beam-amroc/VibratingBeam

./run.py 4

Change LastNode entry in solver. in for different processor number.
hdf2tab.sh

Execute Vislt or Paraview and load the VTK files for visualization.

For further documentation see http: //www.cacr.caltech.edu/asc
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